Neural Networks 21 (2008) 1146-1152

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2008 Special Issue
The Emergent neural modeling system™**
Brad Aisa*, Brian Mingus, Randy O'Reilly

Computational Cognitive Neuroscience Lab, Department of Psychology, University of Colorado at Boulder, United States

ARTICLE INFO ABSTRACT
Article history: Emergent (http://grey.colorado.edu/emergent) is a powerful tool for the simulation of biologically
Received 1 November 2007 plausible, complex neural systems that was released in August 2007. Inheriting decades of research

Received in revised form
10 June 2008
Accepted 17 June 2008

and experience in network algorithms and modeling principles from its predecessors, PDP++ and
PDP, Emergent has been redesigned as an efficient workspace for academic research and an engaging,
easy-to-navigate environment for students. The system provides a modern and intuitive interface for
programming and visualization centered around hierarchical, tree-based navigation and drag-and-

K ds: A . e . . .

N?;v:;lrnzztworks drop reorganization. Emergent contains familiar, high-level simulation constructs such as Layers and
Robotics Projections, a wide variety of algorithms, general-purpose data handling and analysis facilities and an
Simulator integrated virtual environment for developing closed-loop cognitive agents. For students, the traditional

role of a textbook has been enhanced by wikis embedded in every project that serve to explain, document,
and help newcomers engage the interface and step through models using familiar hyperlinks. For
advanced users, the software is easily extensible in all respects via runtime plugins, has a powerful
shell with an integrated debugger, and a scripting language that is fully symmetric with the interface.
Emergent strikes a balance between detailed, computationally expensive spiking neuron models and
abstract, Bayesian or symbolic systems. This middle level of detail allows for the rapid development and
successful execution of complex cognitive models while maintaining biological plausibility.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction to not only be easily installed on them, but also to adopt their
native look and feel. With this in mind, we completely redesigned
Emergent (http://grey.colorado.edu/emergent) is a powerful the user interface, employing a now-familiar tree-based browser
tool for the simulation of biologically plausible, complex neural ~ approach (with tabbed edit/view panels) for project exploration
systems that was released in August 2007. The immediate and interaction (Fig. 1). We also radically redesigned or even
predecessor to Emergent is PDP++ v3.2, a tool used by a variety replaced several core constructs from the Pprevious product, such
of researchers for neural modeling and teaching. PDP++ was s Environments and Processes, replacing them with the more
itself an extension of the PDP software released by McClelland ~ 8eneral-purpose DataTable and Program constructs that will be
and Rumelhart in 1986 with their groundbreaking book, Parallel ~ discussed later. i i
Distributed Processing (McClelland & Rumelhart, 1986). Emergent More 1mp0.rtant than technical or interface changes, we glso
represents a near complete rewrite of PDP++, replacing an aging ~ ¢Xtended the intended scope of the tool. Whereas the previous
and largely unsupported graphical user interface (GUI) framework VErsions were prlmarilly 1ntep ded for relatively small resea.rch and
called Interviews with a well supported, more modern one called teac“‘!’g .mode.ls, typically a.lmed. at demonstratmg some isolated
Qt (http://trolitech.com/products/qt). A major benefit of Qt is its or delimited piece of functionality, the new version is intended

: L . . to support very large-scale simulations of entire integrated brain-
seamless integration into all major platforms, allowing Emergent
like systems. And whereas the previous versions were primarily

designed for closed simulations using simple fixed data patterns
as input and output, Emergent has been designed to accommodate

* supported by grants: NIH RO1 MH069597, ONR N00014-07-1-0651, external “closed-loop” sensory and motor connections both by
DARPA/ONR N00014-05-1-0880, ONR N00014-03-1-0428 (O'Reilly); NIH IBSC plugins and with a built-in simulation environment that includes
1 P50 MH 64445 (McClelland). a rigid-body physics simulation for creating virtual robot-like
** Thanks go to Dave Jilk for being the intrepid early adopter; Jay McClelland of agents.

Carnegie Mglon Univer.sity and Jona?han Cohen of Princeton University for their This article will give a general overview of Emergent’s features
Enanaal assistance dunqg Emergen_ts developmgnt; and_all members of the CCN and capabilities, ending with a comparison with other neural
ab at CU Boulder for their valuable input and patient testing of the software. . . it

* Corresponding author. Tel.: +1720 233 0225; fax: +1 303 492 2967. petwork supulators and a discussion of the features we plan to

E-mail address: Brad.Aisa@colorado.edu (B. Aisa). implement in the near future.

0893-6080/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.06.016

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://grey.colorado.edu/emergent
http://grey.colorado.edu/emergent
http://grey.colorado.edu/emergent
http://grey.colorado.edu/emergent
http://grey.colorado.edu/emergent
http://grey.colorado.edu/emergent
http://trolltech.com/products/qt
http://trolltech.com/products/qt
http://trolltech.com/products/qt
http://trolltech.com/products/qt
http://trolltech.com/products/qt
mailto:Brad.Aisa@colorado.edu
doi:10.1016/j.neunet.2008.06.016
doi:10.1016/j.neunet.2008.06.016
doi:10.1016/j.neunet.2008.06.016
doi:10.1016/j.neunet.2008.06.016
doi:10.1016/j.neunet.2008.06.016
doi:10.1016/j.neunet.2008.06.016
doi:10.1016/j.neunet.2008.06.016
doi:10.1016/j.neunet.2008.06.016

B. Aisa et al. / Neural Networks 21 (2008) 1146-1152 1147

(L2 -projectsiol viewers(Ol{Project | Lutorial final.proj e
File Edit View Show Tools Window Help
¢~ |3 SaveProject As Close Project & 2= . [Help
Tools &5 Project_0 “ll¢ docs |2 ProjectDocs | # LeabraWizard 0 | Network 0 N...0 | TrialOutp...t_Cluster | TrialOutpu..._ PCA2dPrjn | S...a
L . Object SelectEdit .
: @ wizards {_j
for q edits Doc | Doc Source || Properties [
dats a
de » cn Chapters =
. @ data_proc =
while +
| programs Here are the steps we'll go through, organized as separate document =
if AX kGen chapters (which live under the does section of the browser, as does this 3
if.else | LeabraAll_St document):
if.cont 1. BuildNet -- building the network
- - 2. InputData -- make basic input patterns (data) to present to the
if.break 50y obijs S APIEEE PEE 5 P ¢
network
if.return > % types 3. Programs -- creating and controlling the programs that perform the
if gui prmt W args simulation
switch * Vs 4. OutputData -- monitoring and analyzing the performance of the
Bl @ functions model
block W init_code 5. TaskProgram -- writing a program to construct the task input
seript “Q prog_code patterns, including more complex tasks.
: ' 6. Extras: elaborations that go all the way to the full CPT-AX task
1. CPTAX_Program -- extend our basic program to the full CPT-
C AX task
VarFun . 2.PfcBg -- ‘.\d-ding a prefrontal cortex/basal ganglia to the model to
Monit handle the full CPT-AX task.
Print/Args.. 2 HHomeor_0 Vokia: ot
ochM
- If You Get Off Track..
Misc Fun 2 eights
Data 7@ viewers In the same directory where you loaded this project is a
| networks ax tutorial final.projproject file, which has the full project
Data Proc Network that will result from following these directions (not the extras). You can
Network Q =1 load this project and refer to it to see what things are supposed to look 2 Rotx Roty Dolly

Fig. 1. The Emergent Project Browser. The main workspace in Emergent showing, from left: (a) the Toolbox with widgets for Programming and similar tasks; (b) the main
Browser, a hierarchical tree of all objects in the project; (c) the Panel area, for editing and viewing the details of objects, in this case displaying a Doc; and (d) the 3D viewer,

for viewing simulation objects in true 3D.
2. Emergent

2.1. Supported algorithms

Out of the box, Emergent supports classic back-propagation
(BP) (Rumelhart, Hinton, & Williams, 1986), and recurrent back-
propagation in several variants (Almeida, 1987; Pineda, 1987;
Williams & Zipser, 1989); Constraint-satisfaction (CS) including the
Boltzmann Machine (Ackley et al., 1985), Interactive Activation
and Competition, and other related algorithms; Self-organized
learning (SO) including Hebbian Competitive learning and variants
(Rumelhart & Zipser, 1986) and Kohonen'’s Self-Organizing Maps
and variants (Kohonen, 1984); and Leabra (an acronym for “local
error-driven and biologically realistic algorithm”) which includes
key features from each of the above algorithms in one coherent
framework (O'Reilly & Munakata, 2000).

The previous version of the software (PDP++ v3.2) also served
as the basis for some other neural algorithms or extensions, in-
cluding the Real-time Neural Simulator RNS++ (http://ccsrvl.
psych.indiana.edu/rns++/) (Josh Brown); Long Short Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997); and the oscillating in-
hibition learning mechanism (Norman et al., 2006). The enhanced
user-friendliness of the software and our new plugin technology
make these kinds of extensions very easy to implement, hopefully
encouraging more researchers to consider Emergent as the archi-
tectural base of their research algorithms. Unlike the tools such as
MATLAB, Emergent is completely free and open-source; in addi-
tion, its network algorithms run at compiled C++ speed, rather
than in an interpreter.

2.2. General features

Emergent opens to present a familiar tree-based browser (on
the left) plus detail panel (on the right.) The user can select any

object in the left-hand tree to see its detailed properties on the
right, and open container nodes to reveal the sub-contents. Many
objects have several detail sub-panels that present the object and
its content in different views, depending on the purpose of the user.
For example, the table object provides a panel with the properties
of the table itself, one that lists the columns, and one that enables
the user to browse or edit data. The user can open up any number
of new browsers rooted at any point in an existing browser.

Clipboard and drag-and-drop manipulation of objects are sup-
ported wherever it makes sense. Many “action-like” operations,
such as assigning an object to a program variable element, can be
done via drag-and-drop.

When the user opens or creates a project, an additional viewer
pane appears in the browser; this viewer supports one or more
frames which display a true 3D rendering of one or more objects
in the system, such as networks, graphs and virtual environments.

2.3. Networks

The basic unit of modeling in Emergent is the Unit, which is
a neuron-like object that represents a small population of like-
coding spiking neurons, such as might be observed in a cortical
column. Its output is typically a time continuous value ranging
from 0 to 1, which represent the extremes of “no firing in the
population” to “maximal firing” in the population. Maximal firing
is a product of the number of individual neurons times the rate
of firing per each neuron. For more detailed neural models it is
also possible to run the units in discrete spiking mode. These Units
perform separate integrations of excitatory, inhibitory, and leak
inputs to accommodate shunting inhibition effects, replicating the
classic equivalent circuit dynamics of real neurons. The output
is typically based on a thresholded, parameterized, bounded and

http://ccsrv1.psych.indiana.edu/rns++/
http://ccsrv1.psych.indiana.edu/rns++/
http://ccsrv1.psych.indiana.edu/rns++/
http://ccsrv1.psych.indiana.edu/rns++/
http://ccsrv1.psych.indiana.edu/rns++/
http://ccsrv1.psych.indiana.edu/rns++/

1148 B. Aisa et al. / Neural Networks 21 (2008) 1146-1152

Fig. 2. Emergent Layers, showing Projections and Units.

sigmoidal-like curve. Other transfer function options are provided,
and custom functions are possible.

Units are not instantiated or manipulated individually, but are
managed in a group called a Layer. A Layer in Emergent is a
two-dimensional “sheet” of Units, all of which share unit-level
parameters (via a UnitSpec), inhibitory dynamics and patterns of
connectivity to other Layers. A Layer can further be divided into
a sub-grid of UnitGroups, which enables two levels of inhibitory
dynamics, and more sophisticated granularity of connectivity with
other Layers. Each Layer has a LayerSpec with parameters to
control things like inhibitory dynamics, and how input data (if any)
is mixed with the existing activation.

Emergent has two distinct constructs for representing connec-
tivity between Units: the Projection and the Connection. A
Projection specifies a logical, unidirectional connection between
two layers; a Connection is the actual physical connection between
a Unit and its targets, and is analogous to a neural synapse. A Pro-
jection specifies the pattern of connectivity between the layers,
such as “all to all” or “tessellated”, as well as a ConnectionSpec
that
controls the parameters of the underlying connections that are
generated. The ConnectionSpec has parameters that control the
physical connections including the weighting of the connection
relative to other connections, the weight limits (if any), the local
learning rates (Hebbian and error-driven terms) and other miscel-
laneous parameters. Fig. 2 is an example network showing Layers
and Projections.

A set of Layers is aggregated into an overall structure called
a Network. There is typically one Network in use during any
simulation run, although a Project can contain any number
Networks. This can be helpful when testing different approaches
as you can share all the other elements, such as control Programs,
data input and output and monitoring Programs, to name a few.

2.4. Specs

Specs in Emergent are like styles in a word processing
program—collections of parameters that can be applied to
instances of a specific type, to control or modify their behavior.
Specs help the modeler to keep parameters consistent across many
instances of a same-type object, such as a Layer of a certain
purpose. Sub-specs can be created that automatically inherit their
values from a parent Spec, but in which selected parameters can be
explicitly overridden. This helps to keep related but distinct Specs
coordinated, except for the specific parameter values on which
they differ. Specs can be nested to any practical level.

Emergent provides a convenient facility to easily determine
which network constructs are associated with each spec. The user
can click the Spec in the network control panel, and the items using
that Spec are immediately highlighted in the network display.
Specs also help to make a model easier to understand. Once an
observer has first examined the overall network structure, the next
step to understanding the model would be to click on the Specs,
which will highlight the objects using them in the 3D viewer.

2.5. Algorithm infrastructure mechanisms

The base classes described above (Connection, Unit, Layer, etc)
provide support for a range of common neural network processing
mechanisms, such as computing the net input as a function of
sending activations times weights. Specific algorithms then add
their unique learning and processing mechanisms (e.g., Hebbian
learning, inhibitory competition, discrete spiking). Furthermore,
all of the implemented algorithms provided with the simulator
provide a range of different algorithm variants that can be
mixed-and-matched to create novel network architectures. These
variations include different learning rules, activation functions,
inhibitory mechanisms, etc. These variations are implemented
either with a user-selectable switch within a common Spec class,
or by a new subclass Spec type that directly implements the new
functionality, which the user then selects by applying that spec to
the appropriate network elements.

Although all the algorithms are derived from common base
classes, each has incompatible optimizations and specializations
relative to the others, such that they cannot be mixed in
the same network. Thus, it is not possible to directly mix a
self-organizing map layer with a backpropagation layer in the
same network: supporting such heterogeneous collections would
require N2 kinds of conditional mechanisms and is not efficient
and often would lead to nonsensical results. However, it is very
straightforward to arrange for the communication of activations
or other values between multiple networks of different types,
effectively creating hybrid overall architectures. As a perhaps more
satisfying alternative, many users leverage the unified framework
for many of these different mechanisms provided by the Leabra
algorithm, where such architectures can be created by differential
parameterization of different layers.

Critically, all of the infrastructure for visualization and data
analysis can be automatically applied to any new objects defined
in the system, thanks to a powerful type-access system that scans
header files and makes the software “self-aware” of very detailed
type information for every object defined in the source code
(including plugins).

2.6. Network input/output and data monitoring

Most network input and output in an Emergent simulation is
facilitated by one or more DataTable (“table”) objects. A table
is similar to a spreadsheet table or database table: it is a set
of one or more columns, each of which can contain data of a
single type. The table then holds zero or more rows of data. In
Emergent, a table cell can hold a matrix in addition to a scalar value.
For network input and output data, a matrix column is typically
created corresponding to the dimensions of a target or source layer
in the network.

Emergent was designed with external connectivity in mind.
External sources of input such as video and audio can be

B. Aisa et al. / Neural Networks 21 (2008) 1146-1152 1149

Q prog code
ResetDataRows of: input_data
for (input_unit = 0; input_unit <= [_Z; input_unit++)
@ loop code
if (input_unit == [_A Il input_unit == [_X)
Qtrue code
9 false code
nit=(
AddNewDataRow to: input_data
Set Units Vars: input_unit output_unit
DoneWritingDataRow to: input_data
if(input_unit == [_Z) break

Fig. 3. Example program from Emergent’'s AX Tutorial, which walks the user
through an implementation of the CPT-AX task used in working memory studies.
All elements and groups of elements support copy, paste, drag-and-drop, and lines
are color coded according to type.

preprocessed and the raw network input pattern then written to
a table. Likewise, network output is first written to a data table,
and can then be output to effectors such as simulated muscles, or
even a real robot.

The table is the basic construct for network monitoring.
Network object parameters, particularly Unit activation values, can
be logged to a table during the simulation. The user can log to many
tables at multiple levels of time, such as Epoch, Trial, or even Cycle
(a single update of all network activations.)

2.7. Simulation control (programs)

Emergent provides a sophisticated but user-friendly general-
purpose program environment that is used for sequencing
simulations and doing general-purpose data processing tasks. A
Program is a GUI-based tree of programming widgets called
ProgEls that enables even a novice user to construct a variety
of control sequences such as loops and conditional tests. The
application comes with a pre-built library of programs that
perform common simulation sequencing functions such as Batch,
Epoch and Trial. The Network Wizard will automatically load and
connect these to a network.

Programs, an example of which is displayed in Fig. 3, are a
simple way of generating C-Super Script (CSS), the native scripting
language of Emergent. CSS is best thought of as interpreted
C++ and provides full access to the internal objects of Emergent
as well as the ability to declare new classes. The resulting script can
be examined in a text window. Advanced users can put CSS code in
a program script element, but this is usually not necessary because
visual programming in Emergent is faster than writing code by
hand. CSS scripts are compiled into an efficient object-oriented
byte code, which is then run at execution time. The generated
network algorithms and data processing primitives are coded in
highly optimized C++, scripting being used primarily to control
and sequence these optimized workhorse operations.

2.8. Visualizations

Networks, graphs, tabular logs, and physical simulation objects
can all be presented in an OpenGL-based 3D visualization
environment. The user can create any number of Frames, each
of which can contain a 3D visualization of one or more of the
objects listed. GUI updates can be explicitly disabled to speed up
simulations, and are always implicitly suppressed for non-visible
panels.

A network display depicts the Unit activation values by default,
but the user can select any parameter of Units, Connections, or
Projections to monitor.

2.9. Data analysis and graphing

Emergent provides several facilities to help with data analy-
sis. A collection of GUI-accessible objects provide common data
processing operations, including: database-style operations (se-
lect, sort, join, group, sums, etc.); data analysis (distance, smooth-
ing, dimension reduction such as clustering, PCA, SVD, etc.); data
generation (random patterns, line patterns, noise, etc.); and image
processing (rotation, translation, scaling, Gaussian and difference-
of-Gaussian filtering, etc.). All of these operations are also available
to Programs.

As would be expected, data can be readily imported or exported
for use with other systems. It is also easy to copy and paste data
to and from the clipboard, to exchange data with other programs
such as Excel. Additionally, a full range of data graphing operations
are available, to present 2D or 3D graphs, to display data from any
table. Specialized graph types such as cluster trees are supported.

A 3D GridView displays some or all of the columns in a table.
It is especially useful for displaying input and output patterns,
including photos, and for aggregate Epoch, Train or Trial-level
statistics, such as error values.

The GNU Scientific Library (GSL) hasbeenincorporated
into Emergent, making many of its routines and data structures
available. Matrix objects, the underlying basis for tables columns,
are compatible with GSL routines.

2.10. Virtual environment

Neural network researchers are increasingly testing their
simulations of brain processes by embodying them in simulated
physical agents that can act in a physically simulated world
containing other objects or even other such agents. Emergent
includes a powerful built-in simulator along with associated
modeling constructs to enable building robot-like agents and
connecting them to neural simulations. The simulator is based on
two widely used technologies: the Open Dynamics Engine
(ODE) (http://www.ode.org/) for physical modeling and OpenGL
and Coin3D (http://www.coin3d.org/) for visualization.

The simulator provides access to all of ODE, including constructs
for modeling bodies, including objects such as cylinders, boxes
and spheres. Limbs and bodies are connected with Joints that
have parameters controlling things like angular stops, degrees
of freedom and stiffness. Forces can be applied to joints which
results in torques dependent on the bodies they are connected
to. Textures can be applied to objects and backgrounds to add
visual realism, particularly for vision-based simulations. Objects
obey the laws of physics, and phenomena such as momentum,
elastic collisions, friction, and gravity are all modeled. Cameras are
provided to enable endowing an agent with vision, the result of
which can be readily interfaced with network model. 3D placement
of sound sources is supported using the Simage library (for real-
time playback) or the included audioproc plugin for localized
sound.

Emergent ships with a simple example model demonstrating
how to model a reaching task using an agent with a torso, head,
shoulders, and arm, as pictured in Fig. 4.

2.11. Documentation, annotation, and search

Neural models can become quite complex, involving factors
ranging from the overall purpose of the experiment, to its
architecture, to the parameters being chosen for the elements, to
the many experiments that may be conducted upon it, to scientific
references and so on. Documenting all these elements can be a
challenge. Emergent provides support for this in several areas.

http://www.ode.org/
http://www.ode.org/
http://www.ode.org/
http://www.ode.org/
http://www.coin3d.org/
http://www.coin3d.org/
http://www.coin3d.org/
http://www.coin3d.org/

1150 B. Aisa et al. / Neural Networks 21 (2008) 1146-1152

Fig. 4. A simulated agent in the Emergent virtual environment. The top left layers represent the elbow and shoulder forces, as read from ODE at the start of the reach. The
middle top layers are the forces that the model produces, and are decoded to apply that force to his elbow and shoulder joints. The inner Gaussian blobs represent the goal
location and his hand position at the start of the reach, and the outer blob represents his guess as to where the forces he produces will ultimately land the hand. All of this is
orchestrated by the hidden layer, which is in the middle row. Notably, this model does not use error-driven learning, instead using the Primary Value Learned Value (PVLV)
reinforcement learning system (O’Reilly et al., 2007), the lower cluster of seven layers, which is based on the detailed anatomy of midbrain dopaminergic neurons. PVLV is

available as a Network Wizard for all models to use.

First, most user items include a desc field that lets the user include
a textual description of the item.

Emergent also provides Docs, which are wiki-like pages inside
the project. In addition to formatted textual material, Docs can also
include hyperlinks (URLs) to external web sources, and “internal
URLs” that can link to another doc, or even invoke a procedure on
some model object. This latter capability is helpful for developing
tutorials or teaching simulations. A Doc can be also be linked to
a specific object, in which case the doc appears in that object’s
property sheet.

Annotation is the ability to add additional fields of information
to objects within Emergent. This capability, which comprises a set
of name/value pairs, is supported by User Data. Most objects
in Emergent can have User Data added to them. User Data is
also used internally by Emergent for such things as providing
format information in table columns and graphs. User Data can be
set and retrieved programmatically, adding a powerful metadata
facility that can be utilized by advanced models and their control
programs.

Emergent includes a text-based search engine, available in the
context menu of all tree browsers, that can find objects or docs
based on their content, type, method names, etc.

2.12. Select edits

Simulations can often contain many hundreds of disparately
located parameters, only a few of which may be intended for
modification or exploration. Emergent provides a construct called
a SelectEdit, which enables parameters and control buttons
from anywhere in the simulation (particularly Spec objects) to be
displayed and changed in one convenient panel. A combination of
Edits and Docs are especially useful for creating tutorial or teaching
simulations, with self-contained documentation and a constrained
display of key parameters.

2.13. Projects

All of the previously described objects live in a top-level object
called a Project. A Project contains the Networks, Programs,
Tables, Docs, Edits, and Views of a complete simulation. Projects
are stored in a textual form that makes them well suited to
management under a version control system. We have found
the open-source revision control system Subversion (http://
subversion.tigris.org/) to be highly convenient for this purpose.

2.14. Batch mode

Using the application in GUI mode is convenient when teaching,
developing, or debugging models. But modeling often involves
long sessions of model training, which can be better handled by
a batch scheduling program. So Emergent can be run in -nogui
batch mode, with a variety of command-line parameters provided
to control which model gets loaded, as well as providing model-
specific parameters.

2.15. Distributed memory cluster support and parallel threading

Emergent has support for Linux/Unix distributed memory
clusters using the industry standard MPI protocol (e.g., MPICH,
OpenMPI). The most efficient parallel speedups are obtained using
a parallel training mode, whereby several parallel instances of
the model run at the same time (one per node), but get different
training patterns applied to them; the weight change differentials
are then combined and applied to all the instances. This is very
efficient because there is a lot of parallel computation for each
communication event — the large size of this communication is
insignificant relative to the overall costs of coordinating the timing
of the different processors during the communication. For this
reason, a more fine-grained parallelism at the level of individual
units distributed across different processors has not proven very
efficient — the communication events are too frequent relative to

http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/

B. Aisa et al. / Neural Networks 21 (2008) 1146-1152 1151

the amount of computation per event. As the networks get larger,
this level of parallelism becomes more effective.

We also have preliminary support for parallel threading of
computation across multiple cores or CPU’s within a shared
memory environment. This can be combined with the distributed
memory clustering approach for even greater speedup. The next
release will feature a much more robust and pervasive application
of parallel threading. We are also currently investigating the
use of GPU-based coprocessor boards using NVIDIA’s new CUDA
technology.

2.16. Plugins

A growing number of modern software applications provide
a means for adding user-developed plugins to extend the
functionality of the system without requiring a recompilation of
the main application itself. An Emergent plugin is a dynamically
loadable code library that has been compiled in C++ and linked
to the Emergent libraries and their dependent libraries, such as Qt
and ODE. Plugins use a Qt-provided cross-platform build system
that is simple to use. Building a plugin automatically installs it into
a designated plugin folder.

We envision a growing base of Emergent users who will develop
plugins for things like: new network algorithms; new types of
network objects, such as specialized layers and units; wizards to
help automate complex modeling tasks; new procedures for data
analysis and transformation; new visualization objects; specialized
computational engines to take advantage of new processing
capabilities in existing CPUs or co-processors; new forms of
input and output; and links or channels to other tools, such as
analysis packages, graphing packages, visualization packages and
databases.

3. Comparison with other simulators

Emergent is in the company of hundreds of available neural
simulators, each filling a certain niche. In order to help users
choose a simulator that best suits their needs, we have compiled
a detailed comparison (http://grey.colorado.edu/emergent/
index.php/Comparison_of_Neural_Network_Simulators) over 25
features of the 15 simulators that we identified as having been
the most widely used and developed. This table is available on the
Emergent wiki, is community-editable and features spreadsheet-
like sorting using javascript. You are encouraged to visit and update
the table, as it will always be under development.

Emergent has the longest legacy of any simulator, with the
first release of PDP occurring in 1986. Others in this league are
GENESIS (Beeman et al., 2007), with releases from 1988-2007,
and NEURON (Migliore et al., 2006), with releases from the
early 90s to 2008. Both GENESIS and NEURON specialize in the
modeling of individual neurons and networks of neurons at a
high resolution, computationally expensive but very biologically
plausible sub-cellular level of analysis. Although these two
tools have somewhat limited user interfaces, the sophisticated
visualization tool neuroConstruct (http://www.physiol.ucl.ac.
uk/research/silver_a/neuroConstruct/) encapsulates both of them,
providing unparalleled graphics. Other simulators in the spiking
neuron domain include NEST, The NeoCortical Simulator (NCS),
The Circuit SIMulator (CSIM), XPPAUT, SPLIT, and Mvaspike. A
detailed side-by-side comparison and benchmarking of these
simulators can be found in Brett et al. (2007).

Simulators that are more directly comparable to Emergent
include the Stuttgart Neural Network Simulator (SNNS) (Petron,
1999), the Topographica Neural Map Simulator (Bednar et al.,
2004) and the Fast Artificial Neural Network Library (FANN)
(Nissen, 2003). SNNS has implemented an impressive array of

algorithms, more than any other simulator to date. If trying
out lots of new neural network algorithms is your goal, we
highly recommend SNNS. Unfortunately, SNNS is no longer under
active development, does not have an active support community
and has an aging interface. If these things matter to you, we
recommend Emergent. Topographica focuses on the development
of high-level, Kohonen-like topographic maps of the sensory and
motor areas with an emphasis on the analysis and visualization
of topographically organized regions. FANN will be useful to
researchers who require a fast implementation of backpropagation
or SOM, native bindings to multiple scripting languages, and an
active support community. If you need a neural network to do a
specific computational task with low overhead, FANN may have
benefits. LENS, while no longer actively supported, also features
fast implementations of backpropagation algorithms.

Several proprietary and commercial simulators exist, including
the Neural Networks package for Mathematica
(http://[www.mathworks.com/products/neuralnet/), the MATLAB
Neural Network Toolbox (http://www.mathworks.com/
products/neuralnet/) and Peltarion Synapse (http://www.
peltarion.com/products/synapse/). The Mathematica and MATLAB
packages will be of interest to those who are already familiar with
those tools or want access to Matlab’s powerful linear algebra
facilities in addition to a wide variety of community developed
libraries. Peltarion Synapse is a sophisticated package that will be
most useful to those interested in data mining.

4. Future work

Emergent is under constant development and a number of
improvements are on the horizon. We plan to implement an undo
operation to complement copy and paste, an autosave feature and
better support for keyboard shortcuts. The build system will be
ported from GNU Autoconf to the more modern CMake, and the
Windows development environment will be upgraded to Visual
Studio 2008. 64-bit support has already been implemented for
Linux—we soon plan to support it on OSX and Windows as well.
We will conduct further experiments using Graphics Processing
Units (GPUs), testing the speed of sender-based computations
and the feasibility of running them on a cluster of GPUs. Native
support for managing projects in a Subversion repository will be
added, in addition to an interface to ModelDB (http://senselab.
med.yale.edu/modeldb/). Finally, the existing TCP/IP code which
allows Emergent to be started in server mode and controlled by
external applications will be enhanced.

5. Conclusion

Emergent’s 4.0 series of releases is a turning point in the
history of its development. With a renewed focus on usability,
extensibility, cross-platform support and visualization, Emergent
is now accessible to a far wider audience than was PDP++.
Using this new workspace, the process of creating models has
become efficient, making modelers more productive and allowing
them to create more complicated, yet more understandable,
cognitive models than previously possible. Those who invest time
in learning it will be more than paid back. Emergent boasts an
active community of users and contributing developers, an active
development cycle going back more than two decades, a diverse
set of algorithms, a powerful visual programming paradigm and
a flexible and capable virtual environment for robotics. Emergent
is also a friendly teaching aide and is being actively used
to teach cognitive modeling courses in many universities (see
CECN Projects (http://grey.colorado.edu/CompCogNeuro/index.
php/CECN1_Projects) for a set of over 40 different research-grade
teaching models that accompany the Computational Explorations in

http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.physiol.ucl.ac.uk/research/silver_a/neuroConstruct/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/neuralnet/
http://www.peltarion.com/products/synapse/
http://www.peltarion.com/products/synapse/
http://www.peltarion.com/products/synapse/
http://www.peltarion.com/products/synapse/
http://www.peltarion.com/products/synapse/
http://www.peltarion.com/products/synapse/
http://senselab.med.yale.edu/modeldb/
http://senselab.med.yale.edu/modeldb/
http://senselab.med.yale.edu/modeldb/
http://senselab.med.yale.edu/modeldb/
http://senselab.med.yale.edu/modeldb/
http://senselab.med.yale.edu/modeldb/
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects
http://grey.colorado.edu/CompCogNeuro/index.php/CECN1_Projects

1152 B. Aisa et al. / Neural Networks 21 (2008) 1146-1152

Cognitive Neuroscience textbook (O’Reilly & Munakata, 2000)). In
short, through judicious use of modern programming libraries and
interface design principles, combined with its legacy, Emergent
has become one of the most capable and user-friendly general-
purpose neural network simulators available. We invite you to
give Emergent a try, and welcome you to join and contribute to
the mailing 1ist (http://grey.colorado.edu/cgi-bin/mailman/
listinfo/emergent-users).

References

Ackley, H., Hinton, E., & Sejnowski, J. (1985). A learning algorithm for Boltzmann
machines. Cognitive Science, 9, 147-169.

Almeida, B. (1987). A learning rule for asynchronous perceptrons with feedback in
a combinatorial environment. In M. Caudil & C. Butler (Eds.), Proceedings of the
IEEE first international conference on neural networks (pp. 609-618).

Bednar, J. A., Choe, Y., Paula, J. D., Miikkulainen, R., Provost,]., & Tversky, T. (2004).
Modeling cortical maps with Topograhica. Neurocomputing, 58, 1129-1135.
Beeman, D., Wang, Z., Edwards, M., Bhall, U., Cornelis, H., & Bower,]. (2007). The
GENESIS 3.0 Project: A universal graphical user interface and database for
research, collaboration, and education in computational neuroscience. BioMed

Central Neuroscience, 8.

Brett, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower,, et al. (2007).
Simulation of networks of spiking neurons: A review of tools and strategies.
Journal of Computational Neuroscience, 23(3), 349-398.

Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-
Verlag.

Hochreiter, S., & Schmidhuber,]. (1997). Long short term memory. Neural
Computation, 9, 1735-1780.

McClelland, J. L., & Rumelhart, D. E. (1986). Parallel distributed processing. Cambridge,
MA: MIT Press.

Migliore, M., Cannia, C., Lytton, W., Markram, H., & Hines, M. L. (2006). Parallel
network simulations with NEURON. Journal of Computational Neuroscience,
21(2), 119-129.

Nissen, S. Implementation of a fast artificial neural network library (FANN). Report.
Department of Computer Science, University of Copenhagen (DIKU), 31, 2003.

Norman, K. A., Newman, E., Detre, G., & Polyn, S. (2006). How inhibitory oscillations
can train neural networks and punish competitors. Neural Computation, 18,
1577-1610.

O'Reilly, R. C,, Frank, M. J., Hazy, T. E., & Watz, B. (2007). PVLV: The primary value
and learned value pavlovian learning algorithm. Behavioral Neuroscience, 121(1),
31-49.

O'Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive
neuroscience. Cambridge, MA: MIT Press.

Petron, E. (1999). Stuttgart Neural Network Simulator: Exploring connectionism
and machine learning with SNNS. Linux Journal, 63.

Pineda, J. (1987). Generalization of back-propagation to recurrent neural networks.
The American Physical Society, 59(19), 2229F.

Rumelhart, D. E, Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. In E. Rumelhart, L. McClelland, &
PDP Research Group (Eds.), Foundations: Vol. 1. Parallel distributed processing
(pp. 318-362). Cambridge, MA: MIT Press.

Rumelhart, E., & Zipser, D. (1986). Feature discovery by competitive learning.
In E. Rumelhart, L. McClelland, & PDP Research Group (Eds.), Foundations:
Vol. 1. Parallel distributed processing (pp. 151-193). Cambridge, MA: MIT Press
(Chapter 5).

Williams, R.]., & Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2), 270-280.

http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users
http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users
http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users
http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users
http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users
http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users
http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users
http://grey.colorado.edu/cgi-bin/mailman/listinfo/emergent-users

	The Emergent neural modeling system
	Introduction
	Emergent
	Supported algorithms
	General features
	Networks
	Specs
	Algorithm infrastructure mechanisms
	Network input/output and data monitoring
	Simulation control (programs)
	Visualizations
	Data analysis and graphing
	Virtual environment
	Documentation, annotation, and search
	Select edits
	Projects
	Batch mode
	Distributed memory cluster support and parallel threading
	Plugins

	Comparison with other simulators
	Future work
	Conclusion
	References

