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Abstract

In this chapter, we describe how to create mathematical models of synaptic transmis-
sion and integration. We start with a brief synopsis of the experimental evidence under-
lying our current understanding of synaptic transmission. We then describe synaptic
transmission at a particular glutamatergic synapse in the mammalian cerebellum, the
mossy fiber to granule cell synapse, since data from this well-characterized synapse
can provide a benchmark comparison for how well synaptic properties are captured
by different mathematical models. This chapter is structured by first presenting the sim-
plest mathematical description of an average synaptic conductance waveform and then
introducing methods for incorporating more complex synaptic properties such as
nonlinear voltage dependence of ionotropic receptors, short-term plasticity, and sto-
chastic fluctuations. We restrict our focus to excitatory synaptic transmission, but most
of the modeling approaches discussed here can be equally applied to inhibitory
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synapses. Our data-driven approach will be of interest to those wishing to model syn-
aptic transmission and network behavior in health and disease.

1. INTRODUCTION
1.1. A brief history of synaptic transmission

Some of the first intracellular voltage recordings from the neuromuscular
junction (NM]J) revealed the presence of spontaneous miniature end plate
potentials with fast rise and slower decay kinetics." The similarity of these
“mini” events to the smallest events evoked by nerve stimulation, together
with the discrete nature of the fluctuations in the amplitude of the end plate
potentials,” lead to the hypothesis that transmitter was released probabilisti-
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cally in discrete all-or-none units called “quanta,”” units that were subse-
quently shown to be vesicles containing neurotransmitter. The quantum
hypothesis is an elegantly simple yet extremely powerful statistical model
of transmitter release: the average number of quanta released at a synapse
per stimulus (quantal content, m) is simply the product of the total number

of quanta available for release (Nt) and their release probability (P):
m=NrP (13.1)

Quantitative comparison of the predictions of the quantum hypothesis
against experimental measurements confirmed the hypothesis,” albeit under
nonphysiological conditions of low release probabilities. Subsequent
electron micrograph studies revealed presynaptic vesicles clustered at active
zones,”’ providing compelling morphological equivalents for the quanta
and their specialized release sites. Other work around the same time revealed
the dynamic nature of synaptic transmission at the NM]J, providing the first
concepts for activity-dependent short-term changes in synaptic strength.™’
Further work by Katz and colleagues lead to the concept of Ca*T-dependent
vesicular release and the refinement of ideas regarding the activation of post-
synaptic receptors.” Together, this early body of work on the NMJ provided
the basis for our current understanding of the intricate signaling cascade
underlying synaptic transmission. The basic mechanisms underlying synaptic
transmission are summarized in Fig. 13.1: an action potential, propagating
down the axon of the presynaptic neuron, invades synaptic terminals.
The brief depolarization of the terminals causes voltage-gated Ca®" channels
(VGCGs) to open, leading to Ca®" influx and a transient increase in the
intracellular Ca®" concentration ([Ca];) in the vicinity of the VGCCs.
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Figure 13.1 Cartoon illustrating the basic sequence of events underlying synaptic
transmission. The sequence starts with an action potential (AP) invading a presynaptic
terminal, leading to the opening of voltage-gated Ca®" channels (VGCCs), some of
which are located near vesicle release sites within one or more active zones. For those
release sites containing a readily releasable vesicle, the local rise in [Ca®™]; causes the
fusion of the vesicle with the terminal's membrane, resulting in the release of neuro-
transmitter packed inside the vesicle. The neurotransmitter diffuses across the synaptic
cleft to reach the postsynaptic membrane where it binds to ionotropic receptors,
causing the channels to open and pass Na* and K*. The permeation of these ions
through the ionotropic receptors leads to a local injection of current, known as the EPSC.
The EPSC often contains fast and slow components due to the fast activation of recep-
tors immediately opposite to the vesicle release site and the slower activation of re-
ceptors further away (i.e., extrasynaptic). Kinetics of the EPSC will also depend on the
receptor's affinity for the neurotransmitter and the receptor's gating properties, which
may include blocked and desensitization states.

For those vesicles docked at a release site near one or more VGCCs, the local
increase in [Cal; triggers the vesicles to fuse with the terminal membrane and
release their content of neurotransmitter into the synaptic cleft. The released
neurotransmitter diffuses across the narrow synaptic cleft and binds to post-
synaptic ionotropic receptors, transiently increasing their open probability.
The resulting flow of Na™ and K™ through the receptors’ ion channels
results in an excitatory postsynaptic potential (EPSP) or excitatory postsyn-
aptic current (EPSC) depending on whether the intracellular recording is
made under a current- or voltage-clamp configuration.
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Some 20 years after the early work on the NM]J, development of the
patch-clamp method increased the signal-to-noise ratio of electrophysiolog-
ical recordings by several orders of magnitude over traditional sharp-
electrode recordings.'’ The patch-clamp method not only confirmed the
existence of individual ion channels but also enabled resolution of signifi-
cantly smaller EPSCs, thereby paving the way for studies of synaptic trans-
mission in the central nervous system (CNS). Although these studies
revealed the basic mechanisms underlying synaptic transmission are largely
similar at the NMJ and in the brain (Fig. 13.1), there are a number of key
differences. For example, whereas synaptic transmission in the NM]J is medi-
ated by the release of 100~1000 vesicles” at highly elongated active zones, '’
synaptic transmission between neurons in the brain is typically mediated by
the release of just a few vesicles at a handful of small active zones.'”'” The
number of postsynaptic receptors is also quite different: vesicle release acti-
vates thousands of postsynaptic receptors in the NMJ'* but only a few
(~10—~100) at central excitatory synapses.' ' These differences in scale link
directly to synaptic function: the large potentials generated at the NM]J
ensure a reliable relay of motor command signals from presynaptic neuron
to postsynaptic muscle. In contrast, the much smaller potentials generated by
central synapses require spatiotemporal summation in order to trigger action
potentials.

Another important distinction between the NM]J and central synapses is
the difference in neurotransmitter (acetylcholine at the NM]J vs. glutamate,
GABA, glycine, etc., in the CNS) and the diversity in postsynaptic receptors
and their function. Here we focus on excitatory central synapses, where two
major classes of ionotropic glutamate receptors, AMPA and NMDA recep-
tors (AMPARs and NMDARsS), are colocalized.'”'® These two receptor
types have different gating kinetics and current—voltage relations and there-
fore play distinct roles in synaptic transmission. The majority of AMPARS,
for example, have relatively fast kinetics and a linear (ohmic) current—voltage
relation, often expressed as:

Inmpar = Gampar (V' — Eampar) (13.2)

where I7is the membrane potential and Eappar 1S the reversal potential of
the AMPAR conductance (Gapmpar), which is typically O mV. Both of
these properties, that is, fast kinetics and a linear current—voltage relation,
make AMPARs well suited for mediating temporally precise signaling
and setting synaptic weight. NMDARS, in contrast, have slower kinetics
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and a nonlinear current—voltage relation, the latter caused by Mg®" block at
hyperpolarized potentials.'” These properties make NMDARs well suited
for coincidence detection and plasticity, since presynaptic glutamate release
and postsynaptic depolarization are required for NMDAR activation.”’ Cer-
tain subtypes of NMDARs, however, show a weaker Mg2+ block (i.e.,
those containing the GluN2C and GluN2D subunits) and therefore create
substantial synaptic current at hyperpolarized potentials.”"*” These types of
NMDARSs are thought to enhance synaptic transmission by enabling tem-
poral integration of low-frequency inputs.”” Of course, numerous other dif-
ferences exist between the NMJ and central synapses, including those
pertaining to stochasticity- and time-dependent plasticity. These are dis-
cussed further in the next section where we introduce the MF-to-GC syn-
apse, our synapse of choice for providing accurate data for the synaptic
models presented in this chapter.

1.2. The cerebellar MF-GC synapse as an experimental
model system

The input layer of the cerebellum receives sensory and motor signals via
MFs™ which form large en passant synapses, each of which contacts several
GCs (Fig. 13.2A). Although GCs are the smallest neuron in the vertebrate
brain, they account for more than half of all neurons. Each GC receives
excitatory synaptic input from 2 to 7 MFs, and each synaptic connection
consists of a handful of active zones.”””® The small number of synaptic
inputs, along with a small soma and electrically compact morphology, makes

15,18
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GCs particularly suitable for studying synaptic transmission.
Fig. 13.2B, we show representative examples of EPSCs recorded at a single
MF-GC synaptic connection under resting basal conditions (gray traces).
Here, fluctuations in the peak amplitude of the EPSCs highlight the stochas-
tic behavior of synaptic transmission introduced above. Analysis of such fluc-
tuations using multiple-probability fluctuation analysis (MPFA), a technique
based on a multinomial statistical model, has provided estimates for Nr,
P and the postsynaptic response to a quantum of transmitter (Q), for single
MF-GC connections. MPFA indicates that at low frequencies synaptic
transmission is meditated by 5—10 readily releasable vesicles (or, equivalently
the number of functional release sites Nt), with each vesicle or site having a
vesicular release probability (P) of ~0.5.°“?” Experiments with rapidly
equilibrating AMPAR antagonists suggest that release is predominantly uni-
vesicular at this synapse (one vesicle released per synaptic contact), an inter-
pretation that is supported by the finding that at some weak MF-GC



310 Jason S. Rothman and R. Angus Silver

A D
w== AMPAR direct
—— Fit alpha
= Fit 1-Exp
~— Fit 2-Exp
—— Fit4-Exp
B E
AMPAR only ~— AMPAR spillover
—— EPSCs
- Avg EPSC
= Avg spillover
= Direct
C¥ 9 F

".--- e

—— Avg NMDAR

|2o pA

10 ms \

Figure 13.2 Synaptic transmission at the cerebellar MF-GC synapse. (A) Electron micro-
graph of a cerebellar MF terminal filled with thousands of synaptic vesicles and a few
large mitochondria. Synaptic contacts with GC dendrites appear along the contours of
the MF membrane at several locations, evident by the wider and darker appearance of
the membrane due to clustering of proteins within the presynaptic active zone and
postsynaptic density. (B) Superimposed AMPAR-mediated EPSCs (gray) recorded from
a single MF-GC connection, showing considerable variability in amplitude and time
course from trial to trial. On some trials, failure of direct release revealed a spillover cur-
rent with slow rise time. Such trials were separated using the rise time criteria of Ref. 24.
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connections a maximum of only one vesicle is released even when P is
increased to high levels.' >

Synaptic responses to low-frequency presynaptic stimuli (e.g., those in
Fig. 13.2B) provide useful information about N, P, and Q under resting
conditions. To explore how these quantal synaptic parameters change in
an activity-dependent manner, however, paired-pulse stimulation protocols
or high-frequency trains of stimuli are required. Figure 13.2C shows an
example of the latter, where responses of a single MF—GC connection to
the same 100 Hz train of stimuli are superimposed (gray traces). Here, fluc-
tuations in the peak amplitude of the EPSCs can still be seen (see inset), but
successive peaks between stimuli also show clear signs of depression. The
average of all responses (black trace) reveals the depression more clearly.
Although by eye, signs of facilitation are not apparent in Fig. 13.2C, facil-
itation at this synapse most likely exists. We know this since lowering P at
this synapse, by lowering the extracellular Ca®>* concentration, has revealed
the presence of both depression and facilitation; however, because depres-
sion predominates under normal conditions, facilitation is not always appar-
ent.”” As described in detail later in this chapter, mathematical models have
been developed to simulate synaptic depression and facilitation. If used
appropriately, these models can provide useful insights into the underlying
mechanisms of synaptic transmission. Such models have revealed, for

The average direct-release component (green) was computed by subtracting the
average spillover current (blue) from the average total EPSC (black). Arrow denotes
time of extracellular MF stimulation, which occurred at a slow frequency of 2 Hz;
most of the stimulus artifact has been blanked for display purposes. (C) Sup-
erimposed AMPAR-mediated EPSCs (gray) recorded from a single MF-GC connec-
tion and their average (black). The MF was stimulated at 100 Hz with an external
electrode (arrows at top). Successive EPSCs show clear signs of depression. Inset
shows EPSC responses to fourth stimulus on expanded timescale, showing the
variation in peak amplitude. Stimulus artifacts have been blanked. (D) Average
direct-release AMPAR conductance waveform (gray) fit with Ggn(t) defined by the
following functions: alpha (Eq. 13.5), one-exponential (Eq. 13.4), two-exponential
(Eq. 13.6), multiexponential (4-Exp, Eg. 13.7). Most functions gave a good fit except
the one-exponential function (blue). The conductance waveform was computed
from the average current waveform in (B) via Eq. (13.3). (E) Same as (D) but for
the average spillover component in (B). Most functions gave a good fit except
the alpha function (green). (F) Same as (D) but for an average NMDAR-mediated
conductance waveform computed from four different MF-GC connections. Again,
most functions gave a good fit except the alpha function (green). Dashed lines
denote 0. (A) Image from Palay and Chan-Palay” with permission. (B) Data from Sar-
gent et al.?° with permission.
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example, a rapid rate of vesicle reloading at the MF-GC synapse
(ky =60-80 ms~ ') as well as a large pool of vesicles that can be recruited rap-
idly at each release site (~300°""). These findings offer an explanation as to
how the MF-GC synapse can sustain high-frequency signaling for pro-
longed periods of time.

The MF-GC synapse forms part of a glomerular-type synapse, which
also occur in the thalamus and dorsal spinocerebellar tract. While the pur-
pose of the glomerulus has not been determined definitively, experimental
evidence from the MF-GC synapse indicates this glial-ensheathed structure
promotes transmitter spillover between excitatory synaptic connections” ™~
and between excitatory and inhibitory synaptic connections.”” AMPAR -
mediated EPSCs recorded from a MF-GC connection, therefore, exhibit
both a fast “direct” component arising from quantal release at the MF-
GC connection under investigation (Fig. 13.2B, green trace) and a slower
component mediated by glutamate spillover from neighboring MF-GC
connections (blue trace). While direct quantal release is estimated to activate
about 50% of postsynaptic AMPARS at the peak of the EPSC,”" spillover is
estimated to activate a significantly smaller fraction. However, because spill-
over produces a prolonged presence of glutamate in the synaptic cleft, acti-
vation of AMPARSs by spillover can contribute as much as 50% of the
AMPAR -mediated charge delivered to GCs.”"

Glutamate spillover also activates NMDARs, but mostly at mature MF—
GC synapses when the NMDARS occupy a perisynaptic location.™ At a
more mature time of development, MF—GC synapses also exhibit a weak
Mg®" block due to the expression of GluN2C and/or GIuN2D sub-
units.”””*"” The weak Mg>" block allows NMDARS to pass a significant
amount of charge at subthreshold potentials, thereby creating a spillover cur-
rent comparable in size to the AMPAR -mediated spillover current. Using
several of the modeling techniques discussed in this chapter, we were able to
show the summed contribution from both AMPAR and NMDAR spillover
currents enables GCs to integrate over comparatively long periods of time,
thereby enabling transmission of low-frequency MF signals through the
input layer of the cerebellum.”

In the following sections, we describe how to capture the various prop-
erties of synaptic transmission recorded at the MF—GC synapse in mathemat-
ical forms that can be used in computer simulations. We start with the most
basic features of the synapse, the postsynaptic conductance waveform, and
the resulting postsynaptic current, and add biological detail from there.
However, several aspects of synaptic transmission are beyond the scope of
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this chapter. These include long-term plasticity (i.e., Hebbian learning) and

presynaptic Ca>t dynamics. Mathematical models of these synaptic pro-

38-42
cesses can be found elsewhere.™

2. CONSTRUCTING SYNAPTIC CONDUCTANCE
WAVEFORMS FROM VOLTAGE-CLAMP RECORDINGS

The time course of a synaptic conductance, denoted Giy,(f), can be
computed from the synaptic current, Ly, (f), measured at a particular holding
potential (V},014) using the whole-cell voltage-clamp technique. If the syn-
apse under investigation is electrotonically close to the somatic patch pipette,
as is the case with the MF—GC synapse, then adequate voltage clamp can be
achieved and the measured Ly, (f) will have relatively small distortions due to
poor space clamp. On the other hand, if the synapse under investigation is
electrotonically distant to the somatic patch pipette, for example, at the tip of
a spine several hundred micrometers from the soma, then significant errors
due to poor space clamp will distort nearly all aspects of I, (f), including its
amplitude, kinetics, and reversal potential.”” To overcome this problem, a
technique using voltage jumps can be used to extract the decay time course
under conditions of poor space clamp, or dendritic patching can be used to
reduce the electrotonic distance between the synapse and recording site. "

When measuring L, (f) under voltage clamp, individual current compo-
nents (e.g., the AMPAR and NMDAR current components, Iappar and
Inmpar) can be cleanly separated using selective antagonists (e.g., APV
or NBQX), and the reversal potential of the currents (e.g., Eanpar and
Enmpar) can be established by measuring the current—voltage relation
and correcting for the liquid junction potential of the recording pipette.
The synaptic current component can then be converted to conductance
using the following variant of Eq. (13.2):

Ggn (1) = Lyn(1)/ (Viold — Eqyn) (13.3)

where Ej,,, denote the reversal potential of the synaptic conductance under

investigaéon. The next step is to find a reasonable mathematical expression
for Gy (f). The simplest way to do this is to first remove stochastic fluctu-
ations in the amplitude and timing of G, (f) by averaging many EPSCs
recorded under low-frequency conditions (e.g., see Fig. 13.2B) and then
fit one of the waveforms described below (Egs. 13.4-13.7) to the averaged
EPSC. Later in the chapter, we discuss methods for incorporating stochastic

fluctuations into the mathematical representation of Ggyy(f).
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Exponential functions are typically used to represent Gy, (f). If compu-
tational overhead is a major consideration, for example, in large-scale net-
work modeling, single-exponential functions can be used since they are
described by only two parameters, the peak conductance g,c.x and a single
decay time constant Tq:

Gugn (1) = gear e " /% (13.4)

where ¢ =t—t;. Here, the arrival of the presynaptic action potential at t=1;
yn(f) from O to g,c.k, after which G, (1)
decays back to zero (note, here and below G, () =0 for t<t;; for consis-

leads to an instantaneous jump in G

tency, a notation similar to that of Ref. 41 has been used). This mathematical
description of Gy, (f) may be sufficient if the decay time is much larger than
the rise time. However, if the precise timing of individual synaptic inputs is
important, as in the case of an auditory neuron performing synaptic coinci-
dence detection, then a realistic description of the rise time should be
included in Gy, (f). In this case, the simplest description is to use the alpha
function, which has an exponential-like rise time course:

o
Gsyn(t) = gpeak_ 617t /e (135)
T

where ¢ is defined as in Eq. (13.4). The convenience of the alpha function is
that it only contains two parameters, g,c.x and 7, which directly set the peak
value and the time of the peak. However, the alpha function only fits wave-
forms with a rise time constant (t,) and 74 of similar magnitude, which is not
usually the case for synaptic conductances. When 1, and 14 are of different
magnitude, then a double-exponential function is more appropriate for
capturing the conductance waveform:

Gsyn(t) = Ipeak _e—l'/‘rr + e_t//rd /anorm (136)

Here, the constant a,q., 18 a scale factor that normalizes the expression in
square brackets so that the peak of Gy, (f) equals g, (see Ref. 41 for an
analytical expression of a,q.,). Still, Eq. (13.6) may not be suitable for some
conductance waveforms. Synaptic AMPAR conductance waveforms, for
example, typically exhibit a sigmoidal rise time course, which can usually
be neglected, but there are certain instances when it is important to accu-
rately capture this component.”*”” In this case, a multiexponential function

with an m*h formalism can be used to fit the conductance waveform:
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G (1) = Gpes [1 _e } i [m e/ dye!/7e 4 gye/ fﬂ Janorm
(13.7)

Here, the first expression in square brackets describes the rise time course,
which, when raised to a power x > 1, exhibits sigmoidal activation. The sec-
ond expression in square brackets describes the decay time course and
includes three exponentials for flexibility, one or two of which can be
removed if unnecessary. This function is flexible in fitting synaptic current
or conductance waveforms and has produced good fits to the time course of
miniature EPSCs recorded in cultured hippocampal neurons*” and AMPAR
and NMDAR currents recorded from cerebellar GCs.” "> With nine free
parameters, however, Eq. (13.7) is not only computationally expensive but
also has the potential to cause problems when used in curve-fitting algo-
rithms. We have found the best technique for fitting Eq. (13.7) to EPSCs
is to begin with x fixed at 1 (no sigmoidal activation) and one or two decay
components fixed to zero (d, =0 and/or d3=0). If the initial fits under these
simplified assumptions are inadequate, then one by one the fixed parameters
can be allowed to vary to improve the fit. The scale factor a,,,, can be cal-
culated by computing the product of the expressions in square brackets at
high temporal resolution and setting d,,..,, equal to the peak of the resulting
waveform.

To illustrate how well the different mathematical functions capture syn-
aptic conductance waveforms in practice, we fit Eqs. (13.4)—(13.7) to the
average direct-release AMPAR conductance component of the MF-GC
synapse (computed from currents in Fig. 13.2B) and plotted the fits together
in Fig. 13.2D. The single-exponential function (Eq. 13.4) fit neither the rise
nor decay time course. The two-exponential function (Eq. 13.6) fit well,
except for the initial onset period, which lacked a sigmoidal rise time course.
The alpha function (Eq. 13.5) fit both the rise and decay time course well
since T, and 74 of the direct-release component are of similar magnitude.
The multiexponential function (Eq. 13.7) showed the best overall fit.
The same comparison was computed for the average spillover AMPAR
conductance component (Fig. 13.2E). This time only the multiexponential
function provided a good fit to both the rise and decay time course. The
two-exponential function also fit well except for a small underestimate of
the decay time course; an additional exponential decay component would
improve this fit. The one-exponential function provided a suitable fit to
the decay time course but not the rise time course. The alpha function fit
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neither the rise or decay time course. Finally, the same comparison was made
for an average NMDAR conductance waveform computed from four MF—
GC connections (Fig. 13.2F). These results were similar to those of the spill-
over AMPAR conductance. Hence, as the results in Fig. 13.2D—F highlight,
Eqgs. (13.4)—(13.7) can reproduce a Gy, (f) with difterent rise and decay time
courses. These differences may or may not be consequential depending on
the computer simulation at hand. In most instances, it is always preferable to
choose the simplest level of description, but it is also important to verify the
simplification does not significantly alter the outcome or conclusions of
the study.

As a general guide, the direct AMPAR current typically has a rise time
course of 0.2 ms and a decay time course between 0.3 and 2.0 ms at phys-
iological temperatures, depending on the AMPAR subunit composition at
the synapse type under investigation.'**”*" The spillover AMPAR current
typically has a rise time course of 0.6 ms and decay time course of 6.0 ms,
measured at the MF-GC synapse.”* The NMDAR current has the slowest
kinetics, with a rise time course of ~10 ms and a decay time course any-
where between 30 and 70 ms, but can even be longer than 500 ms

49,50

depending on the NMDAR subunit composition.

3. EMPIRICAL MODELS OF VOLTAGE-DEPENDENT
Mg>" BLOCK OF THE NMDA RECEPTOR

The voltage dependence of the synaptic AMPAR component can
usually be modeled with the simple linear current—voltage relation described
in Eq. (13.2). In contrast, the synaptic NMDAR component exhibits strong
voltage dependence due to Mg®" binding inside the receptor’s ion chan-
nel.'” The block is strongest near the neuronal resting potential and becomes
weaker as the membrane potential becomes more depolarized. This unique
characteristic of NMDARSs allows them to behave like logical AND gates:
the receptors conduct current only when they are in the glutamate-bound
state AND when the postsynaptic neuron is depolarized. It is this AND-gate
property combined with their high Ca®" permeability that enables
NMDARSs to play such a pivotal role in long-term plasticity, learning and
memory.” ' >? Here, we consider how to model the electrophysiological
AND-gate properties of synaptic NMDARSs.

As mentioned in the previous section, the time course of the NMDAR
component can be captured with a multiexponential function. The key
additional step required for modeling the NMDAR component is the
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nonlinear voltage-dependent scaling of the conductance waveform, here
referred to as (1), which is the fraction of the NMDAR conductance that
1s unblocked. This scaling can be easily incorporated into a current—voltage
relation as follows:

Inmpar = gnmpar P( V) (V — ENmpar ) (13.8)

Typically, a Boltzmann function is used to describe (1), which takes on
values from O at the most hyperpolarized potentials (all blocked) to 1 at
the most depolarized potentials (all unblocked), and is commonly written as:

1

V)= (13.9)

where 1/ 5 is the potential at which half the NMDAR channels are blocked
and k is the slope factor that determines the steepness of the voltage depen-
dence around 1/ 5. While the Boltzmann function is simple and easy to use,
its free parameters I 5 and k do not directly relate to any physical aspect of
the Mg>" blocking mechanism. The two-state Woodhull formalism,”” in
contrast, is derived from a kinetic model of extracellular Mg>" block, in
which case its free parameters have more of a physical meaning. In this
two-state kinetic model, an ion channel is blocked when an ion species,
in this case extracellular Mg, is bound to a binding site somewhere inside
the channel, or open when the ion species is unbound (Fig. 13.3A). If the
rate of binding and unbinding of the ion species is denoted by k; and k_4,
respectively, then (1) will equal:

kg 1
kot 4k 1k kg

p(V)= (13.10)

where

by = [Mgzﬂolﬂe*é‘b /2
by = K00/
¢=zF/RT

Here, K; and K_; are constants, d is the fraction of the membrane voltage
that Mg®" experiences at the blocking site, = is the valence of the blocking
ion (here, 4+2), F is the Faraday constant, R is the gas constant, and T'is the
absolute temperature. Dividing through terms, Eq. (13.10) can be expressed
in a more familiar notation that includes a dissociation constant (Ky):
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Figure 13.3 Weak Mg®" block in GIuN2C-containing NMDARs. (A) Current-voltage rela-
tion of an NMDAR current from a mature GC (black) fit to Eq. (13.8) (Exmpar=0 mV)
where (V) was defined by either a two-state kinetic model (blue; Eq. 13.11) or a
three-state kinetic model that includes Mg>" permeation (red; Eq. 13.12). The latter
kinetic model produced the better fit. Kinetic models are shown at top. (B) Percent
of unblocked NMDARs, (V), from the three-state kinetic model fit in (A) (red), compared
to (V) derived from fits to the same model for another data set of mature GCs (purple;
data from Ref. 46) and immature GCs (black; data from Ref. 50). At nearly all potentials,
NMDARs from mature GCs show weaker Mg?* block than those from immature GCs.
This difference is presumably due to the developmental maturation switch in GCs from
GluN2A/B-containing receptors to GluN2C-containing receptors, discussed in text.
(C) IAF simulations (Eq. 13.20) of a GC with immature (top, +GIuN2A/B) and mature
(bottom, +GIuN2C) NMDARs, using ¢(V) functions in (B) (black and red, respectively),
demonstrating the enhanced depolarization and spiking under mature NMDAR condi-
tions. Identical simulations were repeated with Gywpar=0 (yellow) and Gampar=0
(green) to compare the contribution of AMPARs and NMDARs to depolarizing the
membrane. Gavpar consisted of a simulated direct and spillover component, both with
depression, as described in Fig. 13.5F. Gympar Was simulated with both depression and
facilitation, as described in Fig. 13.5G. The peak value of the Gyupar Waveform equaled
that of the Gampar Waveform, giving an amplitude ratio of unity, which is in the phys-
iological range for GCs. The total synaptic current consisted of the sum of four
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_ 1
A e K

Kyg = Kgoe™?"”

(13.11)

where Ky is the dissociation constant at 0 mV and equals K_,/Kj. This
equation, like the Boltzmann function (Eq. 13.9), has two free parameters,
Ko and 0. However, unlike the Boltzmann function, both parameters now
directly relate to the Mg”" blocking mechanism: Ky, quantifies the strength
or affinity of Mg”" binding and § quantifies the location of the Mg bind-
ing site within the channel. On the other hand, Egs. (13.9) and (13.11) are
formally equivalent since their free parameters are directly convertible via
the following relations: k= (3¢)) " and V, 5=0¢ - In([Mg”"],/Kyo). Under
physiological [Mg**],, Eq. (13.11) is also equivalent to a more complicated
three-state channel model with an open, closed, and blocked state.””
While the simple Boltzmann function and the equivalent two-state
Woodhull formalism are often used to describe (1), the two functions have
not always proved adequate in describing experimental data. Single-channel
recordings of NMDAR currents, for example, have indicated there are actu-
ally two binding sites for Mg”": one that binds external Mg>" and one that
binds internal Mg """’ Moreover, there are indications Mg” " permeates
through the NMDAR channel.'””” Hence, more complicated expressions

of (1) have been adopted. The three-state Woodhull formalism depicted

independent /sy, each representing a different MF input. Spike times for each MF input
were generated for a constant mean rate of 60 Hz (Eq. 13.16), producing a total MF input
of 240 Hz. Total /5, also contained the following tonic GABA-receptor current not dis-
cussed in this chapter: Igagar = 0.438(V+75). IAF membrane parameters matched the
average values computed from a population of 242 GCs: C,,=3.0 pF, R,,=0.92 GQ,
Viest=—80 mV. Action potential parameters were: Vinresh = —40 mV (gray dashed line),
Vpeak=32 MV, Vigsee=—63 MV, 1pg =2 ms. Action potentials were truncated to —15 mV
for display purposes. (D) Average output spike rate of the IAF GC model as shown in (C)
as a function of total MF input rate forimmature (bottom left) and mature (bottom right)
NMDARs, again demonstrating the enhanced spiking caused by GIuN2C subunits.
A total of 242 simulations were computed using C,, R, Viest Values derived from a data
base of 242 real GCs (top distributions, red lines denote average population values), with
the average output spike rate plotted as black circles. Red line denotes one GC simu-
lation whose C.,,, R, Vyest Mmatched the average population values shown at top, which
are the same parameters used in (C). Note, the output spike rate of this “average GC”
simulation is twice as large as the average of all 242 GC simulations due to the nonlinear
behavior of the IAF model. Data in this figure is from Schwartz et al.”? with permission.
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in Fig. 13.3A, for example, has been used to describe Mg”" block.””>” This
model includes Mg>* permeation through the NMDAR channel, described
by k,, which is assumed to be nonreversible (i.e., k_»=0), in which case

(1) equals:
k_y+ky 1

V) = = 13.12
#(V) ki +ky+ki 1+ki/(koy+ko) ( )
ky = Kze*52¢V/2
This equation reduces to Eq. (13.11) but with Ky as follows:
Kd:Kdoe(51+5—1)¢V/2 +Kpoe(51—52)¢V/2 (13.13)
Ky = Ka/K;

Here, separate 0 have been used for each k (31, d_1, 0,) to conform to the
more general notation of Kupper and colleagues. If the original Woodhull
assumptions are used (01=0_;=0 and d,=1—90), then Eq. (13.13)
reduces to:

Ky = Kgoe®®" 4 Kppe2 =10V (13.14)

which has three free parameters: 0, Kyo, and K. In previous work, we
found this latter expression of ¢(1) (Egs. 13.12 and 13.13) gives a better
empirical fit to the Mg>" block of NMDARs at the MF~GC synapse than
the two-state Woodhull formalism (Fig. 13.3A; Ref. 22). At this synapse, the
Mg block of NMDARS is incomplete at potentials near the resting poten-
tial of mature GCs (Fig. 13.3B), presumably due to the presence of GluN2C

. 213637
subunits.”

Using simple models as described in this chapter, we were
able to show the incomplete Mg>" block at subthreshold potentials boosts
the efficacy of low-frequency MF inputs by increasing the total charge
delivered by NMDARS, consequently increasing the output spike rate
(Fig. 13.3C and D). Hence, these modeling results suggested the incomplete
Mg>" block of NMDARSs plays an important role in enhancing low-
frequency rate-coded signaling at the MF-GC synapse.

Characterization of the Mg”" block of NMDARs is still ongoing.
Besides the potential existence of two binding sites, and Mg®" permeation,
it has been shown that Mg>" block is greatly affected by permeant mono-

60,6

valent cations.””®" This latter finding has the potential to resolve a long-

EBRE]

standing paradox referred to as the “crossing of 0’s,” where the two internal
and external Mg binding site locations (i.e., their ’s), estimated using the
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Woodhull formalisms described above, puzzlingly cross each other within
the NMDAR.®" Other details of Mg®" block have been added by studies
investigating the response of NMDARS to long steps of glutamate applica-

. 62,63
tion.

These studies have revealed multiple blocked and desensitization
states, and slow Mg unblock due to inherent voltage-dependent gating, all
of which are best described by more complicated kinetic-scheme models.
Hence, given the added complexities from these more recent studies, it is
all the more apparent that the often-used equations for ¢ (1) described above
are really only useful for providing empirical representations of the blocking
action of Mg®" (i.e., for setting the correct current—voltage relation
described in Eq. 13.8), rather than characterizing the biophysical mecha-
nisms of the Mg®" block. In this case, parameters for (1) are best chosen
to give a realistic overall current—voltage relation of the particular NMDAR
under investigation. Because the voltage dependence of NMDARs is
known to vary with age, temperature, subunit composition and expression
(i.e., native vs. recombinant receptors), care must be taken when
selecting these parameters. Ideally, one should select parameters from
studies of NMDARSs in the neuron of interest, at the appropriate age and
temperature.

4. CONSTRUCTION OF PRESYNAPTIC SPIKE TRAINS
WITH REFRACTORINESS AND PSEUDO-RANDOM
TIMING

To simulate the temporal patterns of activation that a synapse is likely
to experience in vivo, it is necessary to construct trains of discrete events that
can be used to activate model synaptic conductance events, Gqy,(f), as
described in Egs. (13.4)—(13.7), at specific times (i.e., t;). These trains can
then be used to mimic the timing of presynaptic action potentials as they
reach the synaptic terminals. Real presynaptic spike trains can exhibit a wide
range of statistics. The statistical properties of the spike trains reflect the man-
ner in which information is encoded. Often, sensory information conveyed
by axons entering the CNS is encoded as firing rate, and the interval

between spikes has a Poisson-like distribution.”*

Other types of sensory
input may signal discrete sensory events as bursts of action potentials.”” In
sensory cortex, information is typically represented as a sparse code and
the firing rate of individual neurons is low on average (<1 Hz °%). The inter-
spike interval of cortical neurons can exhibit a higher variance than expected

for a Poisson process where the variance equals the mean. Here, we describe
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how to generate spike trains with specific statistics; however, another
approach would be to use spike times measured directly from single-cell
in vivo recordings.

To compute an arbitrary train of random spike times ¢; =1, 2, 3, ...)
with instantaneous rate A(f), a series of interspike intervals (At)) can be gen-
erated from a series of random numbers (#;) uniformly distributed over the

interval (0, 1] by solving for At in the following equation””"":

ti1+AL;
—In (i;) :J‘ (o)do (13.15)

fi-1

where o is the integration variable. The right-hand side of this equation rep-
resents the cumulative distribution function of finding a spike after ,_;, in
which case A(f) is the probability density function. Since A(f) can be any arbi-
trary function of time, Eq. (13.15) is extremely flexible in generating any
number of random spike trains. Here, we outline a few examples.

First, we consider the simplest case of generating a random spike train
with constant instantaneous rate: A(f)=/q. In this case, Eq. (13.15)
reduces to:

At;=—1n (1) /20 (13.16)

Plugging a series of random numbers u; into Eq. (13.16) results in a series of
At; with exponential distribution (i.e., Poisson) and mean 1/4. Since the
solution contains no memory of the previous spike time (i.e., there are
no terms containing f_), At; can be computed independently and then
converted to a final ¢; series.

Next, we consider the case of generating a random spike train with an
exponential instantaneous rate of decay: A(f)= /Ay exp(—#/7). In this case,
Eq. (13.15) reduces to:

_ In (1))

Unlike Eq. (13.16), this solution contains memory of the previous spike in
the term A(t=1;_), in which case values for At; and f; must be computed in
consecutive order.

One problem with Eqs. (13.16) and (13.17) is that they do not take into
account the spike refractoriness of a neuron, which can be on the order of
1-2 ms at physiological temperatures. A solution to this problem is to reject
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any Af; that are less than the absolute refractory period (tar) or evaluate the
integral in Eq. (13.15) from #;_; +7agr to t;_; + At. However, both proce-
dures will increase the average of Af; in which case the final instantaneous
rate of the f; series will not match A(f). To produce a ¢, series with instanta-
neous rate matching A(f), one can correct A(f) for refractoriness via the

following equation’’

Af)=———— (13.18)

where A()”'>7Tar, which should be the case if both A(f) and Tar are
derived from experimental data. As a simple example, if we consider the case
of a constant instantaneous rate, where A(f) = 4,=0.25 kHz and Taop =1 ms,
then A(r)=0.333 kHz. Another simple example is shown in Fig. 13.4A1,
where 200 spike trains (four shown at top) were computed for A(f) that
exhibits an exponentially decaying time course (bottom, solid red line)
and Tap =1 ms. A(f), the corrected rate function used to compute the spike
trains, is plotted as the dashed red line, which only shows significant devi-
ation from A(f) at rates above 100 Hz. Computing the peri-stimulus time
histogram (PSTH, noisy black line) from the 200 spike trains confirmed
the instantaneous rate of the trains matched that of A(f), and computing
the interspike interval histogram (ISIH; Fig. 13.4A2) confirmed the spike
intervals had an exponential distribution with Taop =1 ms.

A more complicated scenario arises when tap is followed by a relative
refractory period (tppr). In this case, one will need to multiply the instan-
taneous rate by a probability density function for refractoriness, H(f), similar
to a hazard function, which takes on values between 0 and 1. A simple H(?)
would be one that starts at 0 and rises exponentially to 1, in which case a ,
series could be computed via the following:

fi-1+As;
—1In () = J X A(o)H(c)do (13.19)
li—1TTAR

1

/1(1)_1 — TAR ~ TRR
() = 1 — e~/

A(t) =

where /=t—1t;_;—Tar. Examples of 200 spike trains computed via
Eq. (13.19) are shown in Fig. 13.4B1 (top), where A(f) was a half~wave
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Figure 13.4 Simulated spike trains with refractoriness and pseudorandom timing. (A1)
Trains of spike event times (top) computed for an instantaneous rate function A(t) with
exponential decay time constant of 150 ms (bottom, solid red line) and absolute
refractory period (tar) of 1 ms. To compute the trains, a refractory-corrected rate func-
tion A(t) (dashed red line) was first derived from Eq. (13.18) and then used in the
integral of Eq. (13.15) to compute the spike intervals in sequence. The PSTH (black,
2-ms bins) computed from 200 such trains closely matches A(t). (A2) Interspike interval
histogram (ISIH) computed from the same 200 trains in (A1), showing the 1 ms abso-
lute refractory period. The overall exponential decay of the ISIH is a hallmark sign of a
random Poisson process. (B1) and (B2) Same as (A1) and (A2) except A(t) was a
half-wave rectified sinusoid with 250 ms period, and refractoriness was both absolute
and relative: Tog=0.5 ms and trr=0.5 ms. Intervals were computed via Eq. (13.19).

rectified sinusoid (solid red line), Tap =0.5 ms and Tppr =0.5 ms. Also
shown is A(f) (dashed red line) which again only shows significant deviation
from A(f) at rates above 100 Hz. Computing the PSTH of the 200 spike
trains again confirmed the instantaneous rate matched that of A(f), and com-
puting the ISIH confirmed the spike intervals had an exponential distribu-
tion with Tar =0.5 ms and trr =0.5 ms (Fig. 13.4B2).



Data-Driven Modeling of Synaptic Transmission and Integration 325

The above solutions for a simple A(f) described in Egs. (13.16) and
(13.17) were relatively easy to compute since Eq. (13.15) could be solved
analytically. If an analytical solution is not possible, however, then
Eq. (13.15) (or Eq. 13.19) must be obtained numerically with suitably small
time step do. Ideally, this can be achieved using an integration routine with
built-in mechanism to halt integration based on evaluation of an arbitrary
equality. If the integration routine does not have such a built-in halt mech-
anism, then integration will have to proceed past t=1;_; + At;, perhaps to a
predefined simulation end time, and Af; computed via a search routine that
evaluates the equality defined in Eq. (13.15). To improve computational
efficiency, an iterative routine can be written which computes the integra-
tion over small chunks of time, and the search routine implemented after
each integration step. The length of the consecutive integration windows
could be related to A(t=t;_,), such as 3/A.

5. SYNAPTIC INTEGRATION IN A SIMPLE
CONDUCTANCE-BASED INTEGRATE-AND-FIRE
NEURON

Once we have built a train of presynaptic spike times (f;) and synapses
with realistic conductance waveforms (Gapmpar and Gampar) and current—
voltage relations (Iapmpar and Invmpar), We are well on our way to simu-
lating synaptic integration in a simple point neuron like the GC, which
is essentially a single RC circuit with a battery. The simplest neuronal inte-
grator is the integrate-and-fire (IAF) model.”” Most modern versions of the
IAF model act as a leaky integrator with a voltage threshold and reset mech-
anism to simulate an action potential.””’* The equation describing the
subthreshold voltage of such a model is as follows:

dV_ V- I/rest

m Lo (V, 13.20
S (V) (1320

where C,,, Ry, and V. are the membrane capacitance, resistance, and rest-

ing potential, and I,(V,f) is the sum of all synaptic current components,

such as Iapmpar andyINMDAR (e.g., Egs. 13.2 and 13.8) which are usually
both voltage and time dependent. Spikes are generated the moment integra-
tion of Eq. (13.20) results in a I/ greater than a predefined threshold value
(Viresn)- At this time, integration is halted and IVis set to the peak value of an
action potential (Vi) for one integration time step. }7is then set to a reset

potential (V.o for a period of time defined by an absolute refractory period
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(taRr) after which integration of Eq. (13.20) is resumed. To produce realistic
spiking behavior, the parameters can be tuned to match the particular neu-
ron under investigation. Vipresn, Vp
the average onset inflection point, peak value, and minimum after-

eaks ANd Vieser, fOr example, can be set to

hyperpolarization of experimentally recorded action potentials. Tpor can
be set to the minimum interspike interval observed during periods of high
spike activity, and further tuned using input—output curves (e.g., matching
plots of spike rate vs. current injection for experimental and simulated data).
Due to the complexity of Iy,(Vf), the solution of Eq. (13.20) will most
likely require numerical integration. The integration can be implemented
in a similar manner as that described for A(f) above, using a built-in integra-
tion routine to solve Eq. (13.20) over small chunks of time, and searching for
I’ the moment it exceeds Vi,resn, OF using an integration routine with built-
in mechanism to halt integration once I exceeds Vi es- Usually, all of the
above procedures can be implemented using few lines of code.

Due to their electrically compact morphology and simple subthreshold
integration properties, GCs are particularly well suited for modeling with an
IAF modeling approach.””* Example simulations of an IAF model tuned to
match the firing properties of an average GC can be found in
Fig. 13.3C. Here, the model was driven by I,(V,f) that contained either
a mixture of Iappar and Invpar Or the two currents in isolation. To sim-
ulate the convergence of four MF inputs, four diftferent trains of Iy, (V1)
with independent spike timing were computed and summed together before
integration of Eq. (13.20). Because repetitive stimulation of the MF-GC
synapse at short time intervals often results in depression and/or facilitation
of Inmpar and Inpmpar,, plasticity models of the two currents were included
in the simulations. These plasticity models are described in detail in the next
section.

One consideration often overlooked in simulations of synaptic integra-
tion is the variability in C,,, R, and I/,... We have found, for example, that
the natural variability of these parameters in GCs can produce dramatically
different output spike rates for a given synaptic input rate, as shown in
Fig. 13.3D (gray curves). Moreover, due to the nonlinear nature of spike
generation, using average values of C,, R, and V. in a simulation
(red) does not replicate the average output behavior of the total population
(black): the spike rate of the “average GC” simulation in Fig. 13.3D is twice
the average population spike rate. Hence, control simulations that include
variation in C,,, R, and V. should be considered when simulating syn-
aptic integration.
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If the neuron under investigation has extended dendrites that are not
electrically compact, then a multicompartmental model may be required.
In this case, Eq. (13.20) can be used to describe the change in voltage within
the various compartments where synapses are located, with an additional
term on the right-hand side of the equation denoting the flow of current
between individual compartments. Spike generation is then computed as
described above but occurs only in the compartment designated as the soma.
Also, an additional current due to spike generation can be added to the soma.
Further details about multicompartment IAF modeling can be found in
Gerstner and Kistler.”® More often than not, however, multicompartmental
models are simulated with Hodgkin—Huxley-style Na* and K™ conduc-
tances to generate realistic action potentials.”” Popular simulation packages
developed to solve these more complex multicompartmental models with
Hodgkin—Huxley-style conductances include NEURON and GENESIS,
which are discussed further below.

6. SHORT-TERM SYNAPTIC DEPRESSION
AND FACILITATION

So far, we have only considered the simulation of fixed amplitude syn-
aptic conductances recorded under basal conditions. At synapses with a rel-
atively high release probability, repetitive stimulation at short time intervals
often results in depression of the postsynaptic response (see, e.g., Fig. 13.2C).
This kind of synaptic depression was first described by Eccles et al.® for
endplate potentials at the NMJ and has since been described for synapses
in the CNS. Because recovery from synaptic depression takes a relatively
short time, on the order of tens of milliseconds to seconds, it is referred
to as short-term depression, distinguishing it from the longer-lasting forms
of depression, including long-term depression that is believed to play a cen-
tral role in learning and memory. Here, we refer to short-term depression as
simply depression or synaptic depression.

Since the discovery of synaptic depression, numerous studies have sought
to determine its underlying mechanisms and potential roles in neural signal-
ing (for review, see Refs. 76,77). Often these studies have employed math-
ematical models to test and verify their hypotheses. The first model of
presynaptic depression was described by Liley and North in 1953, before
the discovery of synaptic vesicles. At the time, depression was thought to
reflect a depletion of a finite pool of freely diffusing neurotransmitter avail-
able for release, and recovery from depression was thought to reflect a
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replenishment of the depleted pool, via synthesis from a freely diffusing
chemical precursor. This explanation fit well with the observation that
increasing the initial release of neurotransmitter produced a larger degree
of depression, and the recovery from depression followed an exponential
time course. Liley and North formalized this hypothesis by a simple math-
ematical treatment of synaptic transmission at the NMJ, known as a “deple-
tion model,” whereby a size-limited pool of readily releasable
neurotransmitter (N) is in equilibrium with a large store of precursor (IN;)
with forward and backward rate constants ky and k_; (Fig. 13.5A). In
response to stimulation of the nerve, say at time ¢;, a fraction (P) of N is
released into the synaptic cleft, disturbing the equilibrium with N;. The
change of N with respect to time after the stimulus can then be described
by the following differential equation:

dN

If N is relatively large, one can assume Nj is constant and Eq. (13.21) has the
following solution:

N = Nao + (Njo — No e (70)/% (13.22)

where Ny, =Nki/k_1 and 7,=1/k_,. Here, N is the steady-state value of
N, 17, is the recovery time constant, and Nj, is the value of N immediately
after transmitter release at time #. This solution means that, after a sudden
depletion of N due to a stimulus, N will exponentially increase from N,
to N, with time constant 7,. By comparing their experimental data to pre-
dictions of their mathematical model, Liley and North were able to estimate
the steady-state value of P was 0.45, as well as reveal subtle signs of poten-
tiation during a short train of stimuli, a conditioning tetanus, which they
speculated was due to a brief period of temporarily raised P. At the time,
such facilitation had long been reported” and was thought to be due to
an increase in size of the nerve action potential, or an increase in the extra-
cellular K* concentration. Today, facilitation is thought to be largely due to
a rise in the intracellular Ca®" concentration ([Ca®']) as described
further below.

Subsequent to Liley and North’s study, Betz’® modified the depletion
model to account for vesicular release. More recently, Heinemann et al.”’
added to the depletion model a pulsatile increase in [Ca>"]; leading to a steep
increase in P from a near zero value. While the latter addition made the
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Figure 13.5 Modeling short-term depression and facilitation. (A) Original depletion
model of Liley and North? describing release of freely diffusing transmitter (N). N is in equi-
librium with a large store of precursor molecules (N;), governed by forward and backward
rate constants k; and k_;. The arrival of an action potential causes a rise in [Ca®'];, trig-
gering a fraction (P) of N to be released (NP) into the synaptic cleft (red), disrupting the
balance between N and N;. N recovers back to its steady-state value (N_.) with an expo-
nential time course (t,), where N, and t, are set by k; and/or k_. (B) A modern version of
the depletion model with a large store of synaptic vesicles (Ns, gray circles) and a fixed
number of vesicle release sites (N, blue), where N now represents the number of vesicles
docked at a release site and are therefore readily releasable (orange circle). The arrival of
an action potential now triggers a certain fraction of the readily releasable vesicles to be
released (NP), freeing release sites. The number of free release sites at any given time is
equal to Ny — N. Variations of this model include a k; that is dependent on residual [Ca®'];
(red star), in which case [Ca®*]; is explicitly simulated, and the inclusion of a backwards
rate constant k_; (gray arrow) representing the undocking of a vesicle, that is, the return
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depletion model more realistic, it introduced the added complication of sim-
ulating the time dependence of [Ca”"];. The added complication proved use-
ful, however, in that Heinemann and colleagues were able to explore the
consequences of adding a Ca®-dependent step to the process of vesicle
replenishment (i.e., kq), as supported by experimental evidence at the time.
One such consequence was an increase in the number of readily releasable ves-
icles during a spike-plateau Ca>" transient, thereby enhancing secretion dur-
ing subsequent stimuli. More recent experimental evidence supports such a
link between increased levels of [Ca®']; and enhanced vesicle replenishment
(ly) 5075

As noted by Heinemann et al.”’, k_; was introduced into their model in
order to limit the steady-state value of readily releasable vesicles (N..). An
alternative approach to limit N, they noted, would be to allow a finite
number of vesicle release sites at the membrane (N), and let N denote
the number of release sites filled with a vesicle, or equivalently the number
of readily releasable vesicles (Fig. 13.5B). In this case, the number of empty

Figure 13.5—Cont'd of N to N;. (C) A more recent version of the depletion model, sim-
ilar to that in (B), has two pools of readily releasable vesicles (N, and N,) with low- and
high-release probabilities, respectively (P, and P,). The difference in probabilities is
related to the distance vesicles in pools N; and N, are from VGCCs, where vesicles in
pool N