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Purvis LK, Smith JC, Koizumi H, Butera RJ. Intrinsic bursters
increase the robustness of rhythm generation in an excitatory network.
J Neurophysiol 97: 1515–1526, 2007. First published December 13,
2006; doi:10.1152/jn.00908.2006. The pre-Botzinger complex (pBC)
is a vital subcircuit of the respiratory central pattern generator.
Although the existence of neurons with pacemaker-like bursting
properties in this network is not questioned, their role in network
rhythmogenesis is unresolved. Modeling is ideally suited to address
this debate because of the ease with which biophysical parameters of
individual cells and network architecture can be manipulated. We
modeled the parameter variability of experimental data from pBC
bursting pacemaker and nonpacemaker neurons using a modified
version of our previously developed pBC neuron and network models.
To investigate the role of pacemakers in networkwide rhythmogen-
esis, we simulated networks of these neurons and varied the fraction
of the population made up of pacemakers. For each number of
pacemaker neurons, we varied the amount of tonic drive to the
network and measured the frequency of synchronous networkwide
bursting produced. Both excitatory networks with all-to-all coupling
and sparsely connected networks were explored for several levels of
synaptic coupling strength. Networks containing only nonpacemakers
were able to produce networkwide bursting, but with a low probability
of bursting and low input and output ranges. Our results indicate that
inclusion of pacemakers in an excitatory network increases robustness
of the network by more than tripling the input and output ranges
compared with networks containing no pacemakers. The largest in-
crease in dynamic range occurs when the number of pacemakers in the
network is greater than 20% of the population. Experimental tests of
our model predictions are proposed.

I N T R O D U C T I O N

Networks of neurons that generate rhythmic networkwide
bursts of action potentials are found in many areas of the
nervous system. One such network is the pre-Botzinger com-
plex (pBC), a population of neurons that is critical for gener-
ating the respiratory rhythm (Gray et al. 2001; Smith et al.
1991). Despite extensive research to date, the details of the
mechanisms of rhythmogenesis in the pBC are still not com-
pletely resolved. Many experiments have established that the
pBC both in vitro and in more intact states contains intrinsic
bursters or “pacemaker” neurons—cells that are capable of
rhythmic bursting in the absence of synaptic input (Del Negro
et al. 2002a, 2005; Johnson et al. 1994; Koshiya and Smith
1999; Pagliardini et al. 2005; Paton et al. 2006; Pena et al.

2004; Smith et al. 1991; Thoby-Brisson and Ramirez 2001;
Tryba et al. 2006). Two types of pacemaker neurons are found
in the pBC: one is dependent on a persistent sodium current
(NaP dependent, also cadmium insensitive; Del Negro et al.
2002a,b, 2005; Paton et al. 2006; Pena et al. 2004; Thoby-
Brisson and Ramirez 2001; Tryba et al. 2006) and the other
uses a calcium-dependent mechanism (CaN dependent, also
cadmium sensitive; Del Negro et al. 2005; Pena et al. 2004;
Thoby-Brisson and Ramirez 2001; Tryba et al. 2006). Further-
more, these and other pBC neurons are coupled by excitatory
synaptic connections (Funk et al. 1993; Koshiya and Smith
1999) and the pBC excitatory network itself exhibits autorhyth-
mic properties (Johnson et al. 2001). Recent literature raises
questions about the significance and the abundance of pace-
maker cells within the pBC network (Del Negro et al. 2002a,b,
2005; Pagliardini et al. 2005; Paton et al. 2006; Pena et al.
2004; Tryba et al. 2006). In the intact respiratory network, the
pBC is part of a much larger circuit (Feldman and Del Negro
2006; Smith et al. 2000) and pBC cells are responsive to
modulation that controls inspiratory frequency (Johnson et al.
1996; Schwarzacher et al. 2002; Solomon et al. 2000, 2002). It
was also established that the number of pacemakers in the pBC
can be dynamically varied by neuromodulators acting on the
network (Pena and Ramirez 2002, 2004; Ramirez et al. 2004).
Here we use modeling studies to investigate how the fraction of
the network population that is composed of intrinsic bursters
affects measures of rhythmogenic capacity or “robustness” of
network activity. Robustness is quantified in terms of both the
input range and output range of the network. The input range
is the size of parameter space where networkwide synchronous
rhythmic bursting occurs and the output range is the range of
bursting frequencies that the network produces across this
input range. Thus a network is considered robust if it bursts at
many levels of tonic excitation and over a wide range of
frequencies. In general, the question of the contributions of
pacemaker neurons to the dynamic performance of excitatory
networks was not previously addressed quantitatively.

We ran network simulations to investigate this problem
using a modified version of our previously developed pBC
neuron and network models (Butera et al. 1999a,b). We sim-
ulated a heterogeneous excitatory network consisting of 50
pBC neurons—the smallest number of neurons that captures
the dynamics of larger networks (Butera et al. 1999b)—and we
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varied the fraction of the population made up of pacemakers
from 0 to 100%. While varying the fraction of pacemakers, we
also varied the amount of excitatory drive supplied to the
network at several different levels of excitatory synaptic cou-
pling strength. Simulations with no pacemakers in the network
were able to produce synchronous networkwide rhythmic ac-
tivity; however, the input and output ranges were substantially
reduced. Our simulations suggest that the inclusion of pace-
maker neurons in a bursting network allows for greater con-
trollability of the frequency range produced by that network.
We conclude by proposing experimental tests of our model
predictions.

M E T H O D S

Experimental data

Experimental data obtained from neonatal rat pBC inspiratory
neurons in vitro shows from voltage-clamp recording analysis that a
primary difference between pacemakers (PMs) and nonpacemakers
(NPMs) in the pBC is the ratio of the persistent sodium conductance
to the leak conductance (gNaP/gLeak): to date all pBC inspiratory
neurons analyzed in vitro exhibit NaP and K�-dominated leak cur-
rents, although the gNaP/gLeak ratio is typically larger in PMs than in
NPMs (Del Negro et al. 2002a; Koizumi and Smith 2004). When
viewing the recent data of Koizumi and Smith (2004) as a scatterplot
in gNaP and gLeak space (Fig. 1A), there is a clear distinction between
the PMs and NPMs (dashed line). Because the hand-drawn dashed
line in Fig. 1A has a nonzero y-intercept, the gNaP/gLeak ratio is not a
perfect indicator of the single-cell dynamics (i.e., whether the cell is
a PM or NPM). To accurately compare the experimental data to the
model (see following text) in terms of conductance densities, the data
for individual neurons (n � 50) were normalized by the measured
capacitance and then multiplied by the nominal whole cell capacitance
used in the model (21 pF). PMs used for this analysis were differen-
tiated from NPMs after pharmacological block of glutamatergic ex-
citatory synaptic currents as previously described (Del Negro et al.
2002a; Koshiya and Smith 1999) and the dependency of intrinsic
rhythmic bursting on gNaP was confirmed pharmacologically for
identified PMs. All gNaP and gLeak data used in this study are from the
set of PMs and NPMs obtained by Koizumi and Smith (2004) and are
reproduced here for data parameter space mapping, model parameter
adjustments, and data-model comparisons.

Neuron model

This study uses our previous pBC neuron model (see APPENDIX) and
heterogeneous excitatory network models of these cells (Butera et al.
1999a,b). The neuron model (Model 1 of Butera et al. 1999a) is a
Hodgkin–Huxley (Hodgkin and Huxley 1952) style, electrophysiolog-
ical model of a bursting pBC cell. The model consists of three
voltage-gated ionic currents and a K�-dominated ohmic leak current.
The voltage-gated currents are 1) a fast Na� current, 2) a delayed-
rectifier K� current, and 3) a slowly inactivating persistent Na�

current (NaP). NaP is responsible for the intrinsic voltage-dependent,
rhythmic bursting behavior displayed by these neurons (i.e., this is a
model of the NaP-dependent or cadmium-insensitive bursters; Butera
et al. 1999a). This is the biophysically minimal set of currents
required to describe the main features (below) of pBC neuron prop-
erties. Other currents include a tonic excitatory drive current and an
excitatory synaptic current. The excitatory drive, modeled as gtonic,
models input from a tonic spiking population, which is proposed to
function for pBC network burst frequency control (e.g., see Butera et
al. 1999b; Smith et al. 2000). The excitatory synaptic current models
the excitatory amino acid–mediated coupling between individual

bursting neurons in all simulations using the conductance gsyn (Butera
et al. 1999b).

Some parameters of the original Model 1 neurons were adjusted to
more closely match recent experimental data. Specifically, more
accurate values for NaP half-activation (V1/2max � �45 mV) and
slope factor (k � 5) are used (Koizumi and Smith 2004). Because the
NaP half-activation value was hyperpolarized by 5 mV, we also
hyperpolarized the NaP half-inactivation by 5 mV. These adjustments
are also consistent with other measurements of NaP properties of
neurons isolated from the pBC region in vitro (Ptak et al. 2005; Rybak
et al. 2004). NaP inactivation kinetics was not previously quantified
experimentally for pBC neurons, so the original Model 1 kinetics was
used. Simulations with these adjusted models provide behavior very
similar to that of the original Model 1 neurons including voltage-
dependent rhythmic bursting with a similar range of oscillation
frequencies, controllable by applied current or tonic excitatory syn-
aptic input (see Fig. 6 in Butera et al. 1999a). Figure 2 illustrates the
pacemaker and nonpacemaker behaviors exhibited by the model for
two different values of gNaP. NPMs make the transition from silence
directly to beating as excitatory drive is increased (Fig. 2A, gNaP � 1.5
nS), whereas PMs make the transition from silence to bursting to
beating (Fig. 2B, gNaP � 2.5 nS). This model also captured prominent
properties of the recorded data neurons, justifying our parameter sets,
including 1) silent, rhythmic bursting, and tonic spiking regimes
determined by baseline membrane potential as controlled by an
applied current; 2) bursting frequencies tunable over an order of
magnitude range of frequencies by applied current (see also Koshiya
and Smith 1999); 3) subthreshold current–voltage relations obtained

FIG. 1. Parameter space and pacemaker/nonpacemaker (PM/NPM) bound-
aries for experimental data and the model. Pacemakers are represented by ●,
nonpacemakers by ✴ . A: scatterplot of experimental data (Koizumi and Smith
2004) obtained from voltage-clamp analysis of PM/NPM neurons identified in
the pre-Botzinger complex (pBC) of neonatal rat in vitro slice preparations,
using neuron visualization and recording techniques similar to those described
previously (Del Negro et al. 2002a; Koshiya and Smith 1999). Note the clear
boundary between pacemakers and nonpacemakers (hand-drawn dashed line).
n � 30 PMs; n � 20 NPMs. B: model’s PM/NPM boundaries. Parameter set
was classified as a PM if the model neuron bursts at any level of stimulus
current (dark region).
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during slow voltage-clamp ramps (30 mV/s used to obtain the data)
that are separable into gNaP and gLeak as the two main conductance
components (see also Butera et al. 2005); and 4) rhythmic bursting
controllable as seen experimentally by gNaP and gLeak (i.e., by gNaP/
gLeak ratios). Detailed comparisons of the data-model gNaP–gLeak

parameter spaces (Fig. 3) also indicate that our simplified model is
consistent with the differentiation between data PMs and NPMs in the
majority of cases.

The network simulations required a mixed population of models of
PMs and NPMs. Although previous modeling results classified the
activity modes of the model (beating, bursting, silence; see Fig. 7 of
Butera et al., 1999a) at rest (i.e., with no externally applied current),
the PM and NPM classification of Fig. 1A was experimentally deter-
mined by testing for bursting at any level of applied current under
current-clamp recording. Therefore a similar process was applied to
the model using the interactive differential equation simulation pack-
age XPP (Ermentrout 2002) for model simulations along with Perl
scripts and MATLAB (The MathWorks, Natick, MA) for data anal-
ysis. Both gNaP and gLeak were swept from 0 to 6 nS, which covers the
full range of experimentally measured values. For each set of param-
eters represented in Fig. 1B, the stimulus current was swept from �30
to �30 pA. The stimulus current was started at �30 pA to ensure that
the cell is at rest. If the values of gNaP and gLeak are such that the
model is a nonpacemaker, then the modes of activity as the stimulus
current is increased will progress from silence directly to beating (Fig.
2A). If rhythmic bursting occurs during part of this range (Fig. 2B), the
neuron is classified as a pacemaker with this parameter set. The results
of these simulations are given in Fig. 1B. Figure 1, A and B shares a
clear boundary between the PM and the NPM regions. When creating
a population of PMs and NPMs for the network simulations, the
parameters must be chosen based on the modes of activity defined in
Fig. 1B.

Modeling intrinsic parameter variability

The heterogeneous network simulations use parameters chosen
from a two-dimensional parameter space (only gNaP and gLeak are
varied). For these simulations, we created two heterogeneous popu-
lations of PMs and NPMs whose variability reflects the variability that
exists in the experimental data (Table 1). That is, we constructed
population distributions reflecting not only the ranges of NaP and leak
conductance densities but also the experimentally determined vari-
ability of these parameters (Table 1). Accomplishing this requires
completing three tasks: 1) correcting experimental conductance data
for measurement errors, 2) determining the model’s acceptable oper-
ating range for PMs and NPMs, and 3) defining parameter distribu-

tions inside the model’s acceptable operating range that provide mean
and SD values consistent with the corrected experimental data.

CORRECTING EXPERIMENTAL DATA. It is known that experimental
measurements of gNaP depend on the rate of voltage-clamp ramps (Del
Negro et al. 2002a) used to estimate values of gNaP, which is
consistent with our model kinetics for NaP inactivation. We simulated
the ramp protocol used to determine the gNaP values of the experi-
mental data we are attempting to model to produce an estimate of the
underestimation resulting from the ramp rate. The simulation suggests
an underestimation arising from the ramp rate of roughly 20% and we
conservatively estimated an additional 5% error from other potential
measurement errors (e.g., space-clamp). Therefore we corrected the
gNaP data by multiplying by the expected underestimation of 25%.
The value of gLeak was not found experimentally to be affected by
ramp rates as predicted by the model and was therefore left un-

FIG. 2. Model behavior for 2 different values of gNaP. A: gNaP � 1.5 nS.
NPMs progress from silence to beating (tonic firing) as gtonic is increased. B:
gNaP � 2.5 nS. PMs progress from silence to bursting to beating as gtonic is
increased. Only gNaP is changed (gLeak � 2.2 nS in A and B) to transform the
NPM in A into the PM in B. *Transient firing activity in A is caused by step
increase of gtonic and is not a burst.

FIG. 3. Comparing data space to model space. PMs represented by ●,
NPMs by ✴ . Experimental data from Fig. 1A are corrected by increasing gNaP

values by 25%. A: corrected experimental data plotted with the model’s
PM/NPM boundary. B and C: plots of data and random parameter distributions
with the outline of the conservative PM region (denoted by solid lines) and
NPM region (denoted by dashed lines) of model parameter space. In B,
experimental data are plotted with the conservative model boundaries. Several
data points fall outside of the conservative boundary allowed for model
parameters. C: illustration of a sample randomly generated model parameter
distribution with 30 PMs and 20 NPMs.
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changed. After correcting the data, 86% of the data points are on the
appropriate side of the model’s PM/NPM boundary (Fig. 3A).

DETERMINING OPERATING RANGE. To completely describe an al-
lowable parameter space of the model for network simulations, both
the PM/NPM boundary and the boundary that defines the operating
range of the model must be defined. An accurate description of this
space is necessary to reliably separate PM and NPM model neurons;
parameter sets outside of the model’s operating range will produce
spurious results (e.g., plateau potentials) or nonphysiological models
(e.g., negative conductances). The boundary between PMs and NPMs
was chosen by fitting a diagonal line to the boundary previously
computed (Figs. 1B and 3A). A model whose parameters lie on the
PM/NPM boundary will produce doublet or triplet bursts of spikes.
Therefore the y-intercept of the line was increased by 0.2 for PMs and
decreased by 0.2 for NPMs (see white space between PM and NPM
regions in Fig. 3C), to provide a conservative separation between PMs
and NPMs and definitively determine that a model in that region is a
PM or NPM. The minimum value for gNaP for all simulations was
chosen to be 0.5 nS. The other diagonal boundary at the upper edge of
the PM space was set to keep the model inside its operating range.
Figure 3B displays these conservative model boundaries plotted with
the experimental data of Fig. 1A. Seventy-four percent of the data
points are inside the conservative boundaries allowed for the model
parameters.

DEFINING RANDOM DISTRIBUTIONS. As stated earlier, the network
simulations will use values from a two-dimensional normal distribu-
tion in gNaP and gLeak for PMs and NPMs. When randomly choosing
parameters to generate a PM model, the parameters must be verified
to ensure that the model actually is a PM (likewise for NPMs). The
parameters must also be tested to ensure that they are not outside the
operating range of the model. Thus some of the values that are
randomly chosen from the two-dimensional distribution must be
discarded because they fall outside these boundaries. Therefore the
values for mean and SD of the experimental data listed in Table 1
cannot be used for the random-number generator because the act of
discarding and repicking from the normal distribution will result in a
different mean and SD for the population. C�� simulations were run
that selected 10,000 random sets of parameters to determine the actual
mean and SD values after bounding the allowable parameter space.
The simulation was then repeated for various nominal means and SDs
until the actual mean and SD after discarding/repicking was similar to
the mean and SD of the corrected data (Table 1). These trials were
repeated 100,000 times and the best parameter distributions were
determined by taking the minimum of the summed percentage error
between the computed mean/SD and the data mean/SD. Table 1
provides the optimal means and SDs for gNaP and gLeak whole
distribution statistics that best match the experimental data.

Once initial mean/SD values for the normal distribution were
chosen such that the calculated mean/SD after discarding/repicking
closely matched the experimental data, we used these distributions to
choose model parameters of PMs and NPMs for the network simula-

tions. For example, Fig. 3C provides a sample parameter distribution
to be used for model simulations that includes 30 PMs and 20 NPMs.
Although this data-mapping scheme is not perfect (26% of the
corrected experimental data falls outside the model’s allowable range;
Fig. 3B), it does provide a model approximation of the variability of
the experimental data.

Network simulations

The network simulations consist of a population of 50 cells, of
which there are 1K PMs and 50K NPMs. It is important to note that
the total number of cells in the network remains constant at 50 while
K is varied from 0 to 50 in increments of one (i.e., only the percentage
of the population that are PMs or NPMs changes). For each K, the
amount of excitatory drive, or gtonic, is varied in 0.1-nS increments
from 0 to 1.5 nS. Varying the amount of drive allows us to explore this
voltage-dependent frequency control, as exhibited by the isolated pBC
in slice preparations (Del Negro et al. 2001; Smith et al. 1991). Also,
because the exact amount of excitatory synaptic coupling is unknown,
the level of excitatory coupling is varied over physiological ranges for
each simulation. Physiological range was determined by examining
the synaptic current for various values of gsyn (see, e.g., Fig. 13 of
Butera et al. 1999b) and comparing it to values measured experimen-
tally (see, e.g., Fig. 1 of Del Negro et al. 2002a). The model of fast
excitatory synaptic dynamics used is as previously specified in Butera
et al. (1999b). The results presented are from networks with all-to-all
excitatory coupling. Similar results were obtained with sparsely con-
nected networks (see following text).

Network simulations were run on Linux and Unix workstations
using C code (Butera et al. 1999b) and the results were analyzed using
Perl scripts and MATLAB. Network simulations were run for 2 min
of simulation time with the first 30 s being ignored to allow start-up
transients to decay.

Data analysis

An automated burst-detection technique was implemented by gen-
erating a combined histogram of spike times from every cell in the
network (Fig. 4). The maximum and minimum amplitude of the
histogram was calculated and the difference between those values was
compared with a threshold. If the threshold was met and if the
amplitude of the histogram remained �10% of the maximum ampli-
tude for some minimum amount of time, then the output was defined
as a burst. The values for amplitude threshold and minimum time
�10% of maximum amplitude were chosen by visual inspection of
the histogram data. This method classifies the results illustrated in Fig.
4, A and C as bursting, although the network producing the pattern
illustrated in Fig. 4B is classified as a nonbursting network. For the
results reported herein, only “regular” bursting patterns were consid-
ered; therefore the bursting patterns in Fig. 4, A and C were further
analyzed. To determine whether regular bursting patterns were
present, the burst period (BP), burst duration (BD), and burst ampli-
tude were measured. Before measuring these values, the data were
smoothed using a 20-point moving average. After smoothing, the start
of a burst was calculated using a rising phase threshold of 30% of the
maximum amplitude and the end of the burst was calculated using a
falling phase threshold of 10% of the maximum amplitude. The BD is
the time between these two thresholds, the BP is the time between the
rising phase of two subsequent bursts, and the burst amplitude is the
maximum amplitude measured during the BD. If each of these values
had a coefficient of variation among all bursts in a trace �20% and if
more than two bursts were found in the 90-s time window, then the
bursting was defined as regular and is hereafter referred to as net-
workwide bursting. Thus the automated burst detection would define
the bursts in Fig. 4C as irregular because the BP has a coefficient of
variation �20%. The bursting pattern in Fig. 4A meets all require-
ments for regular networkwide bursting. This analysis scheme was

TABLE 1. Conductance values for PMs and NPMs

Data Model

Conductance Mean, nS SD, % Mean, nS SD, %

PM gNaP 2.43 31 2.44 31
gLeak 2.51 37 2.20 37

NPM gNaP 1.10 27 1.11 27
gLeak 2.51 34 3.00 28

Experimental data mean and SD of conductances for PMs and NPMs after
mapping onto the model parameter space using 25% correction of gNaP.
Computed mean and SD of model distributions after discarding/repicking
procedure.
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verified in preliminary simulations studies by inspection of raster
plots of the 50 cell-activity patterns to confirm the degree of cell
synchrony between successive cycles. The values reported for the
frequency of networkwide bursting were calculated using the
inverse of the mean BP.

Once the existence of networkwide bursting has been established,
input and output ranges are computed. Input range is defined as the
size of parameter space where networkwide bursting occurs. The
simulation data for input and output ranges are analyzed in some cases
by grouping the number of PMs into bins where bin 0 is the special
case when the network contains no PMs, bin 1 contains 1–5 PMs, bin
2 contains 6–10 PMs, and so forth. Input range is then defined as the
percentage of the maximum number of simulations inside a bin that
produce networkwide bursting, i.e., the fraction of the range of gtonic

where networkwide bursting occurs. For example, bin 1 contains five
values of PMs (from 1 to 5 PMs) and 16 values of gtonic (from 0 to 1.5
nS in 0.1-nS increments) for each number of PMs, giving 80 total
simulations inside that bin. If networkwide bursting is found in only
four of the 80 simulations (as is the case for bin 1 where gsyn � 0.2
nS; see following text), then the input range would be 4/80 or 5%.
Output range is computed by subtracting the maximum frequency of
networkwide bursting for a given number of PMs from the minimum
frequency of networkwide bursting for the same number of PMs (as
gtonic is varied) and averaging this range across all PMs in that bin.

Therefore for a given number of PMs, if the network bursts with a
maximum frequency of 0.75 Hz when gtonic � 0.9 nS and the network
bursts with a minimum frequency of 0.25 Hz when gtonic � 0.1 nS, the
output range is defined as 0.50 Hz for that number of PMs.

R E S U L T S

Overview

Figure 5 illustrates the existence and frequency of network-
wide bursting as the number of PMs and excitatory drive
(gtonic) are varied for five values of excitatory synaptic cou-
pling (gsyn). The color indicates the frequency of networkwide
bursting; black regions indicate the absence of networkwide
bursting. The simulations in the black region could produce a
network containing neurons that are all or mostly silent, a
network containing neurons that are all or mostly tonically
firing, or a network that produces an irregular bursting pattern.
Each point in Fig. 5 is the result of a single simulation with a
new randomly generated set of parameters. It is this indepen-
dent parameter selection for each simulation that causes the
“noise,” or variability among adjacent points. Figures 6–8
further quantify the results shown in Fig. 5; Figs. 9 and 10

FIG. 4. Network activity modes. A1–C1: raster plots. A2–
C2: network activity, defined as histograms of spike times
across the population (bin size � 10 ms). A1 and A2: regular
bursting network. Most cells are bursting. B1 and B2: nonburst-
ing network. Most cells are silent or tonically firing. C1 and C2:
irregular bursting network. Burst period and amplitude are
highly variable.

FIG. 5. Results of varying number of PMs (x-axis),
gtonic (y-axis), and gsyn (from top left, 0.075 and 0.1 nS;
from bottom left 0.15, 0.2, and 0.3 nS). Color indicates
frequency of networkwide bursting. Black regions
indicate the absence of networkwide bursting and
could be either silence, a few cells bursting, irregular
bursting, or tonic firing. Each point represents a
distinct simulation with different randomly generated
parameters.
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illustrate the averaged results of multiple simulations using a
single value for gsyn. Figure 11 provides a method of display-
ing our results that will allow a straightforward comparison to
future experimental data.

Networkwide bursting

At lower levels of synaptic conductance (Fig. 5, top), more
PMs are required to generate networkwide bursting. At higher
levels of synaptic conductance (Fig. 5, bottom right), network-
wide bursting is seen with fewer PMs, but the range of
frequencies produced by the network is dramatically reduced.
Other levels of synaptic conductance (�0.3 and �0.075 nS)
were explored, but did not result in significant amounts of
networkwide bursting. Also, increased excitatory drive (gtonic
�1.5 nS) did not produce networkwide bursting at any level of
synaptic conductance or for any fraction of PMs. At these high
levels of excitatory drive, only tonically firing activity within
the network was seen. The results of Fig. 5 also suggest that,
for a fixed level of synaptic conductance and gtonic, reducing
the number of PMs, in general, reduces the frequency of
networkwide bursting until the rhythm is eventually abolished.

Input range and output range

Figure 6 is a plot of the input range for all values of gsyn
as a function of K and levels of excitatory coupling. For the

lower values of gsyn (0.075, 0.1, and 0.15 nS), the input
range displays a generally increasing trend as the percentage
of PMs increases from 0 to 100% of the population, with the
lowest levels of synaptic conductance failing to produce any
networkwide bursting until �20 or 25 PMs are in the
population (bin 5, gsyn � 0.1 nS; bin 6, gsyn � 0.075 nS).
For the larger values of gsyn (0.2 and 0.3 nS), the input range
increases as the number of PMs is initially increased and
then decreases slightly for higher percentages of PMs.
Networks with gsyn values of 0.15 and 0.2 nS span the
greatest range of input ranges (Fig. 6).

Table 2 quantifies the input and output ranges for three
cases: a network containing no PMs, a network where less than
(or equal to) half of the population is made up of PMs, and a
network where more than half of the population is made up of
PMs. Only two of the five synaptic conductances explored
produced networkwide bursting when no PMs are present in
the network (Fig. 6, bin zero). At gsyn values of 0.2 and 0.3 nS,
networkwide bursting occurs with no PMs �13% of the input
range. The average input range for a network with 1–25 PMs
at gsyn values of 0.2 and 0.3 nS is 25 and 41%, respectively.
The average input range for a network with more than half of
its population made up of PMs at gsyn values of 0.2 and 0.3 nS
is 52 and 39%, respectively (Table 2). Thus for a given level of
synaptic conductance, increasing the number of PMs in the
network can more than triple the input range compared with a
network containing no PMs.

Figure 7 illustrates the output range of the network for each
level of synaptic conductance. The maximum and minimum
frequencies for each number of PMs in a bin are given by solid

FIG. 6. Input range for several values of gsyn. Input range is computed as
the percentage of the total number of simulations where networkwide rhythmic
bursting occurs. x-axis is bin number where bin 0 is no PMs, bin 1 is 1–5 PMs,
bin 2 is 6–10 PMs, and so forth.

TABLE 2. Input and output ranges

Synaptic
Conductance

Input Range, % Output Range, Hz

0
PMs

1–25
PMs

26–50
PMs

0
PMs

1–25
PMs

26–50
PMs

gsyn � 0.075 nS 0 0 16 0 0 0.11
gsyn � 0.1 nS 0 2 29 0 0.01 0.24
gsyn � 0.15 nS 0 7 46 0 0.03 0.43
gsyn � 0.2 nS 13 25 52 0.20 0.19 0.43
gsyn � 0.3 nS 13 41 39 0.04 0.13 0.12

Average input and output ranges when the network contains no PMs, �50%
PMs, and �50% PMs.

FIG. 7. Output range for several values of gsyn. Re-
sults of varying number of PMs (x-axis is binned number
of PMs), gtonic, and gsyn (from top left, 0.075, 0.1, 0.15,
0.2, and 0.3 nS). Solid line is frequency range, computed
by subtracting the maximum frequency of networkwide
bursting for a given number of PMs (closed circles) from
the minimum (nonzero) frequency of networkwide burst-
ing for the same number of PMs (open circles) and
averaging this range across all PMs in that bin. x-axis is
bin number where bin 0 is no PMs, bin 1 is 1–5 PMs, bin
2 is 6–10 PMs, and so forth, and y-axis is frequency.
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and open circles, respectively. The frequencies measured in our
simulations (from about 0.04 to 1.0 Hz) are similar to those
measured by Del Negro et al. (2001; from about 0.05 to 0.8
Hz). For most cases, the output range increases as the number
of PMs is increased (Fig. 7). Networks containing no PMs were
able to burst (bottom center and right panels of Fig. 7);
however, the output range in this case is considerably reduced
compared with simulations with larger percentages of PMs. At
gsyn values of 0.2 and 0.3 nS, the output range with no PMs is
0.20 and 0.04 Hz, respectively. The average output range when
gsyn � 0.2 nS with 1–25 PMs and with 26–50 PMs is 0.19 and
0.43 Hz, respectively. When gsyn � 0.3 nS, the average output
range with 1–25 PMs and with 26–50 PMs is 0.13 and 0.12 Hz,
respectively (Table 2). The largest attainable output ranges for
a given number of PMs with gsyn values of 0.15 and 0.2 nS are
0.88 Hz (with 46 PMs) and 0.71 Hz (with 41 PMs), respec-
tively. These values are more than triple the largest output
range obtained with no PMs in the network.

Input–output range trade-offs

For a given level of gsyn, input range (Fig. 6) and output range
(Fig. 7) were quantified and averaged across a range of K. Figure
8 plots the input range and the output range versus each other as
K and gsyn are varied, allowing a compact visualization of how
varying K and gsyn affect these metrics. Figure 8A is a plot of the
input range versus output range for different numbers of PMs. The
plot of Fig. 8A displays a clockwise trend as the level of synaptic
conductance is increased for each number of PMs. In general, the

input and output ranges increase as the number of PMs is in-
creased. There is an optimal value of gsyn for a given number of
PMs that maximizes the input and output ranges. Figure 8B is a
plot of the input range versus output range for different levels of
synaptic conductance. Here, the number of PMs increases as the
trace progresses from left to right. Figure 8B emphasizes the
depressing effect on output range of increasing synaptic strength.
Weaker coupling produces a smaller input range and coupling
also strongly produces a smaller output range. The moderate
levels of synaptic conductance that provide the largest input and
output ranges are found with gsyn values of 0.15 and 0.2 nS. At
these moderate levels of synaptic conductance, the largest gain (or
largest rate of change) in input and output ranges occurs when the
number of PMs increases to �20–40% of the population (see, for
example, the large increase between the second and third points
where gsyn � 0.2 nS in Fig. 8B; see also Fig. 5).

Multiple simulations

Because the optimal synaptic conductance level was found
to be between gsyn � 0.15 nS and gsyn � 0.2 nS, four additional
simulations were run at both levels of synaptic conductance.
This was to validate general trends just described and average
over the variability of individually randomly generated simu-
lations. The input and output ranges for each simulation are
given in Fig. 9 and the average of all five simulations is plotted
as a bold line. The input range is fairly consistent among all
simulations for gsyn values of 0.15 and 0.2 nS (Fig. 9, A and B).
The output range for gsyn � 0.2 nS is more variable (Fig. 9D)
but both display a clear upward trend as the number of PMs is
increased (Fig. 9, C and D). Previously, the largest output
range obtained for a network with no PMs was 0.20 Hz when
gsyn � 0.2 nS. However, none of the four additional simula-
tions at gsyn � 0.2 nS produced networkwide bursting at more
than a single value of gtonic with no PMs in the network. This
reduces the average output range with no PMs in the network
to 0.04 Hz.

Figure 10, A and B displays the average results of varying
gtonic and number of PMs for all simulations with gsyn values of
0.15 and 0.2 nS. When computing the average, simulations that
did not produce networkwide bursting were ignored (rather
than including a zero frequency in this average). Averaging
multiple runs removes much of the variability among adjacent
points seen in the results from a single run (compare Fig. 10,
A and B to bottom left and center panels of Fig. 5). Figure 10,
C and D reveals the likelihood of choosing a random set of
parameters that can produce networkwide bursting with a
certain number of PMs in the population for a given level of
excitatory drive. In Fig. 10, C and D, the (black and white)
color bar indicates in how many of the five simulations net-
workwide bursting was measured. The white regions are where
bursting occurs for all five simulations and the black regions
are where no networkwide bursting is recorded. Figure 10, B
and D illustrates that the network is able to burst with fewer
numbers of PMs and is also capable of producing a large range
of frequencies with fewer PMs. However, the likelihood of
producing networkwide bursting in this region is minimal (Fig.
10D, top left). The network does produce bursting when few
PMs are present, but it does not consistently produce bursting
at the same points in parameter space. This is the cause of the
variability seen in Fig. 9D.

FIG. 8. Input range vs. output range for different numbers of PMs (A) and
for 5 different levels of synaptic coupling (B). A: synaptic conductance
increases from 0.075 to 0.3 nS as each trace progresses clockwise. B: number
of PMs increases as each trace progresses from left to right. Numbers of PMs
are grouped according to the legend of A (i.e., 0 PMs, 1–10 PMs, etc.).
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Sparsely connected networks

The simulations were repeated using a sparsely connected
population and the results were compared with the all-to-all
coupling simulations given earlier. For these simulations, the
probability of connection was reduced to 10% (as an example
of very sparse connectivity) and the level of synaptic conduc-
tance was increased so that the mean level of synaptic current
provided to each cell remained roughly the same. For the
sparsely connected networks, we explored three values of
synaptic conductance, gsyn values of 1.0, 1.5, and 2.0 nS, that
roughly correspond to gsyn values of 0.1, 0.15, and 0.2 nS using
the all-to-all connectivity presented earlier. The results of the

simulations using the sparsely connected networks (not shown)
are completely consistent with all results using all-to-all con-
nectivity. Both input and output ranges of the sparsely con-
nected networks increased as the number of PMs increased in
a similar fashion to the corresponding levels of synaptic con-
ductance with all-to-all coupling. Also, the magnitudes of the
ranges of frequencies measured were similar.

D I S C U S S I O N

These simulations were performed to investigate the func-
tional significance of PM cells in the pBC excitatory network.
The simulations use two types of heterogeneity: cell-type

FIG. 9. Input (A and B) and output (C and D) range of 5
simulations where gsyn � 0.15 nS (A, C) and 0.2 nS (B, D).
Bold line is the average of 5 runs.

FIG. 10. A and B: average results of varying number
of PMs (x-axis) and gtonic (y-axis) for 5 simulations
where values of gsyn are 0.15 nS (A) and 0.2 nS (B).
Individual simulations where no bursting was found
were not included in the average. C and D: likelihood of
bursting in 5 simulations where values of gsyn are 0.15
nS (C) and 0.2 nS (D). White region indicates bursting
for all 5 simulations and black region indicates no
bursting for any simulation.

1522 PURVIS, SMITH, KOIZUMI, AND BUTERA

J Neurophysiol • VOL 97 • FEBRUARY 2007 • www.jn.org



heterogeneity (PMs and NPMs) and parameter heterogeneity
within a given cell type that is based on experimental data.
Before running the data-based simulations presented here, we
performed several simulations (not shown) using less hetero-
geneous parameter distributions: a semihomogeneous parame-
ter space (gLeak was kept constant for all cells; gNaP was
constant within each subpopulation of PMs or NPMs) and a
one-dimensional heterogeneous parameter space (gLeak was
kept constant for all cells whether PM or NPM; mean gNaP was
different for PMs and NPMs and varied with SD of �10%, and
then �30%). The semihomogeneous simulations produced
networks with reduced input and output ranges compared with
networks with more heterogeneous parameter distributions,
which might be expected based on previous studies examining
the role of heterogeneity in this network (Butera et al. 1999b).
Although there were minor quantitative differences, both the
simulations using less heterogeneous and less data-based pa-
rameter distributions and the simulations using sparsely con-
nected networks provide results that are qualitatively similar to
the results of the data-based simulations presented here. The
major conclusion of this study was reiterated in every simula-
tion performed, that is, pacemakers can increase the input and
output ranges of a bursting network.

Controllability

The absolute values for input range are not meaningful
because the percentages calculated are a function of the size of
parameter space chosen (gtonic varies from 0 to 1.5 nS in 0.1-nS
increments). If gtonic were allowed to increase to �2.0 nS, then
all calculated percentages would be reduced. However, the
relative differences between the input ranges for different
numbers of PMs and for different levels of gsyn are important.
The input ranges given in Fig. 6 and Table 2 reveal that
networkwide bursting is easier to obtain when the fraction of
the network population made up of PMs is increased. Like
input range, output range shows a generally increasing trend as
the number of PMs is increased. This highlights an important
difference between the controllability potential of synaptic
conductance versus the number of PMs in a network. Increas-
ing gsyn can increase input range but at the cost of output range.
Alternatively, increasing the number of PMs in the network
can increase both input range and output range.

Comparing both the input range and the output range for
several values of gsyn reveals an optimal synaptic conductance
near gsyn values of 0.15 and 0.2 nS. Therefore we ran multiple
simulations at these levels of synaptic conductance. Examining
the results of these simulations revealed that large output
ranges were possible with few PMs at gsyn � 0.2 nS, but the
output range in this region was highly variable because of the
inability to unfailingly generate networks capable of producing
networkwide bursting. In general, the network input–output
range increased as the percentage of PMs increased under these
optimal synaptic coupling conditions.

The reported estimates for the number of PMs in the pBC
vary from 5 to roughly 50% for different in vitro slice prepa-
rations and recording conditions (Del Negro et al. 2002a, 2005;
Koshiya and Smith 1999; Pagliardini et al. 2005; Pena et al.
2004). Because the PM or NPM state of a pBC cell is
modulatable (Pena and Ramirez 2002, 2004), it is possible that
the number of PMs in this network is modulated to meet

particular dynamic range requirements. Indeed, our current and
original model analyses indicate that any neuromodulatory
conditions that change the gNaP/gLeak ratios within the network
can potentially change the relative numbers of PMs and NPMs
and thus the network’s dynamic performance. Thus the varying
estimates for the number of PMs in the pBC under different
recording conditions may in part reflect the modulated state of
the pBC. With optimal values of gsyn in our simulations, the
largest increase in dynamic range occurs when the number of
PMs increases to �20% of the population (see Figs. 8–10). We
are currently using reduced-order models to investigate the
mechanism and significance of this threshold-like effect of the
number of PMs on network dynamics.

Limitations of the model

These simulations use a minimal model of pBC cells that
lack some voltage-gated ionic currents known to exist in these
cells, such as the low-voltage–activated or high-voltage–acti-
vated calcium channels (Elsen and Ramirez 2005). This mini-
mality undoubtedly plays a role in the inability of the model to
perfectly match the experimental data. In constructing our
network models, we sought to rigorously incorporate conduc-
tance density distributions, their variability, and voltage depen-
dencies that are consistent with the experimental data. An
important model parameter that has not yet been directly
verified by measurements, however, is the kinetics for the
voltage-dependent slow inactivation of NaP incorporated in the
model. This parameter controls the dynamics of the single-
neuron rhythmic bursting cycle and synchronized rhythmic
bursting at the population level.

Because model parameters were chosen from a two-dimen-
sional heterogeneous parameter space, ideally, multiple simu-
lations should be run so that any variability among simulations
can be averaged out. This is computationally time consuming.
Figure 5 contains almost 4,000 simulations, where each simu-
lation is a network of 50 cells. However, our results indicate
that more simulations are not necessary. When multiple sim-
ulations were run for a single value of synaptic conductance,
all simulations displayed similar trends. Also, as previously
stated, all simulations using less heterogeneous parameter
distributions and sparsely connected networks provided results
consistent with the results presented in this study.

The simulations that produced networkwide bursting with
few or no PMs typically provided minimal output ranges.
Although some simulations with few PMs were able to produce
large output ranges (Fig. 9D), the likelihood of producing
networkwide bursting here was low (Fig. 10D). Attempts were
made to choose data-based parameters for the simulations.
However, the limitations of the minimal model and of the
parameter selection technique could be the source of the
inability to unfailingly produce robust networkwide bursting
with fewer numbers of PMs in the population.

We should note that, although PMs are not required to
produce networkwide bursting in our model (Butera et al.
1999b), the NaP current is required. If this slowly inactivating
inward current were completely removed from our model,
there would be no slow process in the network to terminate
networkwide bursting activity once it has begun. Thus we
emphasize that NaP provides not only a mechanism for rhyth-
mic bursting of individual PMs (when isolated from synaptic
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input), but also a mechanism for synchronized rhythmic burst-
ing and its termination at the population level. This mechanism
results from the voltage dependency and kinetics of NaP
inactivation and the dynamic interaction of NaP current with
phasic excitatory synaptic drive currents in the coupled popu-
lation of cells (see Fig. 10 of Butera et al. 1999b).

Whether the NaP current provides the primary mechanism
for burst termination and regenerative reactivation of the net-
work in in vitro slice preparations remains to be clearly
resolved. Published investigations of this mechanism appear to
appreciably depend on the experimental preparation (i.e., thin
vs. thick slices in vitro vs. the more intact network in situ) (Del
Negro et al. 2005; Paton et al. 2006; Pena et al. 2004; Rybak
et al. 2003; Tryba et al. 2006). Our results (Fig. 5) suggest that
at least for preparations with a relatively isolated pBC network
(e.g., thin in vitro slice preparations) and for a fixed level of
synaptic conductance, reducing gNaP and thus the number of
PMs, in general, reduces the frequency of networkwide burst-
ing until the rhythm is eventually abolished. This agrees with
some experimental results where gNaP was reduced pharmaco-
logically by riluzole or low concentrations of tetrodotoxin
(TTX), presumably reducing gNaP/gLeak ratios to parameter
space regions with few PMs (Koizumi and Smith 2004; Rybak
et al. 2003). Our model does not include the cadmium-sensitive
bursters found in the pBC of slice preparations from mice (Del
Negro et al. 2005; Pena et al. 2004; Thoby-Brisson and
Ramirez 2001; Tryba et al. 2006), but not rats (Del Negro et al.
2005). Further modeling and simulations are required to deter-
mine the effects of adding these pacemakers to our network
models. At present, little is known about the biophysical
parameters of the CaN current and these cells may (Thoby-
Brisson and Ramirez 2001) or may not (Del Negro et al. 2005)
provide voltage-dependent control of PM oscillation fre-
quency, which would impart a very different contribution to
the input–output range of the network. Indeed, a unique prop-
erty of NaP-dependent mechanisms may be the enabling of a
broad range of tunable network oscillation frequencies, which
is inherent in the voltage-dependent properties of this conduc-
tance mechanism. In considering the functional significance of
any type of PM mechanism, the issue of frequency control may
be fundamental. That is, it is not simply the capability of a
particular cellular pacemaker mechanism when coupled with
excitatory synaptic interactions to organize a networkwide
rhythm in the pBC, but it is the inherent ability of any
mechanism to allow functionally for frequency control over a
wide dynamic range. This control is a prominent feature of
experimental data, at least for the isolated pBC in slices in vitro
under conditions where tonic drive is varied (e.g., Del Negro et
al. 2001).

Rhythmic networks

Although we have analyzed dynamics of excitatory net-
works incorporating bursting cells to investigate rhythm gen-
eration mechanisms in the pBC, our results would pertain to
rhythmogenesis in the isolated pBC as in slice preparations in
vitro, or under hypoxic conditions in perfused brain stem
preparations in situ (Paton et al. 2006), where there is evidence
for NaP-dependent mechanisms. As we originally pointed out
(Smith et al. 2000), when the pBC is embedded in the brain
stem respiratory network in more intact states of the system, as

in vivo, phasic (and possibly tonic) inhibitory inputs to the
pBC become important for dynamically regulating the evolu-
tion/termination of pBC inspiratory activity (Tryba et al. 2003).
We proposed (Smith et al. 2000), for example, that network-
based phasic inhibition contributes importantly to the termina-
tion of pBC networkwide bursting in the intact system, as
opposed to termination solely by the slow inactivation kinetics
of NaP and interactions of NaP and leak currents. Thus it
remains an important theoretical and experimental problem to
understand rhythm generation when inhibitory network mech-
anisms are overlaid on the excitatory network interactions that
we have analyzed here.

Although our model is based on intrinsic bursting cells in the
pBC, this study is representative of a particular class of
rhythmic bursting networks—those where the connectivity is
predominantly mediated by excitatory synapses. Examples
include rhythmic bursting in transverse brain stem slices (Ko-
shiya and Smith 1999; Smith et al. 1991), rhythmic activity in
disinhibited embryonic spinal cords (O’Donovan 1989; Streit
1993), rhythmic activity in disinhibited medial septum and
diagonal band complex (Manseau et al. 2005), and 7- to 14-Hz
oscillations in motor cortex (Castro-Alamancos et al. 2006). In
such networks, the synaptic excitation is responsible for the
coordination and spread of activity through the network at the
start of an episode of activity; in other cases such excitation
may play a key role in the initiation of a burst of activity as
well. In all these cases, burst episode initiation is attributed to
some combination of intrinsic cellular properties and/or recur-
rent excitatory coupling. Burst termination can be explained by
the slower kinetics of ionic currents intrinsic to the component
neurons (e.g., this manuscript) or the slower kinetics associated
with synaptic depression (Tabak et al. 2000).

Model predictions

To date, we are unaware of any experimental studies that
quantify dynamic range under conditions that putatively alter
the number of PMs. Based on the simulation results, we expect
both the input range and the output range of the network would
be reduced as the fraction of PMs in the network is reduced.
Likewise, if the conductance density of NaP channels is aug-
mented, then we predict that neurons that were previously
NPMs would become PMs and would produce an increased
dynamic range. Some have claimed (Del Negro et al. 2002b,
2005) and our modeling studies have shown that networkwide
bursting is possible after sufficiently reducing NaP such that no
PM activity is seen in the network (Butera et al. 1999b). When
PMs are blocked experimentally, an increased level of depo-
larization is required to restore rhythmic activity (Del Negro et
al. 2005). Our simulations confirm these results. If no (or few)
PMs are present in the network, increased levels of gtonic are
required to produce networkwide bursting (Figs. 5 and 10B).
However, our simulations suggest that under these conditions
the dynamic range of the network is greatly reduced. Substance
P was previously shown to reactivate networkwide bursting
after ostensibly blocking all PMs (Del Negro et al. 2005; Tryba
et al. 2006). Even if this reactivation is caused by the apparent
ability of substance P to temporarily restore PM activity to
some cells where PM activity was previously abolished (Tryba
et al. 2006), based on our simulation results, we would still
expect the dynamic range of the network to be reduced under
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these conditions. Experiments to test the model predictions
would involve measuring the range of frequencies produced by
the network while varying, for example, the level of tonic
activation of �-amino-3-hydroxy-5-methyl-4-isoxazolepropi-
onic acid (AMPA) receptors or tonic excitation with extracel-
lular potassium concentration under control conditions and
when gNaP and thus PM activity have been attenuated by
application of riluzole or small amounts of TTX. Our model
analog to the experimental figure this would produce is given
in Fig. 11, where we plot frequency versus gtonic for different
numbers of PMs. Experimentally varying the level of AMPA
receptor activation or extracellular potassium within the pBC is
qualitatively equivalent to varying EK (Del Negro et al. 2001;
Rybak et al. 2003), EL (Butera et al. 1999a), or gtonic (Butera et
al. 1999b) in the model. Figure 11 can be compared with future
experimental tests of these model predictions. In Fig. 11, the
nonmonotonic increase in frequency as gtonic is increased is
caused by heterogeneity among simulations. This variability is
reduced when averaging the results of multiple simulations
(see bold lines in Fig. 9).

Hypoxia increases NaP conductance density (Hammarstrom
and Gage 1998, 2002; Horn and Waldrop 2000) and recent
studies showed the importance of NaP-dependent bursting cells
during hypoxia (Paton et al. 2006; Tryba et al. 2006). If
hypoxia increases the number of PMs in the network, this
would cause a shift in parameter space to a region capable of
producing higher-frequency rhythms. This is a potential mech-
anism for obtaining the initial increase in burst frequency seen
during hypoxia (Solomon et al. 2000; Telgkamp and Ramirez
1999; Tryba et al. 2006). Again, the dynamic range of the
network could be examined at different levels of pBC hypoxia.
In general such comparisons under any experimental condi-
tions that are found to either selectively augment gNaP or
augment gNaP/gLeak ratios to increase the number of PMs
would be instructive.

In conclusion, although the significance and abundance of
PMs in the pBC are not completely understood, the existence of
these cells is not questioned. We used modeling studies to quan-
titatively explore the role that one of the main types of PMs (i.e.,
NaP-dependent) found in the pBC plays in this bursting network.
Networks containing no PMs were able to produce regular,
synchronous networkwide bursting (albeit with a low probability
of bursting, as well as low input and output ranges), demonstrating
that PMs are not critical for rhythm generation, provided that

excitatory synaptic coupling strength is high. Thus the NaP
current can provide not only a mechanism for rhythmic bursting
of individual PMs, but also a mechanism for synchronized rhyth-
mic bursting and its termination at the network level. However,
our modeling studies suggest that including PMs in the network
allows the input and output ranges to more than triple compared
with networks with no PMs. Indeed, the fraction of PMs pro-
foundly affects the controllability of the rhythm. Unlike synaptic
coupling that requires a trade-off between input range and output
range, increasing the number of PMs can increase both the input
range and the output range of the network. Additional experimen-
tal tests as suggested by our results will be required to either
confirm or refute our model prediction that PMs increase the
robustness of rhythm generation.

A P P E N D I X : M O D E L E Q U A T I O N S

A N D P A R A M E T E R S

The model used for all simulations is a modified version of Model
1 of Butera et al. (1999a) and is based on a single-compartment
Hodgkin–Huxley (HH) formalism. The membrane potential is found
using the differential equation

dV/dt � (�� Iionic � Itonic � Isyn)/Cm

where V is the membrane potential (mV), Cm is the whole cell capaci-
tance (21 pF), t is time (ms), Itonic is the excitatory drive current (nA), Isyn

is the synaptic current (nA) from other pBC cells in the network, and Iionic

are the ionic currents listed below and have the form

Iionic � g�V � Eionic�

where Eionic is the equilibrium reversal potential for the ionic species
carried by the current and

g � g�x

where g� is the maximum conductance of each current, and x is the
product of one or more gating variables raised to integer powers, as
subsequently described.

The dynamics of the conductances of the ionic currents regulated
by voltage-dependent activation or inactivation variables are de-
scribed according to

dx/dt � 	x
�V� � x�/�x�V�

x
�V� � 1/	1 � e�V��x�/	x�

�x�V� � �x/cosh 	�V � �x�/2	x�]

where x
(V) is the steady-state voltage-dependent (in)activation func-
tion of x and �x(V) is the voltage-dependent time constant. x
(V) is a
sigmoid with a half-(in)activation at V � �x and a slope factor 	x.
�x(V) is a bell-shaped curve that has a maximal value ��x at V � �x and
a half-width determined by 	x. Thus each gating variable is described
by only three parameters.

Action potentials in the model are generated by a fast Na� current
(INa) and a delayed-rectifier K� current (IK). The equations for these
currents are inspired by the HH formulation, but the gating variables
satisfy a reduced voltage-dependent description

INa � g�Nam

3 �V��1 � n��V � ENa�

IK � g�Kn4�V � EK�

where the parameters of INa are g�Na � 28 nS, ENa � 50 mV, �m �
�34 mV, and 	m � �5 mV; the parameters of IK are g�K � 11.2 nS,
EK � �85 mV, �n � �29 mV, 	n � �4 mV, and ��n � 10 ms.

The persistent sodium current is described by the following equa-
tion

FIG. 11. Frequency vs. gtonic for different numbers of PMs when gsyn �
0.15 nS. Reducing the number of PMs reduces both the input range and the
output range of the network. No bursting is produced for 0 PMs or 1–10 PMs.
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INa � g�NaPm
�V�h�V � ENa�

where ENa � 50 mV, �m � �45.1 mV, 	m � �5 mV, �h � �53 mV,
	h � 6 mV, and ��h � 10,000 ms. g�NaP is varied in each simulation as
described earlier.

The model has a passive leak current defined as

ILeak � g�Leak�V � ELeak�

This current is K� dominated. EL is set to �70 mV and g�Leak is varied
in each simulation as previously described. The reader is referred to
Butera et al. (1999a,b) for a more detailed description of the model.
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