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were cultured in different glucose concen-

trations. The amplitude of circadian oscilla-

tions in gene expression correlated to glucose 

concentrations only in wild-type cells, but 

not in the absence of AMPK. In mouse liver, 

the accumulation and nuclear localization 

of AMPK, as well as the phosphorylation of 

known AMPK target proteins, oscillated in a 

circadian manner. Thus, perturbation of nutri-

ent availability—and consequently, of AMPK 

activity—alters output of the circadian clock.

Although AMPK is an attractive candidate 

for coupling metabolic and circadian cycles, 

additional regulators are likely involved. 

Thus, the ratio of oxidized nicotinamide ade-

nine dinucleotide phosphate (NADP+) to its 

reduced form (NADPH)—which, like the 

AMP/ATP ratio, constitutes a diagnostic sig-

nature of a cell’s metabolic state—has been 

proposed to affect circadian gene expres-

sion through diverse mechanisms. At least in 

vitro, the binding of the heterodimeric core 

clock transcription factors CLOCK-BMAL1 

and NPAS2-BMAL1 to their cognate DNA 

sequences (so-called E-boxes) is enhanced 

by NADPH and impaired by NADP+ ( 6). The 

transcriptional regulatory protein peroxisome 

proliferator–activated receptor γ (PPARγ) 

coactivator 1α (PGC-1α), a well-known 

mediator of glucose and lipid metabolism, 

has been proposed to be another important 

player in connecting metabolism to circadian 

gene expression. This transcriptional coacti-

vator associates with nuclear receptors of the 

ROR family and thereby modulates the tran-

scription of the clock genes Bmal1 and Rev-

erbα. Finally, the NAD+-dependent protein 

deacetylase sirtuin 1 infl uences the stability 

and activity of the core clock components 

PER2 and BMAL1, respectively ( 7,  8).

Why are metabolic processes under tight 

circadian control? A simple explanation 

arises from the necessity to separate incom-

patible enzymatic processes within the same 

cell. Because complete spatial separation of 

anabolic and catabolic processes is frequently 

impossible, these have to be gated to differ-

ent time windows. This necessity is well illus-

trated by the temporal sequestration of oxida-

tive and reductive phases in yeast by an ultra-

dian respiratory clock. For example, DNA is 

replicated exclusively in the reductive phase, 

when the concentration of genotoxic reactive 

oxygen species generated by mitochondrial 

respiration is minimal ( 9). In a yeast mutant 

in which the reductive phase is too short to 

allow for the completion of DNA synthesis, 

the mutation rate increases dramatically ( 10). 

In mammals, the master pacemaker in the 

SCN is phase-entrained primarily by light-

dark cycles and thus cannot readily adapt to 

altered feeding rhythms. Hence, when food 

availability changes, nutrient-dependent syn-

chronization cues must dominate the more 

direct signals from the SCN to maintain 

proper homeostasis of metabolism in periph-

eral tissues ( 1). This could explain the multi-

tude of metabolic phase entrainment cues that 

synchronize the circadian core clock machin-

ery in metabolically active peripheral organs. 

A major challenge will be to understand 

how the multiple nutrient-dependent inputs 

are integrated so as to maintain coherence 

between the metabolic state of the organism 

and the circadian system. 
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How Good Are Neuron Models?

NEUROSCIENCE

Wulfram Gerstner and Richard Naud 

A recent competition encouraged modelers to 

predict neuronal activity. Which neuron model 

performed the best?

          O
pinions strongly diverge on what 

constitutes a good model of a neu-

ron ( 1– 3). Two lines of thought on 

this have coexisted for a long time: detailed 

biophysical models (of the style proposed 

in 1952 by the physiologists Alan Hodgkin 

and Andrew Huxley) that describe ion chan-

nels on the tree-like spatial structure of the 

neuronal cell ( 4), and simple “integrate-and-

fi re” models based on the much older insight 

that pulsatile electrical activity (known as an 

action potential or spike) is a threshold pro-

cess. Electrophysiologists generally prefer 

the biophysical models, familiar with the 

notion of ion channels that open and close 

(and hence, alter neuronal activity) depend-

ing on environmental conditions. Theoreti-

cians, by contrast, typically prefer simple 

neuron models with few parameters that are 

amenable to mathematical analysis. Ear-

lier this year, following previous attempts 

at model comparison on a smaller scale ( 5), 

the International Neuroinformatics Coordi-

nating Facility (INCF) launched an interna-

tional competition ( 6) that allowed a quanti-

tative comparison of neuron models.

The idea behind the INCF competition 

is that a good model can predict neuronal 

activity based on data that were not used 

for parameter tuning (see the fi gure). The 

competition included three in vitro and one 

in vivo data set. The in vitro data sets were 

assembled from classical electrophysiologi-

cal experiments in which random electrical 

current was injected through an electrode 

into a pyramidal cell and an interneuron. 

The task was to predict for 13 (or 9, respec-

tively) repetitions of the same injected cur-

rent waveform, the exact timing of spikes 

in neuronal electrical activity evoked dur-

ing a 22-s time span, based on the activity 

observed during the fi rst 38 s of data collec-

tion. The winning submission correctly pre-

dicted 59.6% (or 81.6%, respectively) of the 

spike times of the two neurons, using a sim-

ple integrate-and-fi re model with a moving 

threshold ( 7).

Most threshold models are point neuron 

models—they neglect dendritic morphology 

and reduce the neuron to an extensionless 

mathematical construct. However, the INCF 

competition included as a third challenge a 

double-electrode experiment, in which current 

injection into the neuronal cell body (soma) 

was combined with current injection into the 

apical dendrite located about 600 to 700 µm 

from the soma, enabling an intricate interplay 

between somatic and dendritic spike activity 

( 8). Surprisingly, the best performance was 

achieved by a variant of a threshold model, 

enriched with two equations for the dendrite.
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The potential value of the competition 

is best illustrated for the in vivo data set, 

which allowed a reevaluation of previously 

published data from a neuron in the lateral 

geniculate nucleus of the brain ( 9). The 

winning submission (a threshold model) 

predicted the timing of 90.5% of the spike 

activity of this neuron (knowing its input, 

which was caused by visual stimulation of 

the retina), and thereby surpassed the per-

formance of the previous data analysis by an 

astonishing 11%.

How well did the detailed biophysical 

neuron models perform? We don’t know, 

because no prediction based on a detailed 

model was submitted. The reason may be that 

it is simply too diffi cult to tune the parame-

ters of a detailed neuron model to perfection. 

However, systematic methods for automatic 

parameter tuning are just becoming avail-

able ( 10,  11).

Among the lessons to be learned from 

the INCF competition is that every neu-

ron is different and one should not think of 

“the” model of a pyramidal cell or interneu-

ron. Rather, parameters need to be tuned on 

a neuron-by-neuron basis. Another lesson 

is that the quality of a neuron model has to 

be measured on new data that are not acces-

sible during the phase of parameter tuning. 

These new data (test set) can be statistically 

of the same type, but must be different from 

the data in the training set. In addition, mak-

ing data publicly available is most reward-

ing if the data set is combined with a well-

formulated task. A fi nal lesson is that, for 

tasks consisting of predicting spike activity 

times under single- or double-electrode cur-

rent injection, simple neuron models of the 

threshold type that are augmented by adap-

tation (to describe neuronal fatigue) are suf-

fi cient in that they can predict all the predict-

able spikes. The good performance of thresh-

old models is excellent news for studying 

properties of neural coding or dynamics of 

large neuronal networks using adaptive inte-

grate-and-fi re neurons. Stochastic versions 

of such threshold models, also called gener-

alized linear models, have recently been suc-

cessfully used to decode neural information 

in sensory ( 12) and motor ( 13) areas.

Threshold models give a phenomeno-

logical description of neural behavior, but 

provide only a weak link to the underlying 

biophysical causes of electrical activity. By 

construction, threshold models are rather 

limited in predicting the precise time course 

of the voltage during and after a spike, and 

cannot predict the infl uence of temperature 

dependence, changes in the chemical envi-

ronment, or pharmacological manipula-

tions of ion channels, whereas biophysical 

models of the Hodgkin-Huxley type can do 

all this. It may soon be possible to measure 

most parameters of biophysical models in a 

systematic fashion with a suitable combina-

tion of immunostaining methods to deter-

mine ion-channel distribution, calibrated 

measurements of ion-channel kinetics, 

and expression studies to identify tens of 

ion channels in individual cells. Automatic 

model construction along these lines is on 

its way ( 14). Moreover, intricate 

nonlinear spatiotemporal effects on 

the dendritic tree such as the inter-

play of back-propagating action 

potentials (those that travel into a 

dendrite) with shunting inhibition, 

or local spikes in the concentration 

of intracellular calcium that are trig-

gered by multiple, spatially distrib-

uted, synaptic inputs, are beyond the 

scope of threshold models. Although 

these nonlinear spatiotemporal 

aspects were difficult to quantify 

with traditional experimental meth-

ods, new imaging techniques that 

measure the instantaneous voltage 

time course across the dendritic tree 

at high spatial resolution in combi-

nation with a controlled multisite 

stimulation ( 15)—either by gluta-

mate uncaging ( 16) or optogenetic 

methods ( 17)—will open the door 

to an era of quantitatively predictive 

biophysical models.

Competitions and model com-

parisons are widespread in the community 

of machine learning, where new computer 

algorithms are tested on benchmark data 

under well-defi ned procedures. With a few 

exceptions, the idea of benchmarking neu-

ron models on a publicly available set of data 

in a prediction task has not yet found its way 

into the standard repertoire of neuroscience, 

but the increased numbers of participants in 

the INCF competition compared to earlier 

years (up from 9 to 33 submissions) indicate 

a paradigm shift in that respect. 
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Predictions. The same fl uctuating input current is injected into a live neuron and a model neuron. The fi rst few seconds 
of voltage time course (dark blue) are used to optimize the parameters of the model. Performance of the model is mea-
sured as the percentage of correctly predicted spikes in the fi nal part of the stimulation. A threshold model generates 
spikes (brown) whenever the simulated voltage (light green) hits a dynamic threshold (dashed line).
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