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research examines the mechanisms that initiate rhythmic activity in
the episodic central pattern generator (CPG) underlying escape swim-
ming in the gastropod mollusk Tritonia diomedea. Activation of the
network is triggered by extrinsic excitatory input but also accompa-
nied by intrinsic neuromodulation and the recruitment of additional
excitation into the circuit. To examine how these factors influence
circuit activation, a detailed simulation of the unmodulated CPG
network was constructed from an extensive set of physiological
measurements. In this model, extrinsic input alone is insufficient to
initiate rhythmic activity, confirming that additional processes are
involved in circuit activation. However, incorporating known neuro-
modulatory and polysynaptic effects into the model still failed to
enable rhythmic activity, suggesting that additional circuit features are
also required. To delineate the additional activation requirements, a
large-scale parameter-space analysis was conducted (~2 X 10° con-
figurations). The results suggest that initiation of the swim motor
pattern requires substantial reconfiguration at multiple sites within the
network, especially to recruit ventral swim interneuron-B (VSI) ac-
tivity and increase coupling between the dorsal swim interneurons
(DSIs) and cerebral neuron 2 (C2) coupling. Within the parameter
space examined, we observed a tendency for rhythmic activity to be
spontaneous and self-sustaining. This suggests that initiation of epi-
sodic rhythmic activity may involve temporarily restructuring a non-
rhythmic network into a persistent oscillator. In particular, the time
course of neuromodulatory effects may control both activation and
termination of rhythmic bursting.

INTRODUCTION

Many intermittent rhythmic behaviors are mediated by epi-
sodic central pattern generators (CPGs), indicating that the
initiation, maintenance, and termination of rhythmic activity
represent important regulatory tasks for the nervous system
(Eisenhart et al. 2000; Fredman and Jahan-Parwar 1980; Jing
and Gillette 1995; Rosen et al. 1991). Episodic CPGs are often
controlled by extrinsic inputs (Lennard et al. 1980), such as the
mesencephalic locomotor region, which can initiate locomo-
tion in mammals (Jordan 1998; Shik et al. 1966). Most of these
CPGs have additional activation requirements, including acti-
vation of neuromodulatory elements (Nagy et al. 1994; Nus-
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baum and Kristan 1986) and/or alteration of the CPG’s cellular
and synaptic properties (Dale and Gilday 1996; Staras et al.
2003). It is still unclear, however, how multiple conditions
interact to gate the activation of rhythmic network activity.
Here we examine this issue in the episodic CPG underlying
escape swimming in the gastropod mollusk, Tritonia diom-
edea.

The Tritonia escape swim is triggered by contact with a
predatory sea star and consists of a ~1-min series of alternat-
ing dorsal/ventral body flexions (Willows and Hoyle 1967,
1969). The circuitry controlling this behavior can be studied in
isolated brain preparations in which the swim motor pattern is
triggered by electrical stimulation of a body wall nerve
(Dorsett et al. 1973). The swim CPG (Fig. 1) is composed of
three interneuron types, which have been suggested to be
sufficient for generating the swim motor pattern: there are three
dorsal swim interneurons (DSIs; http://www.neuronbank.org/
Tri0001043), one ventral swim interneuron (VSI-B; http://
www.neuronbank.org/Tri0002436), and one cerebral neuron 2
(C2; http://www.neuronbank.org/Tri0002380). Each interneu-
ron has a contralateral counterpart (Getting 1989a). Extrinsic
input from sensory pathways is conveyed by the dorsal-ramp
interneuron (DRI; http://www.neuronbank.org/Tri0002471),
which depolarizes the DSIs (Frost and Katz 1996). The DSIs
are serotonergic (Katz et al. 1994; McClellan et al. 1994) and
function not only as members of the CPG but also as intrinsic
neuromodulators, causing widespread cellular and synaptic
effects within the network (Katz and Frost 1995a,b, 1997,
Sakurai and Katz 2003; Sakurai et al. 20006).

The Tritonia swim CPG was initially thought to be con-
trolled exclusively by extrinsic inputs from sensory pathways.
Pioneering work by Getting and colleagues showed that elec-
trical stimulation of a body wall nerve produces a long-lasting
depolarization of the DSIs that decays over the course of the
swim motor program (Getting and Dekin 1985; Lennard et al.
1980). Getting termed this the “ramp” input, characterized this
input using voltage-clamp experiments (Getting and Dekin
1985), and investigated its control over the swim CPG using a
detailed computational model of the network (Getting 1983a,
1989b). These simulations indicated that the ramp input should
be sufficient to control the initiation, maintenance, and termi-
nation of rhythmic bursts of action potentials by neurons in the
CPG. Later the DRI was identified as the source of the ramp
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FIG. 1. A: the central pattern generator (CPG) core of the Tritonia escape
swim circuit. This simplified circuit architecture was used for our model of the
network. Triangles and circles represent excitatory and inhibitory synaptic
connections, respectively. Multiple-component synapses are represented with a
triangle and circle. The dorsal swim interneurons (DSIs) release serotonin
(5HT), causing widespread cellular and synaptic effects throughout the net-
work. B: representative simultaneous electrophysiological recordings made
with intracellular electrodes showing a swim motor program evoked by nerve
shock (arrow).

5s

input (Frost and Katz 1996). Consistent with Getting’s con-
ception of extrinsic control of the CPG, DRI activation is
sufficient to trigger the swim motor program, and early termi-
nation of DRI activity halts the swim motor program.

Although extrinsic input from DRI exerts strong control over
the Tritonia CPG, other evidence suggests that intrinsic neu-
romodulation from the DSIs may also play a crucial role. First,
bath application of SHT causes activation of the CPG in the
absence of nerve stimulation (McClellan et al. 1994). Second,
bath application of the SHT-receptor antagonist methysergide
blocks swim initiation in the isolated nervous system and in the
intact animal. Third, tonic activation of the DSIs themselves
can initiate and maintain rhythmic CPG activity (Fickbohm
and Katz 2000). Finally, basal excitability of the C2s is too low
to support the swim motor program but is elevated dramatically
by the neuromodulatory effects of DSI activation (Katz and
Frost 1997).

Another potential factor in CPG activation may be the
recruitment of additional circuit elements. Specifically, it has
now been recognized that C2 makes a recurrent excitatory
connection with DRI (Frost and Katz 1996), enabling it to
recruit additional excitation into the circuit during the swim
motor program. Further polysynaptic pathways within the core
CPG may also exist. Thus activation of the swim CPG may
actually be quite complex, involving extrinsic input, intrinsic
neuromodulation, and additional circuit elements.

The interplay between multiple conditions for activation
may have been obscured in Getting’s model of the network
(Getting 1983a, 1989b). The high-divalent cation solution
Getting used does not effectively eliminate polysynaptic inter-
actions (Katz and Frost 1995b). In addition, the model was
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developed prior to the recognition of intrinsic neuromodula-
tion. It was likely developed from electrophysiological mea-
surements taken after recently evoking the swim motor pro-
gram, a condition that is now known to produce strong mod-
ulation of circuit properties (Frost et al. 1998). Thus Getting’s
model may have inadvertently incorporated neuromodulatory
and polysynaptic effects and thereby underestimated their con-
tribution to activating the network.

To better understand the multiple determinants contributing
to activation of the Tritonia swim CPG, we developed a new
simulation of the network. This model was developed from
new physiological data taken from unmodulated, well-rested
preparations with monosynaptic connections characterized in a
strong high-divalent cation solution effective at blocking
polysynaptic pathways. We then explored the contribution of
three factors to CPG activation: extrinsic input, the known
effects of intrinsic modulation, and the known polysynaptic
pathway from C2 to DSI. Surprisingly, none of these factors
alone or combined were sufficient to initiate rhythmic bursting
in the model circuit. This suggests that activation of the swim
motor program is accompanied by additional circuit features
that have not yet been documented. To determine, in an
unbiased fashion, the types of changes that could enable
activation, we conducted a large-scale parameter space analy-
sis, systematically shifting the properties of the rested, un-
modulated network toward Getting’s original model of the
CPG. Our analysis suggests that initiation of the swim motor
program involves substantial reconfiguration at multiple sites
in the network, indicating distributed control over the produc-
tion of rhythmic activity via modulatory actions and/or the
recruitment of additional circuit elements.

Portions of this work have been reported in abstract form
(Calin-Jageman et al. 2006b) and as part of a book chapter
(Frost et al. 1997).

METHODS
Physiology

Specimens of T. diomedea were obtained from the coastal waters of
Washington State and British Columbia. Once in the laboratory,
animals were maintained either in running sea-water systems at Friday
Harbor Laboratories (11-13°C) or in an artificial seawater system in
Houston, TX (11°C). For each experiment, the brain, consisting of the
cerebral, pleural, and pedal ganglia, was removed from the animal and
immediately placed in a 1-ml recording chamber where it was super-
fused with normal saline at 2-3°C. The composition of the normal
saline was (in mM) 420 NaCl, 10 KCl, 10 CaCl,, 50 MgCl,, 10
HEPES, (pH 7.6), and 11 p-glucose.

To facilitate intracellular recording, the ganglionic connective tis-
sue sheath was usually removed, although occasionally recordings
were made with the sheath intact by tapping electrodes directly
through the sheath into the visually identifiable somata below. For
recordings from VSI-B, half of the brain was rotated 180° around its
central commissure, such that the dorsal surface was uppermost on
one half and the ventral surface uppermost on the contralateral side.
This was done to allow simultaneous recording from soma of VSI-B,
which is on the ventral side of the pleural ganglion (Getting 1983b),
and C2 and DSI, which are on the dorsal surface of the cerebral
ganglion (Getting et al. 1980). To allow the swim motor pattern to be
evoked, the left and/or right pedal nerve 3 (PAN3) were sucked up into
electrodes made from polyethylene tubing (Intramedic, PE-100)
drawn out to a fine tip diameter over a flame.
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After the dissection and placement of the suction electrodes, prep-
arations were warmed to 10°C and remained at this temperature for
the intracellular electrode impalements and the remainder of the
experiment. Intracellular recordings were made using single-barreled
glass microelectrodes (10-20 MQ)) filled with either 3 M KCl or 4 M
K-acetate. A single electrode was used to pass current and to record
voltage except for recordings from VSI-B, in which two independent
electrodes were used (1 current passing, 1 recording) to ensure
accurate characterization of the voltage dependence of I, (see follow-
ing text). Experimental measurements were performed in either nor-
mal saline or saline containing a high concentration of divalent cations
in which the concentrations of Ca?>* and Mg>* were increased 2.5
times relative to normal [composition (in mM): 285 NaCl, 10 KCl, 25
CaCl,, 125 MgCl,, 10 HEPES, (pH 7.6), and 11 p-glucose] to permit
the measurement of monosynaptic potentials by raising spike thresh-
olds and blocking polysynaptic contributions (Katz and Frost 1995b).
This high-divalent cation solution uses a higher concentration of
divalent cations than the one used by Getting (1983a, 1989b) and
more effectively eliminates polysynaptic pathways (Katz and Frost
1995b). All neurons were identified on the basis of soma location and
coloration, synaptic interactions, and activity pattern during the swim
motor program (Getting 1983b). All measurements were made from
neurons in rested preparations that were allowed to sit unstimulated
for =3 h after the end of the dissection, during which time sponta-
neous activity recorded in PAN3 subsided to a constant minimal level.

Data were stored on magnetic tape using a Vetter 3000 PCM
recording adapter (Vetter, Rebersburg, PA). Curve fitting was per-
formed using Sigma Plot software (Systat, San Jose, CA).

Cellular properties

To construct a representative model of each neuron class, several
exemplars of each cell type were characterized, each in a different
preparation (7 C2s, 5 DSIs, and 3 VSI-Bs). For each exemplar, the
resting potential (V,), input resistance (R;,,,,), input capacitance (C),
and steady-state action potential threshold (6,,) were measured under
current clamp. Capacitance was determined by dividing the time
constant of the input resistance charging curve by input resistance.
The tonically active DSIs were silenced by injecting them with
hyperpolarizing current to obtain 6 . Representative values were
determined by averaging across the exemplars in each neuron class.
Of the three VSI-Bs characterized, values were chosen from the single
exemplar with the deepest resting membrane potential. This was done
to ensure a good reproduction of /,, which is strongly voltage-
dependent.

Frequency-current (F-/) relationships were measured by injecting a
range of depolarizing pulses. C2 received 5-s pulses =3 nA; VSI-B
received 5-s pulses =4 nA; DSI received 5-s pulses =3 nA and
300-ms pulses from there =6 nA (for these shorter, high-amplitude
pulses, only initial firing frequency was used). The first and last
interspike intervals of each exemplar in a class were plotted against
current applied, and a two-component negative exponential curve was
fit to each data set (Fig. 2). The resulting functions were used as
“typical” initial-firing-interval and final-firing-interval curves for each
neuron class. Inverting these functions provided typical initial-fre-
quency and final-frequency curves (Fig. 3).

The VSI-B is notable for a voltage-dependent transient potassium
current termed A-current (/,) that slows the onset of VSI-B’s firing
response to injected current pulses (Getting 1983b). To characterize
this cell, additional measures of its cellular properties were collected
(Fig. 4). Specifically, we measured the relationship between current
amplitude and delay in onset of VSI-B activity, the voltage depen-
dence of I, inactivation, and the rate of de-inactivation. These
measures provided additional data to constrain our reconstruction of
VSI-B.
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FIG. 2. Characterization of the repetitive firing properties of each of the
neurons in the CPG core [DSI, cerebral neuron 2 (C2), and ventral swim
interneuron B (VSI)]. Neurons were injected with a series of constant depo-
larizing 5-s current pulses, and their firing responses were recorded. Each
neuron contributing to each data set is represented by a different symbol, and
the total number of neurons in each data set is indicated. For VSI-B, a single
exemplar with the deepest resting potential was chosen from 3 experiments.
This was done to help ensure proper modeling of 7,, which is highly
voltage-dependent. A: plots of 1st interspike interval versus current. B: plots of
last interspike interval vs. current. The curve fits from these plots, which
represent the typical response profile for each neuron type, were used as
templates for constructing the model neurons (Fig. 3).

Model cells

Neurons were simulated using a hybrid integrate-and-fire scheme
(Getting 1983a, 1989b) that allows precise reconstruction of complex
cellular and synaptic properties with a minimum of free parameters.
Complete details on this modeling scheme are contained in Lieb and
Frost (1997) and are summarized in the APPENDIX. In this scheme, each
model cell is represented as a single isopotential compartment. Al-
though this abstracts significant morphological complexity, compari-
sons of simultaneous axonal and somatic recordings indicate that it is
a reasonably accurate approach for these cell types (Getting 1983a).
Moreover, this approach provides model cells with highly accurate
current-frequency relationships, indicating accurate replication of fir-
ing properties (Lieb and Frost 1997).

In general, a three-step procedure was used to model each cell type.
First, the measured mean values of V,, R, and C were entered,
producing a model cell with passive properties matching those mea-
sured in the soma of the real cell. Second, a threshold function and a
single spike undershoot-conductance were added, introducing another
measured parameter (6,,) and five free parameters (threshold function:
6, and 6_; undershoot conductance: W, 7,,.,,, and 7.,..). The five free
parameters were adjusted to reproduce the initial-frequency curve
derived from current injections. For some cell types (e.g., DSI), the
firing rate at the highest ranges of the curve could not be fit accurately.
In these cases, a voltage-dependent shunt conductance was added,
introducing a fixed parameter (E,., = V,), and seven free parameters
(G, 7, B, Cp,. s By, Cy). The weight and activation parameters
were adjusted to achieve a final match with the initial-frequency
curve. The inactivation parameters were set to prevent inactivation
throughout the voltage range of the cell. The completion of this step
yielded a model neuron with an accurate relationship between current
and initial-frequency, but no spike-frequency adaptation. In the final
step, one to two additional slow spike undershoot conductances were
added and the three to six free parameters adjusted to match both the
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final-frequency curve and the rate of adaptation within each firing
train.

The VSI-B neuron was modeled with a more complex protocol to
ensure faithful reproduction of the effects of its voltage-dependent
transient potassium current, /,. As with the other neuron types, the
first step was to set V,, R;,..,.» C, and 6 from experimental measure-
ments. A voltage-dependent conductance was then introduced to
simulate the effects of I, on VSI-B activity. The free parameters for
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FIG. 4. Comparison of real and model VSI-B on additional protocols used
to characterize /,. Expression of I, gives VSI-B a distinctive activation
pattern, featuring a delay in activation of up to ~2 s and an accelerating spike
train. To better model the effects of 7, we characterized the delay in activation
as a function of stimulus amplitude, prior holding potential, and state of
activation. A: voltage dependence of delay. Voltage dependence of delay was
measured with a 2-step current clamp protocol. In the 1st step, a 10-s constant
current pulse was applied through 1 electrode to elicit a specific “holding
potential,” as measured by a 2nd, independent electrode (Vy;, range —75 to
—40 mV, 5-mV steps). At the end of the 10-s prepulse, the holding current was
turned off, and a 2.5-nA depolarizing test pulse was administered to evoke a
spike train, from which the delay to the onset of firing was measured. We
measured the delay in firing to the test-pulse as a function of the holding
potential of the prepulse. A representative example is shown at left (real
VSI-B). Right: a plot of delay as a function of holding potential in both the real
(line with circles) and model VSI-B (squares). The asymptote at —45 mV
indicates a complete inactivation of 7, at or above this holding potential >
—45mV. B: de-inactivation. De-inactivation was measured by holding
VSI-B to —40 mV (complete inactivation), applying a variable duration
conditioning pulse to begin de-inactivating /,, and then applying a test
pulse to evoke VSI-B activity. Representative examples are shown at left
(real VSI-B). Right: a plot of delay as a function of prepulse duration in
both the real (line with circles) and model (squares) VSI-B. It can be seen
that the model VSI-B accurately captures the distinctive firing properties
conveyed by expression of 1,

FIG. 3. Comparison of real and model cells. A: C2 neuron. Left: the
instantaneous frequency-current plot for the real (lines with circles) and model
(blue squares) C2 neuron during constant current injections of varying ampli-
tude. The top data set is the initial firing rate; the bottom data set is the final
firing rate. Right: representative example of activity in the real (top) and model
(C2) neuron during a 2-nA current injection. Instantaneous frequency across
the injection is compared at bottom. The model C2 is shown in the blue trace.
B: DSI neuron. Same as in A, but the representative physiology is to a 3-nA
current injection. Beyond 3 nA, DSI was injected with 300-ms pulses and only
the Ist instantaneous frequency was plotted. C: VSI-B neuron. Similar to A;
however, VSI-B activity accelerates during the current injection so the final-
frequency plot is above the initial-frequency plot in the graph at left. The
representative physiology trace is in response to a 2.5-nA current injection.
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this conductance (W, E..,, B,,, C,,, Tn» By, Cy. T,) were set to match
the delay properties of the VSI-B (Fig. 4). The third step was to
introduce a pair of spike undershoot conductances, each with free
parameters for W, 7., and 7., to model the repetitive firing
properties of VSI-B. Finally, to completely mimic the acceleration of
VSI-B firing observed during a sustained activation, an excitatory
autosynaptic connection was added with a reversal potential of +10
mV. W, 7., and 7., were adjusted to achieve the degree of
acceleration observed in the real cell. Incorporation of /, into the
model VSI-B altered its apparent R;, ., as the conductance is partially
activated at the VSI-B resting potential. The R;,,, originally entered
into the model was thus adjusted to produce the same “observable”

R as had been measured empirically.

input

Postsynaptic potential shape

Synaptic connections between neurons were simulated based on the
observed shape of the underlying postsynaptic potential (PSP) and the
functional strength of the connection. PSP shape was determined
experimentally by making paired intracellular recordings from pre-
and postsynaptic neurons and stimulating the presynaptic cell to fire
either a single spike for fast PSPs or a brief train of spikes for PSPs
with slow components. PSPs were recorded in high-divalent cation
solution, so as to record only monosynaptic components. For each
connection, a number of examples of recorded PSPs were inspected
and a representative example was selected as a template. The model
synapse was then developed using one to three underlying conduc-
tances, depending on the complexity of the empirical PSP shape. Each
conductance introduced one fixed parameter (E,,) and three free
parameters (W, 7,,.,, and 7). The free parameters were hand-
tuned until a close fit between the model and real PSP shapes was
achieved.

Functional connectivity

Functional strength was assessed by driving each presynaptic cell
by current injection and recording the change in the firing rate of their
postsynaptic target neurons. Several examples of connectivity were
collected in different preparations, and the median strength was
chosen for modeling. To achieve the same functional strength within
the model, the synaptic weights for the connection (W) were scaled.
All underlying conductances for a synapse were scaled by the same
value to preserve the relative amplitudes of the different synaptic
components. Thus each model synapse utilizes a realistic PSP shape,
but the synaptic weight is set to mimic the effective connection, not
the absolute EPSP amplitude. Finally, to represent the entire popula-
tion of CPG neurons contributing to the swim motor pattern, synapses
were scaled by the number of each cell type (DSIs = 6, C2 = 2,
VSI-B = 2).

Simulations

Our new model was initially constructed using MARIO, a custom
simulation package (Getting 1989b) and later ported into NEURON
(Hines and Carnevale 1997, 2001). To compare our model with
Getting’s prior model, the specifications and parameters described in
Getting 1989b were re-implemented in NEURON. The NEURON
versions of both models are available on ModelDB (Accession IDs
93325 and 93326, respectively), the on-line repository of computa-
tional models  (http://senselab.med.yale.edu/senselab/modeldb/)
(Hines et al. 2004; Peterson et al. 1996).

Parameter-space analysis

We conducted a large-scale parameter-space analysis of blends
between our model of the unmodulated core network and Getting’s
(1989b) original model of the circuit. Testing a computational model
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over a wide range of conditions has become an important part of
understanding the conditions and tolerances of different network behav-
iors (Foster et al. 1993; Goldman et al. 2001; Prinz et al. 2003a, b).

This analysis was conducted using NeuronPM (Calin-Jageman and
Katz 2006), a system for distributing NEURON simulations using a
screen-saver cluster. Clients were 20 PCs with NEURON and Neu-
ronPM installed. Each configuration was run in NEURON for 90 s of
simulated time with a 1-ms time step. A triggering input was applied
to DSI at 5 s. In each configuration, bursting activity was character-
ized in each cell type. Burst onset was defined as a group of at least
three spikes fired with an instantaneous frequency over 1 Hz. Burst
termination was defined as a pause in activity of =0.5 s (DSI) or 1 s
(C2 and VSI-B). A swim cycle was considered a sequence of bursts
with onsets ordered from DSI to C2 to VSI-B. Mean swim cycle
duration was measured as the sum of intervals from DSI burst onsets
divided by the number of cycles. These statistics were calculated
during each run of the simulation by NEURON and recorded into a
simple text file on each machine running the analysis. NeuronPM
uploaded the distributed results files to a central server, where they
were parsed and read into a Microsoft Access database (Redmond,
WA). To determine the contribution of individual parameters to model
behavior, discriminant analyses were conducted in SPSS (SPSS,
Chicago, IL). Parameter space maps were constructed using Sig-
maPlot (Systat Software).

RESULTS

Our goal was to construct an accurate representation of the
unmodulated Tritonia swim CPG and determine the factors
required to produce rhythmic bursting within the network. To
ensure an accurate representation of the unmodulated network,
all physiological measurements were taken in well-rested prep-
arations (2-3 h after the postdesheathing warm-up to physio-
logical temperature). Furthermore, a high-divalent cation solu-
tion was used during measures of synaptic waveforms to
ensure the exclusion of any unknown polysynaptic pathways
between network elements.

Realistic model of the escape swim CPG

CONSTRUCTION OF THE MODEL.  We modeled the three-cell core
(DSI, VSI-B, and C2) of the swim circuit thought to be
responsible for generating the rhythmic bursting of the swim
motor program (Fig. 1). First, the resting properties of each cell
type were characterized. A summary of these results is pre-
sented in Table 1, (Cell Parameters). Next, frequency-current
(F-I) relationships were measured (Fig. 2) and used to con-
struct model neurons that precisely reproduce the firing prop-
erties of their biological counterparts over a wide range of
injected currents (Fig. 3). This included the distinctive activa-
tion pattern in VSI-B, which exhibited a delay in activation of
=2s and an accelerating spike train during the pulse (Fig. 4).
This is presumably due to VSI-B expression of /, (Getting
1983b).

Synaptic waveforms were modeled by observing the shape
of the underlying PSP for each of the six synaptic pairs in the
network (Fig. 5). Although monosynaptic, most PSPs showed
evidence of multiple components with different time courses.
For example, the C2 to DSI connection exhibits both an initial
fast excitation and a slower inhibition (Getting 1981; Katz et
al. 1994). Despite this complexity, it was possible to develop
model synaptic parameters to precisely match the observed
PSP waveforms.
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TABLE 1. Complete parameter list
A. Cell Parameters
Neuron Rinput SE V. SE C SE O, SE 0, 0.
Cc2 233 3.49 —48.00 0.46 2.27 4.1 —34 3.7 0 65.0
DSI 38.8 7.39 —47.50 0.39 1.57 22 —50 22 200 15.0
VSI 14 —56.00 32 —38 10 10.0
B. Voltage-Dependent Shunt Conductances
Conductance G E.. B, C. Tm B, Cy, Th
VSI shunt 1 =70 30 -9 10 54 4 600
DSI shunt 0.08 —47.5 29 -1 10 —100 1.00 100,000
C. Spike Undershoot Conductances
Synapse w Erev Topen Telose
Cc2
Fast 0.12000 —80 10 30
Med 0.02800 —80 10 1,200
Slow 0.00300 —80 4,000 4,000
DSI
Fast 0.30000 —80 10 85
Slow 0.01200 —80 200 2,800
VSI
Fast 0.54000 —80 10 100
Slow 0.00460 —80 1,000 2,500
D. Synaptic Conductances
Synapse w E,. Topen Tetose
C2 to DSI
E, 0.00029 10 300 300
1, 0.00063 —80 400 4,000
1, 0.00018 —80 5,000 14,000
C2 to VSI
E, 0.00160 10 500 500
1, 0.00600 —80 1,300 2,300
1, 0.00260 —80 7,000 7,000
DSI to C2
E, 0.02400 10 10 370
E, 0.00108 10 2,200 2,200
DSI to DSI
E, 0.00058 10 850 1,100
DSI to VSI
E, 0.00720 10 300 400
I, 0.01050 —100 600 700
1, 0.00120 —100 3,000 3,000
VSI to C2
1, 0.00700 —60 300 6,500
VSI to DSI
1, 0.05000 —80 34 100
1, 0.01800 —80 200 750
VSI to VSI
E, 0.02800 10 200 500
DRI to DSI (sensory input used to activate network)
E, 0.02000 10 25 15,000

Values in A are measurements from physiological experiments = SE except for 0,, and 0. R

is input resistance, V, is resting potential, C is membrane

input

capacitance, 0 is steady-state threshold, 6. is the threshold reset, and 6. is time constant of decay back to steady-state threshold. For shunt conductances (B),

G is maximum conductance and E,

reversal potential, and 7., and 7,
in millivolts, capacitance in nanofarads, and resistance in megaohms.

Finally, the strength of each model synaptic connection was
set by characterizing the functional connectivity within the
network (Fig. 6). In all cases, it was possible to scale the model
synapses for an accurate reproduction of the real connectivity
within the network. A complete parameter list for the model is
presented in Table 1.

v 18 the reversal potential. B, C, and 6 are the half-maximal steady-state potential, activation slope, and time constant toward
steady state, respectively, for both the activation (m) and inactivation (/) terms. Finally for synaptic conductances (C and D). W is synaptic weight, E,

is the

rev

lose are the opening and closing time constants, respectively. Time constants are expressed in milliseconds, membrane potentials

COMPARISON TO THE PRIOR MODEL.  For comparison, the con-
nectivity in the Getting (1989b) model of this circuit is also
depicted in Fig. 6. Although some strong consistencies are
evident, it is clear that the Getting model diverges markedly
from our empirical measures (e.g., C2 to DSI, C2 to VSI-B,
DSI to C2). This suggests that the Getting model does not
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accurately reflect the rested state of the core network. It seems
likely, instead, that Getting (1989b) inadvertently incorporated
polysynaptic interactions and/or the effects of intrinsic modu-
lation (see DISCUSSION).

SIMULATED EXTRINSIC INPUT.  Experimentally, a swim motor
pattern can be evoked by applying an electrical stimulus (5-20
V, 10 Hz, 1 s) to a peripheral nerve. This stimulus evokes a
long-lasting “ramp” depolarization in the DSIs (Getting and
Dekin 1985; Lennard et al. 1980). The DRIs have been iden-
tified as an important source of this ramp input (Frost and Katz
1996). Getting did not directly simulate DRI (which was
unknown at the time) but instead delivered input to the model
through an excitatory synapse onto DSI. The strength and
shape of this input synapse was set to match the amplitude and
time course of the ramp depolarization observed in DSI after
nerve shock (Getting and Dekin 1985). We adopted the same
approach and modeled extrinsic input as an excitatory synapse
onto DSI (labeled DRI-DSI synapse, Fig. 1). The synaptic
parameters for this input were matched to the input used in
Getting’s (1989b) model (Fig. 7A). Nerve-shock activation was
modeled as a 10-Hz, 1-s stimulation of this input synapse.

Known contributions to circuit activation

The completed model represents a careful reconstruction of
the unmodulated state of the CPG core of the Tritonia swim
network. Moreover the output of the completed model CPG
captures the resting state of the network accurately— exhibit-
ing tonic DSI firing at ~1 Hz and no C2 or VSI-B activity (Fig.
7BI1). We next examined how known features of the circuit
contribute to the initiation of the swim motor program.

monosynaptic PSP. The presynaptic neuron was driven (top
trace) and the PSP was measured under current clamp. Model
synapses were adjusted to precisely replicate the real PSPs
recorded.

EXTRINSIC INPUT. A key trigger for the swim motor program
is the onset of a prolonged ramp input from DRI (Frost and
Katz 1996; Getting and Dekin 1985; Lennard et al. 1980). We
thus sought to determine if this input alone is sufficient to
trigger thythmic bursting in the model network. As shown in
Fig. 7B1, extrinsic input (arrow, 1 s, 10 Hz DRI-DSI activa-
tion) did not cause a swim motor program in the model. Instead
we observed brisk DSI activity, a few C2 spikes, and a net
inhibition of VSI-B.

To ensure that this failure was not due to insufficient
activation, we systematically increased both the weight (W)
and duration (7,,.) of the input synapse (DRI-DSI) by >100-
fold. Although this produced more DSI and C2 activity, no
amount of sensory input was sufficient to elicit VSI-B activity,
a necessary component of the three-part rhythm of the swim
motor program. Thus extrinsic input alone is not sufficient to
switch the resting system into a rhythmically active system.

The lack of activation could be due to measurement error
made during construction of the model. To examine this
possibility, each parameter in the circuit was varied by =15%
(a total of 268 simulations). Within this range, the model never
exhibited rhythmic bursting at rest nor in response to extrinsic
input. Thus even substantial measurement error cannot account
for the inability of extrinsic input alone to trigger the swim
motor program.

For comparison, activation of Getting’s model (Getting
1989b) of the swim CPG is illustrated in Fig. 7B2. Although
not an accurate representation of the unmodulated network,
this model responds to extrinsic input with rhythmic bursting
that is very similar to a swim motor program. Moreover, the
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Getting model is not overly sensitive to the level of extrinsic
input; it was possible to lower the weight (W) of the input
synapse (DRI-DSI) by >40% and still produce a three-cycle
swim.

INTRINSIC NEUROMODULATION. ~ The failure of extrinsic input
to initiate thythmic activity suggests the existence of additional
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FIG. 6. Comparison of functional con-
nectivity in the real network (black), our new
model (blue), and Getting’s (1989b) original
model of the network (red). For physiologi-
cal measurements, the presynaptic neuron
was driven to fire a train of spikes (top
trace), and postsynaptic activity was re-
corded. Model synapses were scaled to have
the same functional connection strength as
their biological counterpart (the same effect
of presynaptic activity on postsynaptic fir-
ing). The Getting model shows a marked
divergence from the real network at most
neuron pairs.

5s

requirements for initiating oscillation in the network. One
likely candidate is the intrinsic neuromodulation that occurs
due to initial activation of the serotonergic DSIs. The known
effects of this intrinsic modulation include an increase in C2
excitability via a decrease in spike-frequency adaptation (SFA)
(Katz and Frost 1997), an increase in C2 synaptic strength
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FIG. 7. A: extrinsic input to the model. The model was stimulated with a 1-s, 10-Hz train activating the dorsal-ramp interneuron (DRI)-DSI synapse. The top
trace shows the simulated DRI spikes; the bottom trace shows the resulting synaptic conductance onto DSI. Getting developed the parameters for this synapse,
reproducing the long-lasting depolarization of DSI elicited by nerve stimulation. We used the same extrinsic input for our new model. B: responses of network
to extrinsic input delivered to DSI (arrow). BI: response of the new data-based model of the unmodulated core CPG (blue). The new model network accurately
reflects the cellular and synaptic properties of the unmodulated core CPG network, but it fails to produce rhythmic activity. B2: the response of Getting’s model
(1989b) of the CPG (red). The Getting model produces 3-part rhythmic bursting that is similar to the swim motor program. B3: the new model modified to reflect
known modulatory actions of DSI. Specifically, C2 spike-frequency adaptation has been reduced by 1/3, all C2 synaptic components have been strengthened by
a factor of 3, and VSI-B excitatory synapses have been increased by a factor of 2. These changes are not sufficient to enable rhythmic bursting in the model.
B4: the new model modified to reflect known modulatory and poly-synaptic influences. C2 recruitment of additional excitation has been modeled by further
scaling C2’s excitatory synapses up to a factor of 10. Ramp input onto VSI-B has been modeled by adding a DRI to VSI-B synapse activated in tandem with
the DRI to DSI synapse (arrow). In addition, all the modulatory effects described in B3 have been implemented. These changes are not sufficient to enable

rhythmic bursting in the model.

(Katz et al. 1995a,b), and a dynamic regulation of VSI-B
synaptic strength (Sakurai and Katz 2003; Sakurai et al. 2007).

We next examined if incorporating these modulatory effects
into the model would be sufficient to enable rhythmic bursting.
First, C2 SFA was decreased by reducing the auto-inhibitory
conductance of the model cell until it produced three times as
many spikes to 2 nA of current, similar to observations made
by Katz and Frost (1997). This did not enable rhythmic
bursting at rest or during extrinsic input. We then added an
increase in C2 synaptic strength by scaling the weights of each
C2 synaptic component by a factor of 3, similar to previous
reports (Katz and Frost 1995a,b). Again, this did not enable the
model CPG to produce rhythmic bursting. Finally, we strength-
ened VSI-B excitatory synapses by a factor of 2, similar to the
initial heterosynaptic potentiation produced by DSI activation
(Sakurai and Katz 2003; Sakurai et al 2007). However, as no
VSI-B spikes were generated at rest or during activation, this
had no effect on the model.

In case the magnitude of these modulatory effects had been
underestimated, we further reduced C2 SFA (medium and long
auto-inhibitory conductances were completely removed),

scaled all C2 synapses by a factor of 10, and increased VSI-B
excitatory synapses by 10. Even these large modifications were
insufficient to enable rhythmic bursting. As shown in Fig. 7B3,
there was almost no impact on the model network at rest or
during extrinsic input.

POLYSYNAPTIC PATHWAYS.  The inability to initiate rhythmic
bursting within our model CPG could also indicate the
omission of interposing elements that contribute to the core
network. For example, C2 is known to provide a recurrent
excitatory connection to DRI via a polysynaptic pathway,
which further activates the DSIs (Frost and Katz 1996).
Moreover, VSI-B receives some direct excitatory input during
the swim motor program (Getting and Dekin 1985). To mimic
these polysynaptic interactions, we scaled the excitatory com-
ponents of C2’s synapses onto DSI by a factor of 10 and added
an excitatory ramp input to VSI-B (same as the DRI-DSI
input). We did this alone and in conjunction with the modula-
tory changes described in the preceding text (Fig. 7B4). In all
configurations tested, however, VSI-B remained distant from
threshold and no rhythmic bursting occurred.
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Exploration of activation conditions

Taken together, these results indicate that the known ele-
ments of the swim CPG, including the known neurons, synap-
tic connections, and intrinsic neuromodulation by DSI, are all
insufficient to account for the initiation of the swim motor
program in the Tritonia swim CPG. This suggests that the
activation of the swim motor program is accompanied by
additional circuit features that have yet to be documented.
These could include neuromodulatory changes in cellular and
synaptic properties as well as additional, but as yet unidenti-
fied, CPG elements. It could also mean that our estimates of
neuromodulatory actions, measured under static control condi-
tions, do not scale well to the dynamic bursting conditions
during the production of the swim motor pattern. To determine,
in an unbiased way, the circuit features required for rhythmic
bursting, we conducted a large-scale parameter space analysis
of our new model of the CPG. By systematically varying
parameters in the model and cataloguing its output, we could
precisely determine the range of network conditions that enable
circuit activation.

DIMENSIONS OF EXPLORATION.  To guide our parameter-space
analysis we used Getting’s original model of the circuit (Get-
ting 1989b). Specifically, we compared the functional connec-
tivity of Getting’s model to our physiological measurements
(Fig. 6). Notable differences in connectivity represent errors in
Getting’s model that could be due to measurement error,
failure to control for modulatory effects, and/or failure to
eliminate polysynaptic recruitment. However, Getting’s model
produces rhythmic bursting similar to the swim motor pro-
gram, so some of these errors could represent circuit features
important for enabling rhythmic bursting. In addition, we
planned a broad and extensive parameter-space analysis to
ensure a relatively unbiased search for conditions influencing
rhythmic bursting.

Discrepancies between Getting’s model and the physiolog-
ical data were identified by comparing functional connectivity,
which integrates differences in both synaptic and cellular
properties (see METHODS) and thus allowed us to identify a
manageable set of parameters most likely to contribute to
rhythmic bursting. We found that Getting’s model was similar
to our physiological measurements of VSI-B to DSI and DSI to
VSI-B connectivity, but very different in the other four syn-
aptic pairs (see Fig. 6). For each significant difference, we refit
our model’s synaptic parameters to replicate the functional
connectivity in Getting’s model and identified three interme-
diate settings between these two endpoints (Fig. 8A). Overall,
this procedure required changes to eight synaptic parameters
(Table 2), thereby identifying the parameters most likely to
contribute to rhythmic bursting. To determine how these
changes would interact with different levels of circuit input, we
also varied the strength of extrinsic input (DRI-DSL.LE.W) as a
ninth parameter.

Applying this new parameter set to our model resulted in a
complete change in circuit output—the model now produced
rhythmic bursting very similar to the swim motor program
(Fig. 8B). Note that this configuration produces rhythmic
bursting spontaneously unless the DSIs are hyperpolarized.
This is the same behavior exhibited in Getting’s model (Get-
ting 1989Db).
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FIG. 8. Construction of a large-scale parameter space analysis of rhythmic
bursting. To guide our parameter-space analysis, we used Getting’s original
model of the circuit (Getting 1989b). A: we compared functional connectivity
across our new model and Getting’s model. Where differences were notable,
we refit the synaptic parameters in our model to reproduce connectivity in
Getting’s model. Shown here, the synaptic changes were made in 5 even
increments to gradually shift connectivity in our model toward the Getting
model (VSI to C2 synapse is shown). For clarity, each parameter level is color
coded with blue representing connectivity in our original model and red
representing connectivity similar to the Getting model. B: across the entire
network, 8 synaptic changes were necessary to match functional connectivity
between the models. The level of extrinsic input was also varied as a 9th
parameter. Applying this new parameter set to the model enabled rhythmic
bursting similar to the swim motor program. C: we systematically varied all 9
parameters along their 5 values, simulating 1,953,125 distinct configurations.
Shown here are representative configurations based on the matrix of 9 param-
eters, each taking on 5 levels. Each row is a separate configuration, showing
the levels of each parameter. D: the output of each configuration was cata-
logued for analysis. Shown is a single configuration from the parameter-space
matrix and the resulting model output when configured in this way.

To explore the performance of our model over a large range
of parameter space, we varied each of the nine parameters over
five different levels: the value in our model, the value mim-
icking Getting’s model, and three evenly spaced intermediates
between these extremes. All 5° (1,953,125) intermediate con-
figurations were separately simulated (Fig. 8C). For each
configuration, the pattern and timing of bursting activity was
characterized and catalogued (Fig. 8D; see METHODS).

MODEL BEHAVIORS.  Rhythmic bursting was rare in the param-
eter space that we explored (Fig. 9). As in our data-based
model of the unmodulated core CPG, 78% of the intermediate
configurations exhibited a train of DSI and C2 activity with
little or no VSI-B activity (Fig. 94). The other 22% exhibited
some level of rhythmic activation (>2 bursts for =1 cell type),
but this was often restricted to only two cells (Fig. 9B). Only
4% of the configurations tested exhibited the three-part burst-
ing typical of the swim motor program (Fig. 9C; >2 bursts in
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TABLE 2.  Parameters varied, ranges, and discriminant function

loadings

Pre Post Synapse Parameter Range D Loading
DSI C2 E._, Telose X3 0.36*
DSI C2 E_, w X7.5 0.46*
C2 VSI E, W X25 0.51*
C2 VSI | w X0 0.51*
C2 DSI E, W X21 0.23*
C2 DSI E, Telose X2.5 —0.04
C2 DSI I, W X0 —0.03
VSI C2 I, w X4 0.00
DRI DSI E, W X10 —0.15

These 9 parameters were varied from their initial values in the new model
(Table 1) to the level required to mimic functional connectivity in Getting’s
model (range) in 5 even steps. D loading is the factor loading for this parameter
in a discriminant analysis examining its influence on producing swimlike
bursting. *Strong positive loading.

DSI, VSI-B, and C2). From these, we selected configurations
with a regular burst order (DSI, C2, then VSI-B) and a
physiologically plausible cycle period (511 s). These criteria
highlighted a set of 32,524 configurations (1.7% of total)
exhibiting rhythmic bursting very similar to the swim motor
program (Fig. 9D). We considered this group to represent
“swimming” configurations and all others to represent “non-
swimming” configurations.

The swimming configurations that were identified exhibited
considerable variability in several parameter values. This sug-
gested the possibility that swim-like bursting behavior could
emerge in multiple, distinct ways from the network. To test this
possibility, we used an algorithm to “walk” through the swim-
ming parameter configurations (movement of *1 parameter
level). If swimming configurations were clustered in distinct
groups, then some configurations would be isolated from
others (impossible to reach via this type of walk). We found,
however, that from any given swimming configuration, it was
possible to reach all other swimming configurations via this
simple walk algorithm. This suggests a lack of distinct sub-
groups of swimming configurations. Instead, it suggests the
presence of a single, continuous area of swimming configura-
tions in the parameter space.

DETERMINANTS OF RHYTHMIC BURSTING.  To understand the
contribution of each parameter to the production of swim-like
bursting, we conducted a discriminant analysis (Johnson and
Wichern 1992). Discriminant analysis uses a set of indepen-
dent variables to produce a function to predict the value of a
dichotomous dependent variable. In this case, we entered the
nine parameters varied to generate a function classifying each
configuration’s swim status (swim or no swim). The resulting
discriminant function correctly classified 92.9% of the non-
swimming and 99.7% of the swimming configurations. The
misclassified nonswimmers were primarily three-part bursters
that had been excluded due to irregular ordering or cycle
frequency.

The discriminant function loading (D Loading) for each
parameter is listed in Table 2. These loadings reflect the overall
correlation between the parameter and swim status. We found
that five parameters had a strong positive impact on swim
status (C2-VSIB.E.W, C2-VSIB.I.W, DSI-C2.E.W, DSI-C2.E.
Teloses ANd C2-DSLLE.W) and three had a negligible impact on
swim status (VSIB-C2.I.W, C2-DSL.I.W, and C2-DSI.7,

lose)'
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The strength of extrinsic input had a mild negative impact on
swim status (DRI-DSI.E.W). This was due to a tendency of
strong extrinsic input to drive tonic activity in the DSIs,
eliminating bursting.

To understand the functional implications of this analysis,
we first analyzed plots of the univariate effects of each param-
eter. As shown in Fig. 10, these plots show the likelihood of
swim-like bursting across all configurations as a parameter is
stepped from its initial to its final value; a nonzero slope
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FIG. 9. Venn diagram of the diversity of model behaviors. Each of the 1.9
million configurations was classified as nonbursting (<3 bursts for each
neuron), general bursting (>2 bursts for any neuron), or 3-part bursting (>2
bursts for each neuron). “Swimming” configurations were selected from 3-part
bursters with realistic burst ordering (DSI, C2, then VSI-B) and cycle period
(5-11 s). Examples of each behavioral class are shown at the bottom (A-D).
The relative frequency of each behavioral class is shown at rop.
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Intrinsic changes
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FIG. 10. Univariate effects of parameter changes on model behavior. In the parameter space analysis, 9 synaptic parameters were varied, each taking on 5
different values (59 = 1,953,125 simulations). Thus for each level of each parameter, a total of 58 (390,625) simulations was conducted. Each panel shows the
percentage of these configurations exhibiting swimming (y axis) as each parameter was varied from its initial value (x axis, expressed as multiples of initial value).
This expresses the overall effect of changes in the parameter across diverse network configurations. Positive slopes indicate selection for swimming

configurations.

indicates control over swim-like behavior. As predicted by the
discriminant analysis, the five parameters with positive load-
ings show a positive slope in these univariate plots (Fig. 10,
A-FE). Moreover, it can be seen that the top four parameters
(Fig. 10, A-D) are not only important for swimming but also

necessary; swimming never occurs when any one of these
parameters is at its initial value. These parameters govern C2 to
VSI-B connectivity and DSI to C2 connectivity. Thus these
components of the network can gate the production of the swim
motor program.
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5-dimensional space, multiple parameters are “stacked” or “embedded” along a single axis, a technique known as dimensional stacking that produces a subgraph
of the nested parameter for each level of the parameter it is nested in. Along the y axis, DSI to C2 excitatory weight and decay rate are stacked. Changes in these
parameters shift the C2 response to DSI activity from weakly excitatory to strongly excitatory (shown next to the axis). On the x axis, C2 to VSI-B excitatory
and inhibitory weight are stacked. Changes in these parameters shift the VSI-B response to C2 activity from inhibitory to excitatory (illustrated next to the axis).
Finally, C2-DSI excitatory weight increases across the 3 panels, changing the DSI response to C2 activity into a very strong excitation. Thus the figure presents

a series of parameter-stacks that capture much of the 5-dimensional space d

efined by these parameters. Swimming configurations are marked in black. The

configuration representing the new data-driven model is marked in blue (bortom left of A); the configuration representing the original Getting model is marked
in red (top right of C). Parameter values are expressed in multiples of their original value (the empirically determined value measured to develop the model).

The fifth parameter with a positive loading governs the
strength of the C2 to DSI connection (Fig. 10E), which is part
of the only recurrent excitatory loop within the network (C2
and DSI). Modification of this connection is important, but not
required, as some swimming configurations exist with this
parameter at its initial value. To determine the precise role of
this parameter in governing the swim, we constructed a param-
eter-space map (Fig. 11) using dimensional stacking (Taylor et
al. 2006). Dimensional stacking reduces a multidimensional
space for visualization by “stacking” or nesting multiple di-
mensions on the same axis, producing a series of sub-graphs
showing the nested parameter at each level of another param-
eter. In this case, we stacked the two parameters influencing
DSI to C2 excitability along the y axis. Changes in these
parameters shift the C2 response to DSI activity from weakly
excitatory to strongly excitatory (shown next to the axis). On
the x axis, C2 to VSI-B excitatory and inhibitory weight are
stacked. Changes in these parameters shift the VSI-B response
to C2 activity from inhibitory to excitatory (illustrated next to
the axis). Each black dot represents a single swimming con-
figuration, localized by its value on these four parameters.
Across panels, the strength of C2 to DSI excitability is in-
creased. Thus this figure presents a series of dimensional stacks
that highlight how swimming configurations are organized
along the five positive-loading parameters. Inspection of the
parameter-space map shows that this parameter influenced the
range of permissive DSI to C2 and C2 to VSI-B connectivity.
With the C2 to DSI connection at its initial level (Fig. 11A),
swim configurations were only found with the DSI to C2 and
C2 to VSI-B parameters at or near their maximal values. As the
C2 to DSI connection strengthened, however, swim configu-
rations could be found nearer the initial values of these param-
eters (Fig. 11, B and C). In the parameter-space map, this

appears as an expanding region of swim states in each panel,
representing strengthening of the C2 to DSI connection.

STABILITY OF SWIM CONDITIONS.  Swimming configurations
were located at the extremes of the parameter space that we
analyzed. To determine the range of conditions that support
swimming, we extended our analysis around the five parame-
ters with positive loadings, sweeping out an additional five
levels on each parameter (10° configurations). Again we found
a requirement for enhancing DSI to C2 and C2 to VSI-B
connectivity with a range-setting role for the recurrent excit-
atory connection from C2 to DSI (Fig. 12). This larger param-
eter sweep revealed, however, an extensive pool of configura-
tions that produced swim-like bursting (32%), which extended
throughout the highest range of parameter values tested. Again,
no isolated groups of swimming configurations were detected,
suggesting a single, continuous area within the parameter
space. It seems, then, that the production of swim-like bursting
can be robust to substantial changes in network properties.

EXTRINSIC INPUT.  In characterizing each configuration, extrin-
sic input was applied to trigger rhythmic bursting. However,
the activation of the network did not seem to play a strong role
in controlling rhythmic bursting. First, the strength of extrinsic
input to the circuit had a negative discriminant loading, indi-
cating that strong input could actually disrupt the swim motor
program (Fig. 10). Second we observed that 96% of swim-
ming configurations were still bursting after all extrinsic input
has decayed (60 s post stimulation, which is 3 times the time
constant of decay for the extrinsic input). This suggests that the
swim CPG can operate autonomously, sustaining rhythmic
activity without continued input. Consistent with this hypoth-
esis, we noticed that many swim configurations exhibit burst-
ing prior to the triggering input. We therefore retested each of
the swimming configurations without an input and found that
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81% exhibited spontaneous rhythmic bursting. Figure 12 pre-
sents a representative example of spontaneous bursting (D) as
well as a partial map of the extended parameter space with
spontaneously bursting configurations labeled green (A-C).

DISCUSSION

Activation of the Tritonia swim CPG is triggered by extrin-
sic excitatory input but accompanied by intrinsic neuromodu-
lation and the recruitment of additional circuit elements. Here
we explored how these dynamic changes contribute to the
initiation of rhythmic bursting in the CPG. First, we produced
a detailed reconstruction of the core CPG in its rested state.
Then we introduced into the model known levels of extrinsic
input, intrinsic neuromodulation, and excitatory recruitment.
Surprisingly, none of these factors, alone or in concert, were
sufficient to initiate rhythmic bursting in the model network.
Specifically, elements in the CPG remained too weakly cou-
pled to recruit VSI-B activity and enable rhythmic bursting.
This suggests that activation of the swim CPG involves addi-
tional features that remain to be discovered. This could include
additional excitatory input, modulatory effects, and/or CPG
elements, but it could also include some other form of circuit
reconfiguration.

Conditions for rhythmic bursting

To delineate the patterns of changes that would unlock the
swim motor program, we conducted a parameter-space analy-
sis on our new model of the unmodulated CPG core. This
analysis covered an expansive range of circuit configurations
and allowed us to precisely determine the circuit conditions
that shift the network from quiescent to rhythmically bursting.
We found that the transition to rhythmic bursting requires
substantial reconfiguration at multiple sites within the network.
Specifically, the functional connectivity from DSI to C2 and
from C2 to VSI-B must be increased. Without this modifica-
tion, VSI-B activity cannot be recruited, and the network fails
to produce the three-part rhythm that characterizes the swim
motor program.

C2->VSII Wi 75 5 25025 -5 .75 -1 129
C2->VSLE Wi 7151625 3157 5 4039
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C2->DSI.E.W = x46

FIG. 12. Partial map of the extended parame-
ter-space showing swimming configurations of the
model network. A—C: the parameter space analysis
was expanded, sweeping out an additional 5 levels
for each of the 5 parameters governing swim-like
bursting (5'° configurations). As in Fig. 7, the 5
parameters governing swim-like bursting were
collapsed onto 3 dimensions (dimensional stack-
ing). In each panel, the y axis collapses DSI-C2
excitatory weight and decay rate and the x axis
collapses C2-VSI-B excitatory and inhibitory
weight. C2-DSI excitatory weight increases across
the 3 panels. Parameter values are expressed in
multiples of their original value (the empirically
determined value measured to develop the model).
Swimming configurations are marked (squares).
Swimming configurations exhibiting spontaneous
bursting are marked in green, all others are marked
in black. D: a representative example of a swimming
configuration exhibiting spontaneous bursting.

In addition to these requirements, rhythmic bursting is fa-
cilitated by increased functional connectivity from C2 to DSI,
the only recurrent excitatory connection within the network.
The functional connection from C2 to DSI involves feedback
recruitment of DRI (Frost and Katz 1996). Increasing connec-
tivity from C2 to DSI amplifies activity within this sub-
network, providing increased activity to recruit VSI-B. This
highlights C2 to DSI functional connectivity as a potential
control point in the network, which could function to set the
threshold for eliciting the swim-motor program (Frost et al.
1998). Computational analyses have previously suggested that
the level of recurrent excitation can function as an important
determinant for rhythmic activity (Matsugu et al. 1998).

To obtain a manageable set of parameters, our analysis of
the network focused on changes in functional connectivity (see
METHODS), a technique that captures the combined influence of
both cellular and synaptic properties. Thus although we imple-
mented changes in connectivity with altered synaptic parame-
ters, altered connectivity could arise through manifold cellular
and synaptic mechanisms.

Mechanisms of activation

The conditions for rhythmic bursting in the model network
strongly suggest that extrinsic input is not a sufficient condition
for activating the known CPG core. Specifically, the ramp
input from DRI can increase DSI and C2 activity but cannot
directly increase their ability to recruit VSI-B. Moreover,
increased levels of extrinsic input were associated with a
decreased probability of rhythmic bursting, as this tended to
drive the network toward tonic firing.

Some of the conditions for activation may be met by the
recurrent excitatory DSI-C2-DRI-DSI pathway (Frost and Katz
1996; Katz and Frost 1997). The net effect of this interaction
would be to couple C2 and DSI more tightly together, which
the parameter-space analysis suggests is an important factor in
activation. However, incorporating this effect alone could not
meet all the conditions for rhythmic bursting in the network,
suggesting that additional mechanisms must be involved.
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Finally, intrinsic neuromodulation from the DSIs has been
proposed to play a role in circuit activation. Consistent with
this hypothesis, tonic firing in one DSI can initiate and main-
tain rhythmic bursting activity in the remaining CPG neurons
(Fickbohm and Katz 2000). Moreover, DSI activation en-
hances C2 excitability (Katz and Frost 1997) and produces an
early enhancement of VSI-B synapses (Sakurai and Katz 2003;
Sakurai et al. 2006), both of which would serve to meet the
requirement for enhanced C2 to VSI-B coupling. However,
DSI activation also enhances C2 synaptic efficacy, equally
increasing both inhibitory and excitatory components (Katz et
al. 1995b). As an inhibitory component dominates the C2 to
VSI-B synapse, this effect is likely to decouple C2 and VSI-B
activity. Moreover, incorporating known modulatory effects
into the model did not enable rhythmic bursting.

Taken together, it seems that known levels of extrinsic input,
polysynaptic interaction, and intrinsic modulation are all insuf-
ficient to account for activation of the swim motor program. In
particular, none of these effects were sufficient to enable
VSI-B recruitment in the model. This and our parameter-space
analysis provide a strong indication that activation also re-
quires factors contributing to VSI-B excitation that remain to
be discovered. In the Getting model, VSI-B recruitment occurs
because of a strong excitatory monosynaptic connection from
C2 to VSI-B. In a strong high-divalent cation solution, how-
ever, we observed that this synapse is primarily inhibitory.
Thus VSI-B recruitment is likely to occur through an additional
circuit element, a modulatory effect that increases VSI-B
excitability or excitatory input, or a combination of mecha-
nisms. One possible source of VSI-B excitation is the “ramp”
input that occurs during circuit activation (Getting and Dekin
1985). However, adding a slowly decaying ramp input to
VSI-B was still insufficient to produce rhythmic bursting in the
model. We plan on investigating modulatory effects that could
enhance the recruitment of VSI-B activity. In addition, optical
recordings may prove useful for searching for the existence of
additional circuit elements (Briggman and Kristan 2006; Frost
et al. 2007; Morton et al. 1991). As modulatory effects and
additional circuit elements are delineated, they can be incor-
porated into the model circuit to determine if a sufficient set of
reconfiguration mechanisms has been identified.

It should be noted that although these results imply that
some aspects of the CPG remain to be identified; this does not
diminish the role of the known elements. The known core
elements are required for the production of the swim motor
program (Getting 1983b; Getting and Dekin 1985; Katz et al.
2004), and transient changes in their activity can shift the phase
of the swim motor program (Getting 1983b; Getting et al.
1980). Thus it seems that these circuit components will be
supplemented, not replaced.

Maintenance and termination of rhythmic bursting

A number of interesting features emerged from the set of
rhythmically bursting configurations identified in our extended
parameter-space analysis. First, these configurations extended
over a large range of network connectivity, spanning order of
magnitude changes in several parameters yet producing rhyth-
mic bursting with proper burst ordering and a physiologically
plausible cycle frequency. Second, the vast majority of burst-
ing configurations continued oscillating after the decay of
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extrinsic input. Finally, most of these configurations produced
rhythmic bursting spontaneously, in the absence of any input.
Thus once configured into a rhythmically bursting state, the
model circuit seems to function much like a continuous oscil-
lator: resiliently, continuously, and autonomously. This is con-
sistent with prior observations that the swim-motor program
can tolerate large disturbances in the membrane potentials of
the neurons in the CPG (Katz et al. 2004).

Dual control of CPG activity

Many episodic CPGs are sensory-gated, switching on in
response to fast excitatory inputs from sensory pathways (Jing
and Gillete 1995; Rosen et al. 1991; Shaw and Kristan 1997).
Other episodic CPGs exhibit intrinsic control mechanisms,
requiring changes in network properties to enable rhythmic
activity (Dale and Gilday 1996; Staras et al. 2003). Our results
suggest that activation of the Tritonia swim CPG involves both
types of control mechanisms: sensory input as well as a
dynamic reconfiguration of network properties. This is similar
to activation of the leech swim CPG (Nusbaum and Kristan
1986), which requires extrinsic input from sensory pathways to
activate a pair of serotonergic interneurons. Thus the dual
requirement of both extrinsic input and intrinsic reconfigura-
tion may represent a common motif in the regulation of CPG
activation.

The cooperation of multiple control mechanisms may be
important for filtering noisy inputs, thereby providing a rela-
tively high threshold for activating the CPG. In particular, the
requirement for intrinsic reconfiguration allows the active and
inactive states of the network to be extremely different. This
might allow network elements to serve different functions
during periods of inactivity. Consistent with this interpretation,
elements of the CPG also function in the control of Trifonia’s
nonrhythmic crawling behavior (Popescu and Frost 2002).

Working model of the Tritonia swim CPG

We have extensively characterized the cellular and synaptic
properties of the unmodulated CPG core. Our study suggests
that the Getting model (Getting 1983a, 1989b) does not accu-
rately reflect the unmodulated state of this network. Neverthe-
less, the Getting model exhibits rhythmic bursting that is
similar to the swim-motor program. The most likely explana-
tion is that Getting inadvertently incorporated polysynaptic and
modulatory effects into the model, thus capturing the network
in a bursting state. However, we do not currently have a
complete characterization of the modulated circuit, so it is not
yet possible to conclusively determine the fidelity of the
Getting model. For our analysis, we used the Getting model as
a reference point in our parameter-space analysis. Thus even if
it reflects a nonphysiological configuration, it has still been a
useful sign-post toward understanding the conditions that could
enable the swim-motor program.

Another notable aspect of Getting’s model is that it produces
spontaneous bursting unless the DSIs are hyperpolarized (Get-
ting 1989b). This and the discovery that the DSIs recruit
inhibitory input back onto one another (Getting and Dekin
1985) lead to the hypothesis that swim initiation is due in part
to C2 activity alleviating this inhibition (Getting 1989b; Get-
ting and Dekin 1985). From our analysis, it seems that tonic
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inhibition of the DSIs is not necessary to prevent the swim
motor program and that initiation thus involves more complex
circuit interactions.

Future work on the Tritonia swim CPG simulation will need
to include dynamic neuromodulation from the nonmodulated
state. It is becoming apparent that static models of neuronal
properties may accurately reflect the function of a system in
one state, but they do not adequately describe transitions from
one state to another such as from resting to rhythmically active.

APPENDIX

Each neuron was modeled as a single iso-potential compart-
ment, with membrane potential (V) varying as

d 1
7‘; = - E (Ileak + Elsyn + Elundcrshool + Elshunl - Elalim)

Where C is the neuron’s measured membrane capacitance, 7 is
time, and the total membrane current is the sum of various leak,
synaptic, undershoot, coupling, shunt, and stimulation currents
(see following text).

Threshold

Spike threshold was calculated as a function of time from the
last spike, ¢,

6(1) = 0, + (6= 0, )¢ "™

Where 0, is the neuron’s steady-state threshold (a measured
parameter), 6, is the threshold reset, and 6. represents the time
constant of decay back to steady state. Every upward crossing
of membrane potential past threshold was registered as a spike.

Leak current
Leakage current was calculated as

V-V
R

Ileak =
input

Where V, is the neuron’s measured resting potential and R
is the neuron’s measured input resistance.

input

Chemical synaptic current

Chemical synapses were modeled as an increased conduc-
tance, first-order kinetic process

d

= (spike*1) G
a P Toen

dGO _ Gacl G()

dt Topen

Telose
Lyn=W-Gy* (V=Eg) A

Where G, is the activated but closed conductance state, spike
is a switch that equals 1 at the time of a presynaptic spike but
0 otherwise, G, is the open conductance state, 7,,,, and 7,
are the opening and closing time constants, W is synaptic
weight, E,, is the reversal potential for synaptic conductance,
and A is an empirically derived normalization term, calculated

as
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Action potential undershoot currents

Action potential undershoots were simulated as auto-syn-
apses with E,., = —80 mV.

Voltage-dependent shunt currents
Shunt conductances were calculated as
Lo = G-m-h-(V—E)

where m and h represent activation and inactivation variables
for the conductance, respectively. m was calculated as

dm _ (m.—m)
dt Tm

1

Mo =1 gVn + Bl

where m,, is the calculated steady-state activation, T,, is time
constant of activation, B, and C,, are constants representing
the half-maximal steady-state potential, and activation slope,
respectively. h was calculated using the same formulas, but
with A, 7, , By, and C,,
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