
Epilepsy is one of several paroxysmal or episodic dis-
orders of the brain. These disorders, which include 
multiple sclerosis (MS), transient ischaemic attacks 
(TIAs) and migraine, are all dynamical disorders — dis-
orders that unfold over time1. Whereas MS involves 
the dynamics of the immune system and TIAs involve 
haemodynamics, epilepsy is a dynamical disorder of the 
brain itself. Epilepsy is therefore particularly suited to 
study from the perspective of computer modelling and 
dynamical-systems theory.

The signs and symptoms of epilepsy are varied, 
probably owing to the fact that epilepsy can involve 
many areas of the cortex as well as underlying deep-
brain systems. Epilepsy is therefore a fascinating 
disorder for both the clinician and those interested in 
the functioning and interrelations of brain subsystems. 
Progress in understanding epilepsy has been made in 
all areas of neuroscience, from neurogenetics and 
protein crystallography to imaging and behaviour. 
Modelling can be used to tie together these subfields 
and enable us to understand one level of organiza-
tion in terms of others2. The concordance between 
basic science and clinical phenomenology is closer 
in epilepsy than in most brain disorders. Computer 
simulation can conceptually link abnormalities at 
different levels of organization that are identified by  
experiment.

This Review focuses on two major epilepsy syn-
dromes that are particularly well-studied in modelling 
and experimental preparations: childhood absence 

epilepsy and mesial temporal lobe epilepsy (MTLE). 
Absence seizures are brief episodes of loss of con-
sciousness without convulsions. Absence is considered 
a primary generalized seizure, although recent findings 
suggest that an individual absence seizure does have a 
focal onset3. Experimentation and modelling strongly 
implicate thalamocortical interactions in this dis
order4–6. By contrast, MTLE seizures produce alterations 
in consciousness and convulsions. The seizures spread 
from the temporal lobe in a process termed secondary 
generalization. MTLE is considered to be the prototypi-
cal focal epilepsy disorder7 and is thought to be largely 
acquired, presumably through injury and the brain’s 
subsequent reaction to injury8. However, familial factors 
are also important9–14.

The Review describes several levels and types of 
models to give the flavour of modelling and to highlight 
recent progress and the potential for therapeutic appli-
cation of computer models. I proceed from the mac-
roscopic to the microscopic level, and from modelling 
the dynamics of seizure occurrence in the pediatric pop
ulation to a detailed model that takes into account the 
dynamics of voltage-sensitive ion channels. Throughout, 
I compare conceptual and dynamical models and indicate 
how the conceptual model is used as a foundation for a 
dynamical interpretation of the data. This broad scope 
has required the omission of many major works in the 
field in favour of a few studies that illustrate particu-
lar approaches. Readers whose curiosity is piqued are 
referred to Ref. 15.
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Generalized seizure
A seizure that seems to start 
simultaneously across cortical 
sites.

Focal seizure
A seizure that starts at a 
particular location in the brain.

Secondary generalization
A process whereby an initially 
focal seizure spreads to involve 
the entire brain.

Dynamical model
A computer or physical model 
that reproduces change in an 
experimentally observable 
feature. In the case of 
dynamical models of motion, 
these changes would be in 
position and velocity.

Computer modelling of epilepsy
William W. Lytton

Abstract | Epilepsy is a complex set of disorders that can involve many areas of the cortex, 
as well as underlying deep-brain systems. The myriad manifestations of seizures, which 
can be as varied as déjà vu and olfactory hallucination, can therefore give researchers 
insights into regional functions and relations. Epilepsy is also complex genetically and 
pathophysiologically: it involves microscopic (on the scale of ion channels and synaptic 
proteins), macroscopic (on the scale of brain trauma and rewiring) and intermediate 
changes in a complex interplay of causality. It has long been recognized that computer 
modelling will be required to disentangle causality, to better understand seizure spread 
and to understand and eventually predict treatment efficacy. Over the past few years, 
substantial progress has been made in modelling epilepsy at levels ranging from  
the molecular to the socioeconomic. We review these efforts and connect them to the 
medical goals of understanding and treating the disorder.
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Tonic–clonic
A common pattern of 
convulsion that involves a 
phase of contraction of the 
extensor muscles (the tonic) 
followed by a phase of 
alternating flexor–extensor 
contractions (the clonic phase).

What is epilepsy?
An initial understanding (or model) of something is gen-
erally provided by a textbook or dictionary definition, 
which can provide a root and route to broader taxo-
nomic and classification schemes. The common feature 
of the epilepsies is the occurrence and recurrence of sei-
zures; epilepsy is thus a seizure disorder. A seizure is a 
“transient occurrence of signs and/or symptoms due to 
abnormal excessive or synchronous neuronal activity in 
the brain” (Ref. 16). An additional aspect of the clinical 
definition of a seizure is the involvement of the cerebral 
cortex; this allows seizures to be distinguished from 
excessive or synchronous activity elsewhere in the brain, 
such as tremors or the pain that arises from a brain-
stem ganglion (trigeminal neuralgia). In the research 
literature, the term seizure is also applied to excessive 
neurological activity in creatures as petite and acorti-
cal as zebrafish and fruit flies17,18. This is reasonable, as 
the animal syndromes that are involved do respond to 
anticonvulsants (as does trigeminal neuralgia). These 
syndromes thus enable investigators to assess drugs 
and genetic manipulations that would be impossible to 
assess in larger animals.

The difficulty in defining epilepsy arises in part 
from the vast diversity of epilepsy syndromes and 
seizure manifestations. The current standard clinical 
classification can be confusing owing to its occasional 
conflation of aetiology and manifestation19. Efforts to 
amend and replace this classification scheme have led 

to disagreements and competing suggestions for stand-
ards16,20–25. Nevertheless, the competing classifications all 
agree on the use of multidimensional axes to organize 
our thinking about the disorder (BOX 1). Ideally these 
schemes will provide a basis for formal (computerized) 
epilepsy ontologies in the future26,27.

The difficulty in defining epilepsy also reflects the 
perennial clinical conflict between splitters and lump-
ers22,24. Splitters want to divide epilepsy into distinct 
conditions, whereas lumpers suggest that manifestations 
and causes overlap so greatly that there is little value 
in splitting. Both views have validity. Several distinct 
epilepsy syndromes, such as childhood absence and 
MTLE, can be identified. However, epilepsy generally 
arises from a confluence of polygenic, proteomic and 
acquired causes28. The metaphor of a river of epilepsy 
was developed by Lennox to describe this multifactorial 
causation164 (FIG. 1). A particular genomic or proteomic 
makeup provides an interacting substrate of ion chan-
nels, synaptic weights and network configurations that 
make an individual more or less prone to develop epi-
lepsy in response to stroke, head trauma or simple lack of 
sleep29–32. Conversely, a particular ion-channel mutation, 
even one that is invariably epileptogenic, will produce 
different disease manifestations in two individuals owing 
to differences in other channels, network anatomy and 
acquired brain insults.

The complexity of multifactorial causation highlights 
the need for a computational approach. Although it is 
possible to experimentally determine and informally 
conceptualize how a single mutation could produce a 
seizure, modelling is required to understand how two, 
five or ten mutations that would not cause seizures indi-
vidually do so when they are combined. This complex-
ity extends to the therapeutic domain: many drugs have 
multiple binding sites and thus produce multiple effects 
that require modelling to be fully understood.

Multiscale modelling
As epilepsy is characterized by recurrent seizures, one 
might imagine that we would build an epilepsy model 
directly out of a seizure model. However, the complex-
ity of such a combined model makes it unattainable for 
the foreseeable future. More importantly, such a model 
would violate a central tenet of both mathematical and 
computer modelling: simplification. A large part of 
the art of modelling consists of deciding what to leave 
out. In computer modelling, we use the concept of 
multiscale modelling. Conceptually, multiscale model-
ling is familiar in biology: cell biology models depend 
on molecular biology models and so forth down to 
quantum mechanics. In biomedical science we build 
hierarchies of models: models of models of models. A 
clinical disease is represented by one or more in vivo 
animal models, aspects of which can be further explored 
in vitro. An acute brain slice from an epileptic animal 
serves as a reduced model system for understanding the 
seizures in the source animal. Computer models can be 
explicit models of one of these models or an attempt to 
translate the results of such models up to a higher model 
or the clinical level.

 Box 1 | The epilepsy axes

Of late, much effort and much argument have gone into revising epilepsy taxonomy 
and classification19. The new classification, although it is not officially accepted by 
the International League Against Epilepsy or even by the committee that designed it, 
is a step forward from the point of view of computationalists and for neuroscientists 
in general. Rather than lumping aetiology, semiology and syndromology together, 
the new classification separates these and other facets of the disorder out into axes, 
in the manner of the psychiatric classifications promulgated by the various editions 
of the Diagnosis and Statistical Manuals (DSMs).

•	Axis 1 describes ‘ictal semiology’ — what the patient’s seizures look like clinically  
in terms of signs (observable manifestations) and symptoms (patient complaints).  
This axis strives for reproducibility by using a standard ‘Glossary of Descriptive 
Terminology’.

•	Axis 2 redescribes the seizure types using a somewhat more global and traditional 
viewpoint, with descriptors that include ‘tonic–clonic’ and ‘typical absence’. These 
first two axes are therefore not orthogonal.

•	Axis 3 provides syndromic diagnosis where possible, including a list of particular 
symptom complexes that have, in some cases, been shown to have particular 
chromosomal or even precise genetic linkage.

•	Axis 4 provides a descriptor for underlying aetiology (cause). This allows the precise 
definition of those syndromes that are known at a molecular (channel, 
neurotransmitter or receptor) level. Again, Axes 3 and 4 are not orthogonal.

•	Axis 5 describes the socioeconomic impact of the patient’s disorder. An alternative 
axial framework also provides axes for seizure spread patterns and for seizure 
frequency154–156.

Ideally, a multidimensional taxonomic system should permit us to place an individual 
patient at a particular point in the state space that is defined by the measures on each 
axis. By analogy with dynamical systems, one could consider the patient’s clinical 
definition moving in this space over years of disease evolution, treatment, remission 
and relapse.
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Seizure semiology
The detailed study of the 
progress of a seizure.

Scale model
A small physical model of an 
object, with correct 
proportions.

Verbal model
An informal descriptive 
explanation of an object or 
phenomenon. 

Systems biology
The analysis of element 
interactions in biological 
systems. Owing to the 
complexity of these systems, 
the computer is often used as a 
tool for analysis and 
simulation. Objects of study 
include metabolic and 
expression pathways but 
extend up to the study of 
macroscopic systems. The goal 
is to insert the results of 
reductionist study back into 
the systems from which they 
were extracted.

In the case of epilepsy, multiscale modelling can be 
envisioned across many different dimensions. First, 
there is spatial scale. Models range from the single 
ion channel up to the level of brain areas33,34. There is 
also the temporal scale: modelling of interictal spikes 
(over a millisecond timescale), seizures (over seconds 
to minutes), drug treatments (over months) and dis-
ease evolution (over years). We can also model across 
and among the clinical axes (BOX 1). For example, 
modelling seizure semiology would help us to explain 
seizure spread. Similarly, simulation can evaluate neu-
ronal network dynamics in the context of transitions 
between tonic and clonic activity 35. Modelling can 
also connect seizures to associated signs or underlying 
causes. Simulation extends to socioeconomic impact: 
public health models can be used to evaluate trade‑offs 
between various treatments and quality of life or  
economic impact.

Computer modelling: static and dynamic
Scientific model-building is a set of techniques,  
ranging from scale models and verbal models to detailed 
taxonomies (the Linnean system), geometric relations 
(the periodic table), diagrams and schematics, math-
ematical models, and animal and in vitro models36. 
In order to model seizures and epilepsy on a compu-
ter, we need to consider these existing biological and  
ontological models.

Static models. Computational neuroscience is a branch 
of computational systems biology37–40 that combines two 
interlocking types of study: knowledge discovery and 

data mining (KDD), and simulation41. KDD permits a 
search for patterns in static data and provides substrate 
and context for building simulations42–45. KDD can be 
used to explore both biological databases and the tax-
onomies that have been developed for public health, 
health insurance and bibliographic purposes46,47. As 
noted above, the complexity of epilepsy has blocked 
agreement on a taxonomy and classification systems20,22. 
Formal taxonomies and ontologies developed through 
KDD might help to clarify the aspects and subtypes of 
epilepsy that are explored through animal research and 
modelling.

In the context of KDD, a database is a computer model. 
The structure of complex databases (for example, those 
for gene networks, cell signalling cascades or metabolic 
pathways) embodies the data, incorporating relations such 
as hierarchies, inheritance and lateral associations. KDD 
extracts information that would not be apparent through 
unmediated human reading of these models48,49. Similarly, 
a formal ontology organizes data within a taxonomy, with 
rules for linking, embedding or transforming concepts47. 
Various qualitative models can be built from a database or 
ontology. Such models coarsely define phenomenology in 
terms of classes, types or gross sizes.

Another type of static computer model, the graph 
model, generates and examines connectivity diagrams. 
Directed graphs, in which A to B differs from B to A, 
are used to define patterns of neuronal connectivity. A 
major distinction is made between random graphs (with 
uniform connectivity probabilities) and small-world 
graphs with low average distances from any node to any 
other50. Small-world graphs often contain hubs (similar 

Figure 1 | The river of epilepsy. Multiple genetic factors and various acquired insults, here represented as tributaries  
of a river (a metaphor first proposed by Lennox164), feed into epilepsy causation. Factors have been grossly divided into 
micro‑, meso- and macro-levels of change or insult. Many genetic and epigenetic factors come into play in producing 
combinations of voltage-gated and ligand-sensitive channels that might contribute to an epileptic state. Na+, K+ and  
Ca2+ channels, as well as both excitatory and inhibitory synaptic receptors, are implicated. Channel alleles that are not 
sufficient to cause epilepsy individually might cause epilepsy when they are combined. Alternatively, and remarkably, 
combinations of alleles might reduce the epilepsy that would be caused by any of the alleles alone28. In addition to these 
factors, life events such as head trauma can incite cell death or wiring changes that will contribute to a greater or lesser 
extent when they are combined with the genetic factors. This complex, multifactorial causality generally precludes the 
identification of the root cause of epilepsy in an individual patient or class of patients. Instead, we must think in terms of 
complex systems, using tools that enable us to manipulate and understand them.
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Parameter
In a computer model, 
parameters are the constant 
values in the set of equations 
that describe the model. These 
values are set by the user and 
determine the behaviour of the 
model.

Stochastic model
A computer model that 
attempts to replicate 
phenomenology by drawing 
exemplars (which might be 
locations or time intervals) 
from a probability distribution. 
The prototypical example is 
the model of Brownian motion.

Poisson model
A stochastic model that 
generates time intervals  
that are independently drawn 
from a Poisson distribution. 
The Poisson distribution is the 
limiting case of the binomial 
distribution for large ‘n’ 
(number of events) and small 
‘p’ (probability of event 
occurrence).

Monte Carlo model
A stochastic model that uses 
repeated random sampling 
from one or more distributions.

Markov model
A stochastic model that uses a 
series of connected states with 
transition probabilities 
between them.

Discretization
A process whereby continuous 
time is divided into timesteps, 
or whereby continuous space 
is divided into segments or 
compartments, in order to 
simulate continuous reality in 
the discontinuous words of 
computer memory.

Finite-difference 
approximation
A process whereby the 
infinitesimal changes of 
continuous curves (in time or 
space) are approximated with 
a finite change that is based on 
the curve’s values at a discrete 
timestep or spatial interval. 

to the airline hub system). Graph theory has been used at 
the level of brain areas as well as at the level of neuronal 
networks and is further discussed below.

Dynamic models. Dynamical modelling involves load-
ing equations that describe change into a computer.  
These equations are numerically solved to provide pre-
cise predictions of how a complex system will evolve. 
Although computer modelling is a direct extension of 
mathematical modelling, it differs by being in itself an 
experimental pursuit that yields unexpected insights 
during exploration51. Simulation produces a large quan-
tity of virtual data that complement experimental data. 
The virtual data can then be mined52 to provide compari-
son with the original system, to allow the exploration of 
missing parameters and to contribute to the development 
of new hypotheses44,53. In this way, simulation and KDD 
are partnered in mutual support54,55.

Dynamical models include stochastic (random) mod-
els, such as Poisson models, Monte Carlo models, Markov 
models and others. In these models, intervals or instances 
are drawn randomly from a distribution. Markov models 
have been used to model seizure-occurrence times56 and 
are also widely used to model ion-channel transitions57. 
Monte Carlo models are used to follow trajectories of 
individual molecules and ions at a synapse33.

The workhorse of dynamical modelling is the 
deterministic model, which generally is described 
by differential equations. For computerization, these 
equations are discretized in space and time (using finite-
difference approximations). Neurobiological examples of 
dynamical models include compartmental models and 
the Hodgkin–Huxley equations58,59. Another form of 
deterministic model is the event-driven model, which 
manages time discontinuously by direct modelling of 
chains of event dependence. Such models can be used 
to model spike cascades60–65. In the following sections, 
I describe some specific dynamical seizure and epilepsy 
models.

Stochastic models
Most scientists are quite familiar with a basic type 
of mathematical modelling — that of fitting data to a 
distribution. It is easy to turn the data-fitting process 
around to create synthetic data from statistical model 
parameters — for example, the two parameters (µ and σ) 
of a Gaussian distribution — and in turn create a sim-
ple stochastic model. Stochastic models might be used 
when a system is too complex to consider modelling the 
underlying details. They are also used when a system is 
subject to vagaries that cannot reasonably be modelled. 
For example, seizures are more likely to occur after a 
night’s sleep has been missed. It is not feasible to model 
the behavioural or employment patterns that might lead 
to this. Stochastic modelling can be used to understand 
the clinical course of epilepsy and to investigate whether 
we can predict seizure onset times.

Predicting seizures. Initial stochastic models of seizure-
occurrence times suggested that they follow a Poisson 
distribution66. Subsequent clinical studies indicated that 

some patients will show deviations from this pattern 
through cyclicity (periodic seizure recurrence, such 
as is sometimes seen with menses) or seizure cluster-
ing67–69. Further modelling research then suggested that 
the brains of some patients exhibit two states that have 
different seizure-occurrence probabilities (high and low, 
corresponding respectively to seizure-prone and seizure-
resistant periods)70–72. A two-state Markov model was 
also able to fit an animal seizure model: a long period in 
the seizure-prone state was associated with a subsequent 
long period in the seizure-resistant state73.

Markov modelling has also been used to determine 
the adequacy of seizure-prediction algorithms74. A 
model for this purpose used three Markov brain states: 
‘normal’, ‘pre-seizure’ and ‘seizure’, with bidirectional 
transitions possible between any two states. The only 
state that was directly observable was the seizure state. 
This was therefore a hidden Markov model: the other 
two states could not be directly observed from the data 
but were inferred through the model. In addition to 
the probabilistic transitions between states, the model 
included emission probabilities: the probability that a 
given state would be observed. For example, detection 
of the pre-seizure state was associated with a specific 
emission probability. The model could therefore sug-
gest where false positives (the algorithm indicating pre- 
seizure when the brain was normal) and false negatives 
(the algorithm not being triggered even though the brain 
was pre-seizure) occurred.

From a neurobiological point of view, this model 
is interesting because it makes explicit the notion of a 
pre-seizure state and makes specific predictions about 
transitions into and out of this state. Meaningful seizure 
prediction (minutes ahead) will be possible only if such 
a state exists. The existence of this state in some patients 
is suggested by their ability to predict their seizures up 
to a day before they occur75. Without a pre-seizure state, 
the most that can be accomplished is an improvement 
in detecting seizure onset. The model demonstrated fre-
quent bidirectional transitions between the pre-seizure 
and seizure states, a possible cause of seizure cluster-
ing68,76. Similarly, it demonstrated the pre-seizure-to-
normal transitions that would have to be made more 
likely to occur by any prediction-triggered therapy.

Modelling clinical course. Another study used model-
ling to follow clinical course (remission and relapse)77. 
A three‑state Markov model fitted the course of epilepsy 
in 602 children (FIG. 2). The model predicted that a subset 
(approximately 20%) of patients would never undergo 
remission. The proportion of patients expected to be  
in remission after 4–5 years was predicted to be approxi-
mately 70%. These groups could then be analysed to 
diagnose their underlying disorders and connect these 
disorder’s dynamics with their definition (taxonomy). 
This model has prognostic value: we can give a parent 
some idea of the chance of remission once the child 
reaches school-age. Additionally, the model showed 
that the probability of remaining in remission differed 
little with the length of time from the onset of epilepsy 
to remission during the initial 3-year period following 
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State variable
In a dynamical model, state 
variables are the values that 
change with time.

Trajectory
In a dynamical model, the 
trajectory is the path that is 
followed by the n state 
variables through the 
n‑dimensional state space. This 
is a higher-dimensional 
generalization of the notion of 
trajectory as a term that is 
commonly used to describe 
motion. However, trajectories 
in models of motion include 
velocities as well as locations.

Attractor
The set of stable trajectories of 
a dynamical system in state-
space. If a trajectory is 
perturbed away from an 
attractor it will tend to move 
back to it.

Mean-field approximation
An approximation that is used 
when large numbers of 
elements (for example, 
neurons) make it impracticable 
to model the influence of each 
element individually. Instead, 
the effect of a large ensemble 
of elements is estimated as a 
field, the influence of which is 
widely felt.

diagnosis. The probability was slightly reduced if the 
child took 4 years to undergo remission. This result 
might have neurobiological implications. Clearly epilepsy 
in the child’s brain is a highly non-stationary process 
— the brain is continuously changing owing both to the 
effects of seizures and to normal or abnormal develop-
mental processes. One can imagine that there are vulner-
able (critical) periods in brain development or epilepsy 
development, during which therapeutic interventions 
would be particularly efficacious78.

Lumped deterministic models
By contrast to stochastic models, deterministic models 
do not evolve randomly: they are precisely determined 
by their initial conditions and can therefore offer precise 
predictions rather than probabilities. This precision is 
exemplified in a moon shot (a voyage from the earth 
to the moon), which is controlled through computer 
models that predict trajectories with an error on the 
order of metres over a distance of ~384 million metres. 
Unfortunately, complex nonlinear systems such as 
the brain do not lend themselves to such precision. 
Nonlinearity implies that a small change can produce 
a big effect: for example, in the neuron a small current 
near the dynamic spike threshold will produce a spike. 
In a nonlinear dynamical system, this might lead to such 
sensitivity to initial conditions that tiny, unobservable 
alterations in the initial state of the system will lead to 
vastly different outcomes. Thus, a deterministic sys-
tem can produce apparently random behaviour, called 
chaos79,80. This is how a computer produces random 
(actually, pseudo-random) numbers. A moon shot, by 
contrast, is a nonlinear dynamical system that is neither 
complex (in the technical sense) nor chaotic.

A dynamical system is defined by equations (in the 
case of the moon shot, these are Newton’s equations), 
parameters (the strength of gravity, the mass of the 
rocket) and initial conditions (a location in Florida and 
zero velocity in the earth frame) and is described by 
the evolution of its state variables (position and veloc-
ity) along a trajectory. In some cases a trajectory might 
lie on an attractor, making it resistant to perturbation. 
In neurobiology, the exemplary dynamical system is 
the four‑dimensional Hodgkin–Huxley system for 
action-potential generation. Here, the state variables are 
membrane voltage and levels of channel activation and 
inactivation, and a given current injection (a parameter) 
results in the evolution of these variables along a stable 
trajectory that lies on an attractor.

The four‑dimensional Hodgkin–Huxley equation 
is a low-dimensional dynamical system. By contrast, 
hundreds of state variables are required to describe a 
neuron, even if we only evaluate membrane voltage gen-
eration, and millions more are required if we consider 
ion and peptide concentrations and proteomic cascades. 
A brain area would be described by the dynamics of 
very many neurons and glia and by the dynamics of the 
connections among them. Fortunately, system trajec-
tories in such a high-dimensional system will not fill 
the high-dimensional space but will be confined to the 
lower-dimensional subspaces of attractors, just as water 
flows along low-lying paths rather than spreading across 
an entire landscape. Indeed, the enormous dynamical 
complexity of the brain, like its structural complex-
ity, would be unmanageable if it was not organized 
into subsystems. The existence of widespread distinct 
oscillatory frequencies in the electroencephalogram 
(EEG) suggests that dynamical subsystems are detect-
able. Hence, it has been proposed that the enormous 
dimensionality of the brain produces trajectories that 
lie in much lower-dimensional subspaces that can then 
be modelled by equivalent low-dimensional dynamical  
systems.

Following this hypothesis, low-dimensional mean-
field or lumped models have been developed to simu-
late the dynamics of a large ensemble of neurons (the 
lump). Depending on the model, this neural lump is 
interpreted to be a minicolumn, a column, a Brodmann 
area, a thalamic nucleus, et cetera81. Most such models 
are based explicitly or loosely on Wilson and Cowan’s 
1972 model82–85. The neural lump of the Wilson–Cowan 
model has two state variables: excitable population 
firing and inhibitory population firing. Within a single 
lump of the model, excitatory and inhibitory popula-
tions interact to produce an oscillator — mathemati-
cally comparable to a mass bouncing on a spring — for 
which the two state variables are position and velocity. 
These state variables trade-off sinusoidally: the extreme 
position (fully stretched spring) is associated with 
zero velocity. Similarly, in the Wilson–Cowan model, 
excitation and inhibition trade off and so periods of 
high inhibition are associated with minimal excita-
tion. Connecting Wilson–Cowan oscillators through 
their excitatory outputs leads to a system of coupled  
oscillators58,82,86–91.

Figure 2 | Markov model of childhood-epilepsy outcome in 602 children. The 
model consists of three states: initial disease (State 1, a starting state to which there is no 
return), remission (State 2) and relapse (State 3). A time period of 1 year seizure-free was 
used to define remission. The model indicated that the probability for being in each of 
the three states plateaued over a 5‑year period. Most patients go into remission (stop 
having seizures), although some of these will relapse. Note that these results could not 
have been readily obtained using standard statistical measures. This is partially due to the 
nature of the sample: patients are enrolled over time and so only a few, if any, are 
followed for the full 8 years of the study — there is no single time-point at which all 
patients can be assessed. It is also due to the difficulty of extrapolating probabilities out 
across multiple cycles of remission and relapse. Figure modified, with permission, from 
REF. 77  (2004) Elsevier Science.
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Lumped model
A model that approximates the 
activity of a large ensemble of 
neurons using a single-state 
variable that typically 
represents the proportion of 
neurons that are active at a 
given time.

Cortical minicolumn
A group of cortical cells that 
interact with each other more 
than they interact with neurons 
in neighbouring columns. 
Although columnar structure 
was originally identified 
physiologically as groups of 
neurons with shared 
properties, it has since been 
sought anatomically and 
variously identified as groups 
of 100–200 neurons (~30 µm 
across).

State space
The dimensionality of a 
dynamic system. The current 
state of the system can be 
described as a point in state-
space. Also called phase space.

Parameter space
The m-dimensional space in 
which the parameters of a 
system can be defined as  
a single point.

A lumped model of absence. Over the years, a series 
of epilepsy and seizure models have been based on 
variations of the Wilson–Cowan approach92–96. Because 
these models are low-dimensional, they are amenable 
to graphical explorations of their trajectories. Figure 3 
shows a slice of state-variable space (called state 
space or phase space) in a model of absence epilepsy. 
An analogy would be looking down at a ball rolling 
in a broad-rimmed bowl. The ball can roll around 
on the rim (outer trajectories) as well as inside the  
bowl (central trajectories): the centre and rim of  
the bowl represent attractors. An outer trajectory is 
a seizure. In the normal model, in which the attrac-
tors are well-separated, it would take a lot of random 
activity (noise) to shift the system out of its normal 
attractor and into the pathological attractor. In the epi-
leptic model, a parameter change (such as an increase 
in external drive or an alteration in intrinsic time 
constants) has deformed the attractors, expanding and 
lowering the ‘energy barrier’ between them. Thus, in 
this model, random transitions between attractors will 
occur more frequently, leading to seizures97,98.

This deterministic model of absence epilepsy pro-
duces dynamics that suggest stochastic seizure causa-
tion: the attractors in the vulnerable individual lie so 
close together that minor perturbations can trigger a 
seizure. As they are randomly triggered, these seizures 
would not be predictable from the EEG — there is no 
pre-seizure state. The model suggests that some kinds 
of epilepsy will not be amenable to seizure prediction. 
However, triggering factors could still be identified 
and avoided99,100.

A lumped model of MTLE. A different class of seizure 
transitions has been identified using a similar low-
dimensional model applied to MTLE101. This model 
uses an archicortical rather than a thalamocortical 
organization and can successfully reproduce a variety 
of the patterns that are seen in patients (FIG. 4). Figure 4a 
compares patterns of activity from this lumped cortical 
model to patterns recorded from hippocampal depth 
electrodes in an epilepsy patient who was undergoing 
evaluation for surgery. The activity patterns in FIG. 4a 
were produced by the parameter sets illustrated in the 
two-dimensional slice of parameter space shown in 
FIG. 4b. Changes in activity patterns can be produced by 
changes in parameters that will deform existing attrac-
tors or produce new ones. A sequence of parameter 
transitions like those indicated by the arrow in FIG. 4b 
would cause passage from normal activity, through a 
pre-seizure state, into a seizure. In contrast to the case 
modelled in FIG. 3, such a seizure would be predict-
able: there is a defined pre‑seizure state that could  
be detected.

Although I have emphasized the difference between 
state variables and parameters, it is important to note 
that the hypothetical movement in parameter space dis-
cussed above is itself a dynamic. In order to model these 
dynamics, it would be necessary to promote this inhibi-
tory parameter to a state variable, one with far slower 
time constants than those of the existing state variables. 
In fact, the fast dynamics of brain activity are continually 
altered by the slower dynamics of synaptic and cellular 
plasticity102. Similarly, as I discuss in the next section, 
these dynamics are in turn altered by the still-slower 

Figure 3 | A lumped model of absence epilepsy. Sample trajectories (blue lines) from normal (a) and epileptic (b) models 
projected onto a two‑dimensional slice of state space. The axes are values of two state variables: cortical excitatory 
activity and cortical inhibitory activity. The red line is a separatrix separating two attractors. The attractors are not 
explicitly represented but can be inferred from the trajectories. In both cases normal activity is the inner trajectory and a 
seizure is the outer trajectory (with higher-amplitude activity). Note that the seizure attractor exists even for the normal 
model, corresponding to the fact that anyone can have a seizure under stress conditions (such as fever, ischaemia, 
hypoglycaemia or insomnia). However, the attractors are well separated in the normal model, and so random 
perturbations do not result in transitions. In the epileptic model, the attractors are closer and perturbations produce 
transitions to seizure. Figure modified, with permission, from REF. 97  (2003) IEEE.
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dynamics of development, of cell growth and death, and 
of synaptic sprouting and pruning.

Detailed deterministic models: neuronal networks 
Detailed neuronal modelling has been one of the most 
productive areas of neural modelling and of neural 
modelling applied to epilepsy. Unlike the lumped mod-
els described above, detailed neural models incorporate 
particulars of the nervous system; this should permit 
greater verisimilitude. However, this goal is limited by 
three factors. First, we do not know enough (particularly 
discouraging is the lack of a wiring diagram). Second, 
we do not have enough computer power. Third, a 
model generally needs to perform some simplification 
to be useful (see above). Detailed modelling is per-
formed across a wide range of spatial scales, from single 
synapse to cortical column to whole brain33,103. The 
best-defined epilepsies (neurobiologically) are those 
associated with specific ion-channel abnormalities. 
Many anticonvulsants function in part by altering chan-
nel conductances or kinetics. Modelling has shown how 
alterations in channel dynamics (that is, alterations at the 

molecular level) can change neural firing patterns (at the  
cellular level)104,105.

Much effort in detailed modelling has taken place 
at the network level, following pioneering studies of 
network activity in MTLE models106–109. Similarly, 
there has been considerable progress in modelling the 
thalamocortical interactions that give rise to absence 
seizures110. One notable success involved the compu-
tational prediction of activity entrainment into patho-
logic hypersynchronized oscillations at approximately 
3 Hz111–113. Computational load generally limits the 
use of detailed models to depictions of seizures or of 
interictal events, rather than to the longer timescales 
that are required to directly model epilepsy. However, 
just as with the lumped MTLE model described above, 
detailed models can assume that slower dynamics have 
taken place without explicitly modelling them.

Connectivity predicts dynamics in the dentate gyrus. 
Owing to the prevalence of MTLE, the hippocampus 
has been a focus of basic investigation. The dentate 
gyrus (DG), and the hilus in particular, demonstrates a 

Figure 4 | A lumped model of MTLE. a | A simulated cortical electroencephalogram from a lumped model of excitatory 
and inhibitory interactions produced various activity patterns (left-hand series of plots) that are comparable to those that 
are seen in depth recordings from human patients (right-hand series of plots). Each of the colour-coded patterns is the 
result of a different location in a two-dimensional slice of parameter space (b). In the simulated traces, we are only seeing a 
single state variable (the excitatory activity); this variable is comparable to the y axis of the two-dimensional portrait in 
Fig. 3. Note that this single state variable is only the dimensional tip of the ten-dimensional state space that is used in this 
model: most of the interactions and transitions are hidden from view. b | Parameter space. The slow inhibitory parameter  
is shown on the y axis and the fast inhibitory parameter is shown on the x axis. One route from normal activity to a  
seizure is shown by the arrow: downward movement in parameter space from the top-most blue area (normal activity) to 
the green area (seizure). This movement represents a decrease in the parameter for slow (largely dendritic) inhibition. 
Hence, the model makes a specific prediction that a reduction in these inhibitory inputs could be responsible for 
transitions to the seizure. Figure adapted, with permission, from REF. 101  (2002) Blackwell Science.
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wide variety of alterations during epileptogenesis in both 
patients and animals114–119. The various effects include 
cell death with attendant synaptic pruning, and cell birth 
or axonal sprouting with addition of synapses. Excitatory 
sprouting might be on to excitatory cells, on to 
inhibitory cells, or on to both120.

Several studies have focused on the consequences of 
axonal sprouting and cell death for hyperactivity in the 
dentate gyrus121,122. In a recent series of models, dynamic 
simulation was coupled with a database model and a 
formal graph model123,124. These interlocking static and 
dynamic models were used not only to understand and 
predict physiology, but also to highlight gaps in the ana-
tomical record and make predictions about wiring53,125,126. 
The simulation showed that sprouting that led to the for-
mation of additional excitatory–excitatory synapses led to 
long-duration activation in models that would otherwise 
show minimal activity beyond the initial stimulation 
period. However, maximum activation was seen at an 
intermediate level of pathology, involving both sprouting 
and hilar cell loss. Furthermore, although activity propa-
gation was dependent on the presence of long-range exci-
tatory mossy cells in the hilus, only relatively few mossy 
cells had to be present to sustain activity. These simula-
tion results are in agreement with histological results that 
indicate that some mossy cells frequently survive in the 
sclerotic hippocampus of patients with MTLE.

Further analysis of the directed graph model sug-
gested that an effect of the pathogenic process might be 
to make the network more ‘small world’. Small-world 
networks could provide hubs to distribute seizure 
activity extensively, owing to their characteristic short 
path lengths between nodes50,88,127. The study suggested 
that sprouting might lead to a preponderance of such 
neuronal hubs owing to rewiring. These hubs could be 
produced by projections onto granule cells that have 
hilar basal dendrites124.

A model of disexcitatory ictogenesis. Computer modelling 
is perhaps most useful, and certainly most provocative, 
when the emergent properties of a system are contrary to 
expectations128. For example, a long-held general model 
of epilepsy is that normal activity represents a homeo-
static balance between excitation and inhibition, and that 
seizures represent a shift towards excessive excitation129. 
This general picture undoubtedly has some validity: many 
proconvulsants block inhibition or augment excitation. 
However, the notion of an excitation–inhibition balance 
is not always applicable. Absence seizures, for example, 
are dependent on inhibitory (hyperpolarizing) influences 
that are effectively excitatory in thalamocortical cells 
owing to this cell-type’s burst rebound from hyperpolari-
zation130–134. Inhibition has been shown to have various 
roles in other systems as well135–137.

Figure 5 | Reduction of excitatory strength leads to seizure in a detailed neocortical model. Unlike in the lumped 
models in FIGS 2,3, individual neurons in this detailed neocortical model are represented by compartmental models: 
sections of dendrite and the soma are represented as separate resistor–capacitor circuits in parallel with active channels 
that are represented by Hodgkin–Huxley-type channel models set within the Hodgkin–Huxley parallel-conductance 
model. These individual compartments are then linked together with resistors that represent the axial resistance. Single 
neurons are simulated by performing numerical integration of the associated differential equations. Synaptic dynamics 
are also represented by differential equations. The model simulates 656 neurons of 4 types: regular-firing pyramidal cells, 
bursting pyramidal cells, basket cells and chandelier cells. a | Movement in parameter space from high to low excitation 
(represented by the arrow moving from right to left) leads from normal activity (top trace) to high-amplitude seizure-like 
bursting (bottom trace). Note that this result is different from that in Fig. 4. b | Bursting gradually develops as excitatory 
connectivity strength is gradually reduced. The top trace shows the field that is generated by excitatory cells and the 
bottom trace shows the field that is generated by inhibitory cell. The bottom trace has been magnified (×10) in the y 
direction. c | Raster plot of firing for individual superficial pyramidal cells in the network. Figure modified, with permission, 
from REF. 143  (2005) IEEE.
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Ictogenesis
The generation of a seizure (the 
ictus) by dynamical, cellular 
and synaptic processes.

With advances in computing, it is now possible to 
use supercomputers to run massive simulations, again 
with the hope of providing greater verisimilitude by 
more closely approximating the large numbers of cells in 
brain areas103,106,138–142. A recent series of studies used such 
models to explore coupling both between cortical layers 
and among neighbouring cortical columns or areas143,144. 
Figure 5 shows a path from normal activity to seizure in 
a format that is comparable to that of FIG. 4. However, the 
direction of change, and hence the conclusion, are entirely 
different. According to this detailed model, a reduction in 
excitation, rather than a reduction in inhibition, causes 
the transition to seizure. Spurred on by these paradoxi-
cal findings, the investigators subsequently demonstrated 
disexcitatory ictogenesis in mouse neocortical slices143.

What at first seems to be contradiction between the 
detailed and the lumped models — one showing disin-
hibitory and the other showing disexcitatory ictogenesis 
— does not in fact represent a disagreement between 
models but instead again illustrates the complexity of sei-
zure causality. A particular model, or a particular param-
eter range, is likely to be relevant to a particular seizure  
type or even to a particular patient. Referring back to 
FIG. 1, it is to be expected that the vast number of possible 
contributors to seizures and epilepsy allows for a number 
of surprising dynamical mechanisms. For example, it has 
been shown experimentally that combining two ‘epilepsy 
genes’ can produce an animal with reduced seizure pro-
pensity28. Multiple mechanisms will similarly coexist in 
patients. This explains, for example, how a particular 
pharmacotherapeutic treatment could treat one of the 
patient’s seizure patterns while either not affecting or 
even exacerbating another seizure pattern35,145,146.

A disadvantage of detailed modelling is that it is dif-
ficult to understand the dynamics in terms of specific 
attractors; we cannot visualize the high-dimensional 
space in which these attractors exist. This lack of detailed 
dynamical understanding reduces the explanatory power 
of the models by making attractor transitions opaque to 
our current visualization tools. A compensatory advan-
tage of the detailed models is that one can look directly 
at single-cell firing (FIG. 5c) and compare it with intra- or 
extracellular recordings in vivo or in slice. An additional 
advantage is that one can test specific drug effects in the 
simulation by including explicit models of ion channels 
or synaptic mechanisms.

Future directions
This Review has shown that epilepsy and seizure 
modelling can be used at various levels to further our 
understanding of the various clinical aspects of the 
disorder: prognostication, prediction, classification, 
therapeutics and diagnosis. I have shown how a model 
of pediatric disease progression can be used to provide 
prognostic information for patient subgroups. It would 
be particularly valuable to directly connect models of 
this sort with taxonomic databases and ontologies, as 
well as with genetic databases, in order to correlate 
these various clinical sources with patient outcome. In 
this way, ontologic modelling and KDD can help us to 
develop new classifications and define syndromes and 
subsyndromes37,38,43,147,148.

Successful seizure prediction will require a combi-
nation of further modelling and experimental work. 
Seizure prediction will not only permit the development 
of implantable seizure-termination devices, but also the 
development of devices that simply alert patients to  
periods of high seizure probability. However, as sug-
gested by the absence-epilepsy model of FIG. 3, some sei-
zure types are likely to have no pre-seizure state and be 
therefore unpredictable. We have seen how models can 
interface with seizure-prediction algorithms. Similarly, 
we could develop computer models that interact directly 
with ongoing clinical seizure monitoring; this would 
enable us to gradually form a model of a particular 
patient’s seizures.

I have suggested that the multifactorial causation 
of epilepsy (exemplified in the river metaphor (FIG. 1)) 
can best be approached by computer models that can 
encapsulate the many conspiring and counteracting 
causes and mitigating or exacerbating influences. This 
complexity also extends to the therapeutic domain, as 
many drugs are noted to have multiple binding sites 
and multiple effects. This complexity of drug action 
has sometimes been downplayed by calling the drugs 
‘dirty’, in the presumption that the additional binding is 
likely to be a cause of undesirable side effects whereas a 
single primary binding site is responsible for the thera-
peutic effect. However, in many cases dirtiness might 
be a critical aspect of drug efficacy149–151. The develop-
ment of new anticonvulsant drugs will benefit from 
the modelling of such synergistic effects. Currently, 
rational pharmacotherapeutics is carried out by  

 Box 2 | How modelling is done

Compared with most subspecialty areas of neuroscience, computational modelling is notable for its accessibility, 
particularly given today’s computer-literate scientific community. Whereas a neuroscientist or epileptologist would 
hardly expect to be able to casually pick up the technique of electron microscopy, he or she could spend a weekend 
learning and exploring a computer model. Most computational researchers are quite happy to share their computer 
code. Hundreds of models, including some of those discussed here, are available for immediate download at ModelDB157. 
This database provides runnable models producing one or more of the figures in a published modelling paper. It is a good 
starting point for further explorations. Several software packages are commonly used to run simulations. Most of the 
stochastic and low-dimensional models are done in Matlab, a commercial general-purpose engineering and simulation 
environment, or Octave, Matlab’s free counterpart158. Low-dimensional deterministic models can also be run using 
Xppaut, a freely available general-dynamical-system simulator159. Detailed computer models are generally run using 
specialized software, such as Neuron (a freely available general-neural-simulation system) and Genesis160,161. A variety of 
other neural simulators, that operate at various levels, are also available162. For a recent review, see REF. 163.
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designing ligands for specific receptors. Rational 
pharmacotherapeutics will also be able to use detailed  
computer modelling to determine which receptors 
should be targeted together.

A major area of computational systems biology has 
not been discussed here: the dynamical simulation of 
genomics, proteomics and cellular physiomics (sig-
nal-transduction pathways) that permits the study of 
alterations at the cell-biology level26,152. This research 
has enormous importance for the synaptic and cel-
lular plasticity that probably underlies many kinds of  

epilepsy. It has not been discussed here because  
little work in this area has thus far been applied to  
epilepsy153.

An exciting aspect of computational neuroscience is 
its accessibility to researchers with widely differing back-
grounds (BOX 2). It has recently been suggested that, “The 
application of systems biology to medical practice is the 
future of medicine.” (Ref. 41). With wide participation, 
advances in computer modelling, and clinical applica-
tion of results, this prediction might be fulfilled early 
for epilepsy.
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