
REVIEW Communicated by William Lytton

Expanding NEURON’s Repertoire of Mechanisms with
NMODL

M. L. Hines
Department of Computer Science, Yale University, New Haven, CT 06520, U.S.A.

N. T. Carnevale
Department of Psychology, Yale University, New Haven, CT 06520, U.S.A.

Neuronal function involves the interaction of electrical and chemical sig-
nals that are distributed in time and space. The mechanisms that generate
these signals and regulate their interactions are marked by a rich diver-
sity of properties that precludes a “one size �ts all” approach to modeling.
This article presents a summary of how the model description language
NMODL enables the neuronal simulation environment NEURON to ac-
commodate these differences.

1 Introduction

Recently we described the core concepts and strategies that are respon-
sible for much of the utility of NEURON as a tool for empirically based
neuronal modeling (Hines & Carnevale, 1997). That article focused on the
strategy used in NEURON to deal with the problem of mapping a spatially
distributed system into a discretized (compartmental) representation in a
manner that ensures conceptual control while maintaining numeric accu-
racy and computational ef�ciency. Now we shift our attention to another
important feature of NEURON: its special facility for expanding and cus-
tomizing its library of biophysical mechanisms.

The need for this facility stems from the fact that experimentalists are
applying an ever-growing armamentarium of techniques to dissect neu-
ronal operation at the cellular level. There is a steady increase in the num-
ber of phenomena that are known to participate in electrical and chemical
signaling and are characterized well enough to support empirically based
simulations. Since the mechanisms that underlie these phenomena differ
across neuronal cell class, developmental stage, and species (e.g., chapter 7
in Johnston & Wu, 1995; also see McCormick, 1998), a simulator that is useful
in research must provide a �exible and powerful means for incorporating
new biophysical mechanisms in models. It must also help the user remain
focused on the model instead of programming. Such a means is provided to
the NEURON simulation environment by NMODL, a high-level language
that was originally implemented for NEURON by Michael Hines, which

Neural Computation 12, 995–1007 (2000) c° 2000 Massachusetts Institute of Technology



996 M. L. Hines and N. T. Carnevale

he and Upinder Bhalla later extended to generate code suitable for linking
with GENESIS (Wilson & Bower, 1989).

The aim of this article is to provide a high-level summary of those as-
pects of NMODL that we regard as unique and most pertinent to the creation
of representations of biophysical mechanisms. These include features that
enable the user to construct mechanisms using differential equations or
kinetic schemes, specify continuous (density) or delta function (point pro-
cess) spatial distributions, and implement models of synaptic connectivity,
while preserving mass balance for each ionic species. A detailed explana-
tion of the unusual structure and features of NMODL requires numerous,
speci�c illustrations. Therefore we have posted an expanded version of
this document at http://www.neuron.yale.edu/nmodl.html. The expanded
version is organized around a sequence of examples of increasing com-
plexity and sophistication that introduce important topics in the context of
problems of scienti�c interest, including models of the following mecha-
nisms:

� A passive “leak” current and a localized transmembrane shunt (den-
sity mechanisms versus point processes)

� Anelectrode stimulus (discontinuous parameter changes with variable
time-step methods)

� Voltage-gated channels (differential equations versus kinetic schemes)

� Ion accumulation in a restricted space (e.g., extracellular KC)

� Ion buffering, diffusion, and active transport (e.g., Ca2C)

� Use-dependent synaptic plasticity

� Multiple streams of synaptic input and output (network fan-in and
fan-out)

This article makes extensive use of specialized concepts and terminology
that pertain to NEURON itself. For de�nitive treatment of these, see Hines
and Carnevale (1997) and NEURON’s on-line help �les, which are available
through links at http://www.neuron.yale.edu.

2 Describing Mechanisms with NMODL

A brief overview of how NMODL is used will clarify its underlying ra-
tionale. The �rst step is to write a text �le (a “mod �le”) that describes a
mechanism as a set of nonlinear algebraic equations, differential equations,
or kinetic reaction schemes. The description employs a syntax that closely
resembles familiar mathematical and chemical notation. This text is passed
to a translator that converts each statement into many statements in C, auto-

http://www.neuron.yale.edu/
http://www.neuron.yale.edu.


Expanding NEURON with NMODL 997

matically generating code that handles details such as mass balance for each
ionic species and producing code suitable for each of NEURON’sintegration
methods. The output of the translator is then compiled for computational
ef�ciency. This achieves tremendous conceptual leverage and savings of ef-
fort not only because the high-level mechanism speci�cation is much easier
to understand and far more compact than the equivalent C code, but also
because it spares the user from having to bother with low-level program-
ming issues, like how to “interface” the code with other mechanisms and
with NEURON itself.

NMODL is a descendant of the MOdel Description Language (MODL;
Kohn, Hines, Kootsey, & Feezor, 1994), which was developed at Duke Uni-
versity by the National Biomedical Simulation Resource project for the
purpose of building models that would be exercised by the Simulation
Control Program (SCoP; Kootsey, Kohn, Feezor, Mitchell, & Fletcher, 1986).
NMODL has the same basic syntax and style of organizing model code into
named blocks as MODL. Variable declaration blocks, such as PARAMETER,
STATE, and ASSIGNED, specify names and attributes of variables that are
used in the model. Other blocks are directly involved in setting initial con-
ditions or generating solutions at each time step (the equation de�nition
blocks, e.g., INITIAL, BREAKPOINT, DERIVATIVE, KINETIC, FUNCTION,
PROCEDURE). There is also a provision for inserting C statements into a
mod �le to accomplish implementation-speci�c goals. NMODL recognizes
all the keywords of MODL, but we will limit this discussion to those that
are relevant to NEURON simulations, with an emphasis on changes and
extensions that were necessary to endow NMODL with NEURON-speci�c
features.

2.1 The NEURON Block. The principal extension that differentiates
NMODL from its MODL origins is that there are separate instances of mech-
anism data, with different values of states and parameters, in each segment
(compartment) of a model cell. The NEURON block was introduced to make
this possible by de�ning what the model of the mechanism looks like from
the “outside” when there are many instances of the model sprinkled at
different locations on the cell. The speci�cations entered in this block are
independent of any particular simulator, but the detailed “interface code”
requirements of a particular simulator determine whether the output C �le
is suitable for NEURON (NMODL) or GENESIS (GMODL).

For example, consider the accumulation of potassium in the extracellular
space adjacent to squid axon (see Figure 1). Satellite cells and other extracel-
lular structures act as a diffusion barrier that prevents free communication
between the bath and this “Frankenhaeuser-Hodgkin space” (F-H space;
Frankenhaeuser & Hodgkin, 1956).

When there is a large ef�ux of KC ions from the axon, as during the repo-
larizing phase of an action potential or in response to injected depolarizing
current, KC builds up in the F-H space. This elevation of [KC]o shifts EK in



998 M. L. Hines and N. T. Carnevale

Figure 1: Extracellular potasasium may accumulate adjacent to the cell mem-
brance due to restricted diffusion from the Frankenhaeuser-Hodgkin space.

a depolarized direction, which has two important consequences. First, it re-
duces the driving force for KC ef�ux and causes a decline of the outward IK.
Second, when the action potential terminates or the injected depolarizing
current is stopped, the persistent elevation of EK causes a slowly decaying
depolarization or inward current. This depolarizing shift dissipates gradu-
ally as [KC]o equilibrates with [KC]bath.

NEURON f
SUFFIX kext

USEION k READ ik WRITE ko

GLOBAL kbath

RANGE fhspace, txfer

g

This is the NEURON block for the kext mechanism, which emulates the
effects of the F-H space. (Readers who desire more detailed information,
for example, how the ODE for KC accumulation is speci�ed, are referred to
http://www.neuron.yale.edu/nmodl.html for the expanded version of this
article, which contains complete code and descriptions for this and other
mechanisms.)

The SUFFIX keyword has two consequences. First, it identi�es this as
a density mechanism, which can be incorporated into a NEURON cable
section by an insert statement (see Hines & Carnevale, 1997). Second, it
tells the NEURON interpreter that the names for variables and parameters
that belong to this mechanism will include the suf�x kext, so there will be
no con�ict with similar names in other mechanisms.

2.1.1 Mechanisms That Interact with Ionic Concentrations. Many biophys-
ical mechanisms involve processes that have direct interactions with ionic
concentrations (e.g., diffusion, buffers, pumps). Furthermore, any compart-

http://www.neuron.yale.edu/nmodl.html


Expanding NEURON with NMODL 999

ment in a model may contain several such mechanisms. Therefore, total
ionic currents and concentrations must be computed consistently. This is
facilitated by the USEION statement, which sets up the necessary book-
keeping by automatically creating a separate mechanism that keeps track
of four essential variables: the total outward current carried by an ion, the
internal and external concentrations of the ion next to the membrane, and
its equilibrium potential. In this case the name of the ion is “k” and the
automatically created mechanism is called “k ion” in the hoc interpreter.
The k ion mechanism has variables ik, ki, ko, and ek, which represent
IK , [KC]i, [KC]o, and EK, respectively. These do not have suf�xes; further-
more, they are RANGE variables so they can have different values in ev-
ery segment of each section in which they exist (see the discussion of sec-
tions, segments, and RANGE variables in Hines & Carnevale, 1997). In other
words, the KC current through Hodgkin-Huxley potassium channels near
one end of the section cable would be cable.ik hh(0.1), but the total
KC current generated by all sources, including other ionic conductances
and pumps, would be cable.ik(0.1) (the 0.1 signi�es a location that
is one-tenth of the distance along the length of the section away from its
origin).

Since mechanisms can generate transmembrane �uxes that are attributed
to speci�c ionic species by the USEION x WRITE ix syntax, modeling re-
stricted diffusion is straightforward. A mechanism needs a separate USEION

statement for each of the ions that it affects or is affected by. For example,
the Hodgkin-Huxley mechanism hh has separate USEION statements for na

and k, and the USEION statement for potassium includes READ ek because
the potential gradient that drives ik hh depends on the equilibrium poten-
tial for KC. Since the resulting ionic �ux may affect local [KC], the USEION

statement for hh also includes WRITE ik so that NEURON can keep track
of the total outward current that is carried by potassium, [KC]i and [KC]o,
and EK.

The kext mechanism computes [KC]o from the outward potassium cur-
rent, so it READs ik and WRITEs ko. When a mechanism WRITEs a particular
ionic concentration, this means that it sets the value for that concentration
at all locations in every section into which it has been inserted. This has an
important consequence: in any given section, no ionic concentration should
be “written” by more than one mechanism.

The bath is assumed to be a large, well-stirred compartment that en-
velops the entire “experimental preparation.” Therefore kbath is a GLOBAL

variable so that all sections that contain the kext mechanism will have
the same numeric value for [KC]bath. Since this would be one of the con-
trolled variables in an experiment, the value of kbath is speci�ed by the
user and will remain constant during the simulation. The thickness of the
F-H space is fhspace, the time constant for equilibration with the bath is
txfer, and both are RANGE variables so they can vary along the length of
each section.



1000 M. L. Hines and N. T. Carnevale

2.2 General Comments About Kinetic Schemes. Kinetic schemes pro-
vide a high-level framework that is perfectly suited for compact and in-
tuitively clear speci�cation of models that involve discrete states in which
“material” is conserved. The basic notion in such mechanisms is that �ow
out of one state equals �ow into another. Almost all models of membrane
channels, chemical reactions, macroscopic Markov processes, and ionic dif-
fusion are elegantly expressed through kinetic schemes.

The unknowns in a kinetic scheme, which are usually concentrations of
individual reactants, are declared in the STATE block. The user expresses
the kinetic scheme with a notation that is similar to a list of simultane-
ous chemical reactions. The NMODL translator converts the kinetic scheme
into a family of ODEs whose unknowns are the STATEs. Hence the sim-
ple

STATE f mc m g
KINETIC scheme1 f

» mc <-> m (a(v), b(v))

g

is equivalent to

DERIVATIVE scheme1 f
mc’ = -a(v)*mc + b(v)*m

m’ = a(v)*mc - b(v)*m

g

The �rst character of a reaction statement is the tilde, », which is used
to distinguish this kind of statement from other sequences of tokens that
could be interpreted as an expression. The expression to the left of the three-
character reaction indicator, <->, speci�es the reactants, and the expression
immediately to the right speci�es the products. The two expressions in
parentheses specify the forward and reverse reaction rates (here, the rate
functions a(v) and b(v)). After each reaction, the variables f flux and
b flux are assigned the values of the forward and reverse �uxes, respec-
tively. These can be used in assignment statements such as

» cai + pump <-> capump (k1,k2)

» capump <-> pump + cao (k3,k4)

ica = (f flux - b flux)*2*Faraday/area

In this case, the forward �ux is k3*capump, the reverse �ux is k4*pump*cao,
and the positive-outward current convention is consistent with the sign of
the expression for ica (in the second reaction, forward �ux means positive
ions move from the inside to the outside).



Expanding NEURON with NMODL 1001

More complicated reaction sequences, such as the wholly imaginary

KINETIC scheme2 f
» 2A + B <-> C (k1,k2)

» C + D <-> A + 2B (k3,k4)

g
begin to show the clarity of expression and suggest the comparative ease of
modi�cation of the kinetic representation over the equivalent but stoichio-
metrically confusing

DERIVATIVE scheme2 f
A’ = -2*k1*AÃ 2*B + 2*k2*C + k3*C*D - k4*A*BÃ 2

B’ = -k1*AÃ 2*B + k2*C + 2*k3*C*D - 2*k4*A*BÃ 2

C’ = k1*AÃ 2*B - k2*C - k3*C*D + k4*A*BÃ 2

D’ = - k3*C*D + k4*A*BÃ 2

g

Clearly a statement such as

» calmodulin + 3Ca <-> active (k1, k2)

would be easier to modify (e.g., so it requires combination with four cal-
cium ions) than the relevant term in the three differential equations for the
STATEs that this reaction affects. The kinetic representation is easy to de-
bug because it closely resembles familiar notations and is much closer to
the conceptualization of what is happening than the differential equations
would be.

Another bene�t of kinetic schemes is the simple polynomial nature of
the �ux terms, which allows the translator to perform easily a great deal
of preprocessing that makes implicit numerical integration more ef�cient.
Speci�cally, the nonzero elements @y0

i /@yj (partial derivatives of dyi /dt with
respect to yj) of the sparse matrix are calculated analytically in NMODL and
collected into a C function that is called by solvers to calculate the Jacobian.
Furthermore, the form of the reaction statements determines if the scheme
is linear, obviating an iterative computation of the solution.

Kinetic scheme representations provide a great deal of leverage because
a single compact expression is equivalent to a large amount of C code. One
special advantage from the programmer’s point of view is that these expres-
sions are independent of the solution method. Different solution methods
require different code, but the NMODL translator generates this code au-
tomatically. This saves the user time and effort and ensures that all code
expresses the same mechanism. Another advantage is that the NMODL
translator handles the task of interfacing the mechanism to the remainder
of the program. This is a tedious exercise that would require the user to have



1002 M. L. Hines and N. T. Carnevale

special knowledge that is not relevant to neurophysiology and may change
from version to version.

2.3 Models with Discontinuities.

2.3.1 Discontinuities in PARAMETERs. In the past, abrupt changes in PA-

RAMETERs and ASSIGNED variables, such as the sudden change in current
injection during a current pulse, have been implicitly assumed to take place
on a time-step boundary. This is inadequate with variable time-step meth-
ods because it is unlikely that a time-step boundary will correspond to the
onset and offset of the pulse. Worse, the time step may be longer than the
pulse itself, which may thus be entirely ignored.

For these reasons, a model description must explicitly notify NEURON,
via the at time() function, of the times at which any discontinuities occur.
The statement at time(event time) guarantees that during simulation with
a variable time-step method, as t advances past event time, the integrator
will reduce the step size so that it completes at t = event time - e, where
e » 10¡9 ms. The next step resets the integrator to �rst order, thereby dis-
carding any previous solution history, and immediately returns after com-
puting all the dyi /dt at t = event time + e. Note that at time() returns
“true” only during the “in�nitesimal” step that ends at t = event time +

e.
During a variable time-step simulation, a missing at time() call may

cause one of two symptoms. If a PARAMETER changes but returns to its
original value within the same interval, the pulse may be entirely missed.
More often a single discontinuity will take place within a time-step interval,
in which case what seems like a binary search will start for the location of
the discontinuity in order to satisfy the error tolerance on the step; this is
very inef�cient.

Time-dependent PARAMETER changes at the hoc interpreter level are
highly discouraged because they cannot currently be properly computed
in the context of variable time steps. For instance, with �xed time steps,
it was convenient to change PARAMETERs prior to fadvance() calls,
as in

proc advance() f
IClamp[0].amp = imax*sin(w*t)

fadvance()

g

With variable time-step methods, all time-dependent changes must be de-
scribed explicitly in a model, in this case with

BREAKPOINT f i = imax*sin(w*t) g



Expanding NEURON with NMODL 1003

A future version of NEURON may providea facility to specify time-depend-
ent and discontinuous PARAMETER changes safely at the hoc level in the
context of variable time step methods. (The BREAKPOINT block is discussed
fully in the expanded version of this article. Its purpose is to declare the
integration method for calculating the time evolution of STATEs and assign
values to the currents declared by the mechanism.)

2.3.2 Discontinuities in STATEs. Some kinds of synaptic models process
an event as a discontinuity in one or more of their STATE variables. For
example, a synapse whose conductance follows the time course of an alpha
function (for more detail about the alpha function itself see Rall, 1977, and
Jack, Noble, & Tsien, 1983) can be implemented as a kinetic scheme in the
two-state model

KINETIC state f
» a <-> g (k, 0)

» g -> (k)

g

where a discrete synaptic event is handled as an abrupt increase of STATE

a. This formulation has the attractive property that it can handle multiple
streams of events with different weights, so that g will be the sum of the
individual alpha functions with their appropriate onsets.

However, because of the special nature of states in variable time-step
ODE solvers, it is necessary not only to notify NEURON about the time of
the discontinuity with the at time(onset) call, but also to notify NEU-
RON about any discontinuities in STATEs. If onset is the time of the
synaptic event and gmax is the desired maximum conductance change, this
would be accomplished by including a state discontinuity() call in
the BREAKPOINT block, as follows:

BREAKPOINT f
if (at time(onset)) f

: scale factor exp(1) = 2.718... ensures

: that peak conductance will be gmax

state discontinuity(a, a + gmax*exp(1))

g
SOLVE state METHOD sparse

i = g*(v - e)

g

The �rst argument to state discontinuity() will be assigned the value
of its second argument just once for any time step. This is important, since
for several integration methods, BREAKPOINT assignment statements are
often executed twice to calculate the di /dv terms of the Jacobian matrix.



1004 M. L. Hines and N. T. Carnevale

Although this synaptic model works well with deterministic stimulus
trains, it is dif�cult for the user to supply the administrative hoc code for
managing the onset and gmax variables to take advantage of the promise
of multiple streams of events with different weights. The most important
problem is how to save events that have signi�cant delay between their
generation and their handling at time onset. As is, an event can be passed
to this model by assigning values to onset and gmax only after the previous
onset event has been handled.

Discussion of the details of how NEURON now treats streams of synaptic
events with arbitrary delays and weights is beyond the scope of this article.
Let it suf�ce that from the local view of the postsynaptic model, the state
discontinuity should no longer be handled in the BREAKPOINT block, and
the above synaptic model is more properly written in the form

BREAKPOINT f
SOLVE state METHOD sparse

i = g*(v - e)

g
NET RECEIVE(weight (microsiemens)) f

state discontinuity(a, a + weight*exp(1))

g

in which event distribution is handled internally from a speci�cation of
network connectivity (see the next section).

2.4 General Comments About Synaptic Models. The examples so far
have been of mechanisms that are local in the sense that an instance of
a mechanism at a particular location on the cell depends only on STATEs
and PARAMETERs of the model at that location. Of course, they normally
depend on voltage and ionic variables as well, but these also are at that lo-
cation and automatically available to the model. Synaptic models have an
essential distinguishing characteristic that sets them apart: in order to com-
pute their contribution to membrane current at the postsynaptic site, they
require information from another place, for example, presynaptic voltage.
Models that contain LONGITUDINAL DIFFUSION are perhaps also an ex-
ception, but their dependence on adjacent compartment ion concentration
is handled automatically by the translator.

In the past, model descriptions could only use POINTER variables to
obtain their presynaptic information. A POINTER in NMODL holds a refer-
ence to another variable; the speci�c reference is de�ned by a hoc statement
such as

setpointer postcell.synapse.vpre, precell.axon.v(1)

in which vpre is a POINTER, declared in the indicated POINT PROCESS



Expanding NEURON with NMODL 1005

synapse instance, which references the value of a speci�c membrane volt-
age—in this case, at the distal end of the presynaptic axon. Gap junctions
or ephaptic synapses can be handled by a pair of POINT PROCESSes on the
two sides of the junction that point to each other ’s voltage, as in

section1 gap1 = new Gap(x1)

section2 gap2 = new Gap(x2)

setpointer gap1.vpre, section2.v(x2)

setpointer gap2.vpre, section1.v(x1)

This kind of detailed piecing together of individual components is accept-
able for models with only a few synapses, but larger network models have
required considerable administrative effort from users to create mechanisms
that handle synaptic delay, exploit very great simulation ef�ciencies avail-
able with simpli�ed models of synapses, and maintain information about
the connectivity of the network.

Theexperience of NEURONusers, especially Alain Destexhe and William
Lytton, in creating special models and procedures for managing network
simulations has been incorporated in a new built-in network connection
(NetCon) class, whose instances manage the delivery of presynaptic thresh-
old events to postsynaptic POINT PROCESSes. The NetCon class works for
all NEURON integrators, including a local variable time-step method in
which each cell is integrated with a time step appropriate to the state changes
occurring in that cell. With this event delivery system, model descriptions of
synapses never need to queue events, and they do not have to make heroic
efforts to work properly with variable time-step methods. These features
offer enormous convenience to users.

NetCon connects a presynaptic variable such as voltage to a synapse
with arbitrary (individually speci�ed on a per NetCon instance) delay and
weight. If the presynaptic variable passes threshold at time t, a special
NET RECEIVE procedure in the postsynaptic POINT PROCESS is called at
time t + delay. The only constraint on delay is that it be nonnegative.
Events always arrive at the postsynaptic object at the interval delay after
the time they were generated, and there is no loss of events under any
circumstances.

This new class also reduces the computational burden of network sim-
ulations, because the event delivery system for NetCon objects supports
unlimited fan-in and fan-out (convergence and divergence). That is, many
NetCon objects can be connected to the same postsynaptic POINT PROCESS

(fan-in). This yields large ef�ciency improvements because a single set of
equations for synaptic conductance change can be shared by many streams
of inputs (one input stream per connecting NetCon instance). Likewise,
many NetCon objects can be connected to the same presynaptic variable
(fan-out), thus providing additional ef�ciency improvement since the presy-
naptic variable is checked only once per time step, and when it crosses



1006 M. L. Hines and N. T. Carnevale

threshold in the positive direction, events are generated for each connect-
ing NetCon object.

3 Discussion

The model description framework has proved to be a useful, ef�cient, and
�exible way to implement computational models of biophysical mecha-
nisms. The leverage that NMODL provides is ampli�ed by its platform in-
dependence, since it runs in the MacOS, MSWindows, and UNIX/Linux en-
vironments. Another important factor is its use of high-level syntax, which
allows it to incorporate advances in numerical methods in a way that is
transparent to the user.

NMODL continues to undergo revision and improvement in response to
the evolving needs of computational neuroscience, particularly in the do-
main of empirically based modeling. One recent example of the extension of
NMODL to encompass new kinds of mechanisms is longitudinal diffusion.
Another is kinetic schemes in a form that can be interpreted as Markov pro-
cesses (Colquhoun & Hawkes, 1981), that is, linear schemes, which are now
translated into single-channel models. By removing arbitrary limits related
to programming complexity, such advances give NEURON the ability to
accommodate insights derived from new experimental �ndings and enable
modeling to keep pace with the broad arena of “wet-lab” neuroscience.

Acknowledgments

This work was supported in part by NIH grant NS11613. We thank John
Moore for inspiration and encouragement, Alain Destexhe and William Lyt-
ton for invaluable contributions to the convenient and ef�cient simulation
of networks, Ragnhild Halvorsrud for helpful suggestions regarding the
manuscript for this article, and the many users of NEURON who have pro-
vided indispensable feedback, presented challenging problems that have
stimulated new advances in the program, and developed their own en-
hancements.

References

Colquhoun, D., & Hawkes, A. G. (1981). On the stochastic properties of single
ion channels. Philosophical Transactions of the Royal Society of London Series B,
211, 205–235.

Frankenhaeuser, B., & Hodgkin, A. L. (1956).The after-effects of impulses in the
giant nerve �bers of Loligo. J. Physiol., 131, 341–376.

Hines, M. L., & Carnevale, N. T. (1997).The NEURON simulation environment.
Neural Computation, 9, 1179–1209.

Jack, J. J. B., Noble, D., & Tsien, R. W. (1983).Electric current �ow in excitable cells.
London: Oxford University Press.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0962-8436^28^29211L.205[aid=215306]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299L.1179[aid=215308,csa=0899-7667^26vol=9^26iss=6^26firstpage=1179,nlm=9248061]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0962-8436^28^29211L.205[aid=215306]


Expanding NEURON with NMODL 1007

Johnston, D., & Wu, S. M.-S. (1995).Foundations of cellular neurophysiology. Cam-
bridge, MA: MIT Press.

Kohn, M. C., Hines, M. L., Kootsey, J. M., & Feezor, M. D. (1994). A block orga-
nized model builder. Mathematical and Computer Modelling, 19, 75–97.

Kootsey, J. M., Kohn, M. C., Feezor, M. D., Mitchell, G. R., & Fletcher, P. R. (1986).
SCoP: An interactive simulation control program for micro- and minicom-
puters. Bulletin of Mathematical Biology, 48, 427–441.

McCormick, D. A. (1998). Membrane properties and neurotransmitter actions.
In G. M. Sheperd (Ed.), The synaptic organization of the brain (pp. 37–75). New
York: Oxford University Press.

Rall, W. (1977). Core conductor theory and cable properties of neurons. In E. R.
Kandel (Ed.), Handbook of physiology,vol. 1, part 1: The nervous system (pp. 39–
98). Bethesda, MD: American Physiological Society.

Wilson, M. A., & Bower, J. M. (1989). The simulation of large scale neural net-
works. InC.Koch & I.Segev (Eds.),Methodsinneuronal modeling (pp. 291–333).
Cambridge, MA: MIT Press.

Received September 30, 1998; accepted April 20, 1999.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0092-8240^28^2948L.427[aid=215310,nlm=3828567]

