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Unique features of action potential initiation in
cortical neurons
Björn Naundorf1,2,3, Fred Wolf1,2,3 & Maxim Volgushev4,5

Neurons process and encode information by generating sequences
of action potentials1,2. For all spiking neurons, the encoding of
single-neuron computations into sequences of spikes is biophysi-
cally determined by the cell’s action-potential-generating mecha-
nism. It has recently been discovered that apparently minor
modifications of this mechanism can qualitatively change the
nature of neuronal encoding3,4. Here we quantitatively analyse
the dynamics of action potential initiation in cortical neurons
in vivo, in vitro and in computational models. Unexpectedly, key
features of the initiation dynamics of cortical neuron action
potentials—their rapid initiation and variable onset potential—
are outside the range of behaviours described by the classical
Hodgkin–Huxley theory. We propose a new model based on the
cooperative activation of sodium channels that reproduces the
observed dynamics of action potential initiation. This new model
predicts that Hodgkin–Huxley-type dynamics of action potential
initiation can be induced by artificially decreasing the effective
density of sodium channels. In vitro experiments confirm this
prediction, supporting the hypothesis that cooperative sodium
channel activation underlies the dynamics of action potential
initiation in cortical neurons.

We analysed action potentials elicited in cortical neurons in vivo
and in vitro, either spontaneously or in response to various stimuli. In
all cells examined and for all conditions tested, the dynamics of
action potential initiation was characterized by a very abrupt onset
and a steep upstroke in membrane potential. In membrane potential
traces, the abrupt onset of action potentials is apparent as a sharp
kink (Fig. 1a, c). This phenomenon stands out even more clearly in
phase plots that graph the rate of change of the membrane potential
dV/dt against the instantaneous membrane potential V(t), and is
manifested as an almost vertical take-off in dV/dt versus V trajec-
tories at action potential onset (Fig. 1b, d). In phase plots, an action
potential is represented by a loop. At the start of the loop, the velocity
increases rapidly from less than 5 mV ms21 to more than
20 mV ms21. This several-fold increase in velocity occurs within a
range of less than 1 mV and takes less than 0.2 ms. This onset
behaviour is not a peculiarity of neurons in vivo. Neurons in vitro
show similarly fast dynamics of action potential initiation (Fig. 1c,
d). These dynamic features of recorded action potential onsets
distinguish them from the behaviour of previously proposed com-
putational models. Figure 1e, f shows a simulated action potential
using a recently developed conductance-based model of a cortical
neuron5. In this model, a velocity of 20 mV ms21 is only reached over
a range of 7–8 mV after about 1 ms. Thus, the real onset of cortical
action potentials is approximately ten times faster than predicted by
the model.

The rapid onset of action potentials is a very robust phenomenon,
apparent during spontaneous and evoked activity in vivo. Moreover,

it is independent of the temporal structure of synaptic inputs (Fig. 2)
and of the electrophysiological cell class (Fig. 4). Fig. 2 shows phase
plots and membrane potential traces from a simple cell (Fig. 2a, b)
and a complex cell (Fig. 2c, d) recorded in vivo in cat visual cortex. In
the phase plots, subthreshold membrane potential fluctuations are
represented by a grey cloud. In both the simple and the complex cell,
action potentials rise almost vertically out of this cloud. Detecting the
point at which the rate of change reaches a value of 10 mV ms21 thus
allows reliable identification of the time of action potential initiation
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Figure 1 | Dynamics of action potential initiation in neocortical neurons and
in a Hodgkin–Huxley-type model of a neocortical neuron. a, Action
potential in a cat visual cortex neuron in vivo. The arrow shows the
characteristic kink at action potential onset. b, Phase plot (dV/dt versus V)
of the action potential from a. Inset shows the initial phase of the action
potential. c, d, Action potential from a cat visual cortical slice in vitro at
20 8C. e, f, Action potential from a Hodgkin–Huxley-type model of a
neocortical neuron5.

1Max Planck Institute for Dynamics and Self-Organization, 2Department of Physics and 3Bernstein Center for Computational Neuroscience, University of Göttingen, Bunsenstr.
10, D-37073 Göttingen, Germany. 4Department of Neurophysiology, Ruhr-University Bochum, D-44780 Bochum, Germany. 5Institute of Higher Nervous Activity and
Neurophysiology Russian Academy of Sciences, Moscow 117485, Russia.

Vol 440|20 April 2006|doi:10.1038/nature04610

1060



© 2006 Nature Publishing Group 

 

and the onset potential. The phase plots also show a second salient
feature of cortical action potentials: the onset potentials vary con-
siderably, over ranges of up to 10 mV (Fig. 2a–d) (Special care was
taken to exclude any non-stationarities, see Supplementary Infor-
mation). This distinct variability in onset potentials has previously
been observed in cat visual cortex6–8 and rat hippocampus9. This
second feature of cortical action potentials is also missing in
Hodgkin–Huxley-type models. Figure 2e, f depicts the behaviour
of such a model driven by fluctuating synaptic inputs5. The varia-
bility in onset potentials in this model is restricted to a range of less
than 2 mV, which is much smaller than observed in vivo.

Two features thus render cortical action potentials distinctly
different from simulated action potentials using Hodgkin–Huxley-
type models. First, the initial action potential phase is approximately
ten times faster in recorded neurons compared to conductance-based
models. Second, the onset potential variability is approximately five
times larger in the recorded cells. We tried, using various modifi-
cations of the models, to achieve a better match between recorded
and simulated action potentials (including and/or modifying adap-
tation currents10, channel stochasticity11, state-dependent inacti-
vation12, sodium channel activation curves and peak conductances;
see Supplementary Information). None of the modified models
reproduced the two salient features of the recorded action potentials.

In fact, a straightforward analysis reveals that rapid action poten-
tial onset and large variability in onset potentials are strongly
antagonistic in Hodgkin–Huxley-type models. In such models, the
initial phase of an action potential is determined by the activation of

voltage-dependent sodium channels. Their dynamics is described by
the activation curve and kinetics of an associated gating variable. In
the Hodgkin–Huxley formulation it can be shown that the rate of
membrane depolarization is limited by gNah0m

3
1ðVÞðVNa 2VÞ=Cþ

I0=C; where gNa denotes peak sodium conductance, h0 is the fraction
of sodium channels available for activation,m1

3 (V) is their activation
curve, VNa is the sodium reversal potential, C the membrane
capacitance, and I0 is the current carried by other channels. This
upper bound on the rate of membrane potential change links the
action potential onset dynamics directly to the width of the acti-
vation curve and peak sodium conductance. Figure 3 illustrates this
relationship. An experimentally obtained activation curve from
patches of cortical neurons13,14 results in a shallow action potential
onset (Fig. 3a, b). Increasing the steepness of the activation curve
leads to sharper action potential onsets, but even with a fivefold
increase, the simulated action potentials do not rise as fast as those
recorded. Changing the effective peak sodium conductance—
mimicking inactivation6,9—leaves the steepness of action potential
onset unaffected but shifts the onset potentials (Fig. 3c, d). At the
same time, increasing the steepness of the activation curve consider-
ably decreases onset potential variability (Fig. 3c–f). Quantitatively,
the variability of onset potentials is restricted by DV < klogG, where
k is the width of the activation curve and G is the ratio of maximum
to minimum peak conductance (see Supplementary Information).
To mimic the measured combinations of onset rapidness and
variability, unphysiologically large values of G (about 20,000)
would be required.

Figure 2 | Different action potential initiation in visual cortex neurons
recorded in vivo and in a Hodgkin–Huxley-type model subject to fluctuating
synaptic inputs. a, Phase plot of a simple cell response to a moving grating
of optimal orientation. Subthreshold fluctuations are shown in grey, action
potentials in red, and green dots indicate action potential onsets. The inset
shows the complete trace. Arrows indicate three sample action potentials.
b, Part of the recording from a, using the same colour code, with action
potentials truncated in amplitude. Green bars show action potential onset
potentials. Inset shows the action potentials marked with arrows in a. The
histogram to the right shows the distribution of action potential onset
potentials. c, d, Response of a complex cell. e, f, Response of a
Hodgkin–Huxley-type model5 subject to fluctuating synaptic input.

Figure 3 | Effect of the shape of the sodium channel activation curve
and effective peak conductance on action potential initiation in a
Hodgkin–Huxley-type model. Activation curves used in the model (a, c, e)
and initial phases of resulting action potentials (b, d, f) are shown using
matched colours. Blue lines show standard activation curves14.
a, b, Increasing the steepness of the activation curve (a) leads to a more rapid
action potential upstroke (b). Dashed lines indicate tangents at 10 mV ms21.
c–f, Initiation of action potentials with shallow (c, d) and steep (e, f)
activation curves and different sodium peak conductances in a model driven
by fluctuating synaptic inputs (several action potentials superimposed).
Changing peak conductance shifts the action potential onset potential but
does not affect its onset rapidness. Steeper activation curves lead to smaller
action potential onset spans (d, 6 mV; f, 2.5 mV).

NATURE|Vol 440|20 April 2006 LETTERS

1061



© 2006 Nature Publishing Group 

 

To quantitatively compare the action potential onset dynamics in
our recordings with action potential dynamics in Hodgkin–Huxley-
type models, we plotted the action potential onset span (difference
between maximum and minimum onset potential in a recording)
against the rapidness of action potential onset (the slope of the phase
plot at dV/dt ¼ 10 mV ms21) for real and simulated recordings
(Fig. 4). In the simulations, we used two different models5,10 driven
by fluctuating synaptic currents. In both models we systematically
changed the peak sodium conductance and the activation curve over
the entire range in which action potentials were generated. The
locations of data points from the model simulations reflect the
antagonism between onset span and rapidness. Simulated action
potentials either showed a large onset rapidness or a large onset span,
but never both. The points representing simulated action potentials
are clearly separated from the points representing in vivo action
potentials, which show rapid onset dynamics and large variability in
onset potentials, irrespective of the electrophysiological cell type.
Action potentials recorded in vitro had similarly fast onset dynamics
(Fig. 4).

The above arguments and our extensive simulations indicate that
the dynamics of action potential initiation in cortical neurons
deviates qualitatively from the classical picture described by the
Hodgkin–Huxley framework. What could be the biophysical mecha-
nism that enables cortical action potentials to initiate much faster
and at the same time with a much larger onset potential variability
than predicted by the Hodgkin–Huxley theory? According to this
theory, there is a one-to-one relationship between the single-channel
activation curve and the action potential onset dynamics, owing to
the assumption that the opening of individual sodium channels
is statistically independent. This assumption, however, might be
violated in the highly organized molecular machinery of a living

cell. Indeed, the rapid onset of action potentials suggests that
many sodium channels open virtually simultaneously, that is, in a
potentially cooperative fashion.

To assess whether cooperative activation of voltage-gated sodium
channels can account for the two characteristic features of cortical
action potential initiation, we constructed a model of a population of
coupled sodium channels. In this model, the gating of individual
sodium channels follows a scheme introduced by Aldrich, Corey, and
Stevens15. It incorporates state-dependent inactivation from the open
state and voltage-dependent inactivation from closed states15,16. The
key feature of our model is a coupling between neighbouring
channels: the opening of a channel shifts the activation curve of
each channel to which it is coupled towards more hyperpolarized
values, thus increasing its probability of opening.

Figure 4 |Action potential onset span and rapidness in cortical neurons and
Hodgkin–Huxley-type models. Points show data from cat visual cortex
neurons in vivo, classified electrophysiologically as regular spiking (RS), fast
spiking (FS), intrinsically bursting (IB) or fast rhythmic bursting (FRB).
Colours match the neuronal responses to current steps shown on the right.
Grey points indicate electrophysiologically unidentified cells. Circles show
the mean of several measurements for each cell (individual measurements
indicated with crosses). Diamonds at the top of the panel show in vitro data
(cat visual cortex in blue, rat visual cortex in red, mouse hippocampus in
green). Grey squares show simulation results from two Hodgkin–Huxley-
type models with varied sodium channel activation curves and peak
conductances, driven by fluctuating synaptic inputs. Dashed grey line
separates the model from experimentally derived data. Histograms show the
marginal distributions of the in vivo (light grey bars) and in vitro (dark grey
bars) data.

Figure 5 | Cooperative activation of voltage-gated sodium channels can
account for the dynamics of action potential initiation in cortical
neurons. a, Waveform (top) and phase plot (bottom) of action potentials
elicited by fluctuating inputs in a conductance-based model that
incorporates cooperative activation of sodium channels and closed-state
inactivation. Both the action potential onset potential variability and onset
rapidness are comparable to the in vivo recordings in Fig. 2. b, c, Same
model, but without inter-channel coupling (b), and with Hodgkin–Huxley-
like channel activation (c). d–g, Reducing the effective density of available
sodium channels through TTX application reversibly reduces action
potential amplitude and onset rapidness in cortical neurons in vitro. Shown
are action potential waveforms (d) and phase plots of their initial parts (e).
f, Time course of action potential onset rapidness in a cortical neuron
before, during and after TTX application. g, Reversible reduction in onset
rapidness of action potentials by TTX in six neurons. Error bars indicate
s.e.m.
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This model is able to reproduce the key features of cortical action
potential initiation (Fig. 5a–c). With strongly cooperative activation,
voltage-dependent inactivation from closed states, and slow de-
inactivation (recovery from inactivation) of sodium channels, the
simulated action potentials show both a large onset rapidness and
large variability in onset potentials (Fig. 5a). Turning off the inter-
channel coupling made the onset dynamics much shallower, while
leaving onset variability unaffected (Fig. 5b). Hodgkin–Huxley-type
dynamics of action potential onset was recovered when inactivation
and de-inactivation were set to be fast and voltage-independent
(Fig. 5c).

Assuming that channel interactions are distance-dependent in
neuronal membranes, our model predicts that reducing the effective
density of channels should weaken cooperativity, reduce the action
potential onset rapidness and eventually lead to Hodgkin–Huxley-
type onset dynamics. We tested this prediction in vitro, recording
action potentials while reducing the density of available sodium
channels by the application of tetrodotoxin (TTX). As expected, TTX
application led to a decrease in action potential amplitude (Fig. 5d).
More importantly, it also led to a substantial reduction in the onset
rapidness of action potentials (Fig. 5d, e) in all tested cortical neurons
(Fig. 5g), as predicted by our model. Moreover, gradual recovery of
the number of available sodium channels during washout of TTX led
to a gradual increase in action potential onset rapidness (Fig. 5f).
These results cannot be explained by Hodgkin–Huxley-type models,
in which reduction in the sodium channel density modifies only the
amplitude of action potentials and their onset potential, but not their
onset rapidness (see Fig. 3). Thus, in our opinion the fact that the
dynamics of action potential initiation deviates qualitatively from
voltage-dependent single channel activation points towards the
cooperative activation of voltage-gated sodium channels.

Although our results are unexpected from a biophysical perspec-
tive, the combination of rapid dynamics and variable onset potentials
of action potentials is beneficial for the coding of fast signals3,4 (see
also Supplementary Information). With Hodgkin–Huxley-type
dynamics of action potential initiation, the encoding of signals that
vary on a timescale of less than 10 ms requires unphysiologically high
mean firing rates that are likely to be energetically prohibitive17,18.
With action potential onset dynamics as described here for cortical
neurons, much lower mean firing rates can support the encoding of
such rapidly varying signals.

METHODS
In vivo and in vitro experiments. In vivo intracellular recordings were made
using sharp electrodes in adult cats (3.0–4.5 kg). Data from 47 cells were used for
the analysis. In each cell, we recorded responses to the presentation of moving
gratings of different orientations (duration 5–7 s), and periods of spontaneous
activity (10–120 s). Cells were classified functionally as either simple or complex
using the spike response modulation index, and electrophysiologically by their
responses to depolarizing current steps. In vitro, whole-cell recordings were
made with patch electrodes in slices of rat or cat visual cortex and rat or mouse
hippocampus. Data from 17 rat, 3 mouse and 2 cat neurons were analysed.
Computational models. We used two conductance-based Hodgkin–Huxley-
type models5,10, constructed to match the subthreshold membrane potential
dynamics and firing statistics of cortical neurons. We introduced modifications
to the models and varied model parameters over wide ranges in an attempt to
reproduce the experimentally observed dynamics of action potential initiation.
Action potential initiation by cooperative sodium channel activation was
modelled using an effective mean field dynamics for a population of interacting
sodium channels.

Details of experimental procedures and data analysis, and definitions of
the models, their modifications and parameter ranges are provided in the
Supplementary Information.
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AP onset and substantial variability of AP onset potential are found in all cortical cell 

classes and argue that they are genuine characteristics of cortical neurons. 
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Experimental methods 

All experimental procedures used in this study were in accordance with the 

guidelines published in the European Communities Council Directive (86/609/EEC, 

1986) and were approved by a local animal welfare committee (Bezirksregierung 

Arnsberg, Germany).  

In vivo intracellular recordings were made in adult cats (3.0-4.5 kg). Surgery and 

animal maintenance were similar to those used in our previous studies (Volgushev et 

al., 2000, 2002). Anaesthesia was induced with a mixture of ketamine hydrochloride 

(Ketanest, Parke-Davis GmbH, Germany, 0.3 ml/kg, i.m.) and Rompun (Bayer, 

Germany, 0.08 ml/kg, i.m.). Surgery was started after stable anaesthesia with 

complete analgesia was achieved. Sometimes this required additional doses of the 

anaesthetic. After tracheal and arterial cannulations, the animal was placed in a 

stereotaxic frame, the skull was exposed and a craniotomy (about 5 mm diameter) 

was done over area 17 of the visual cortex centred at P4/L3 (Horsley-Clark). A brass-

cylinder (diameter 20 mm) was cemented over the opening. The hydraulically driven 

microelectrode holder (Narishige Instruments, Japan) was mounted directly onto the 

skull with screws and dental cement. All wound edges and pressure points were 

treated with a local anaesthetic (Xylocaine, Astra GmbH, Germany) every 5-8 hours. 

Muscle relaxation with alcuronium chloride (Alloferin, ICN Pharmaceuticals, 

Germany) and artificial respiration were started either at this point, or earlier during 

the surgery, to avoid respiratory depression due to additional doses of the 

anaesthetic. Thereafter adequate anaesthesia was maintained throughout the 

experiment by a gas mixture of N2O:O2 (70:30) and 0.2-0.4% halothane (Eurim-

Pharm, Germany). Artificial respiration was performed with a cat/rabbit ventilator 
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(Model 6025, Ugo Basile, Biological Research Apparatus, Comaria-Varese Italy). 

The volume (20-40 cm3) and the rate of stroke (7-15 per minute) were adjusted to 

maintain end-tidal CO2 between 3.5 and 4.0%. End-tidal CO2, body temperature, 

heart rate, blood pressure and EEG were continuously monitored. Body temperature 

was maintained around 37-38°C. Fluid replacement was achieved by the intraarterial 

administration of 6 ml of Ringer solution containing 1.25% glucose, per hour. 

Paralysis was maintained by i.a. infusion of alcuronium chloride (0.15 mg/kg/h) in 

Ringer's solution. The experiments lasted usually 2-4 days. At the end of the 

experiment, animals were sacrificed with an overdose of anaesthetics.  

In vivo intracellular recordings from visual cortical neurons were made with sharp 

electrodes filled with 2.5M potassium acetate, or 1M potassium acetate and 1% 

biocytin (Sigma-Aldrich GmbH, Germany). Electrode resistance was 70-120 MΩ. 

After amplification (Axoclamp 2B, Axon Instruments, USA, and additional DC-

amplifier, total gain x20 to x100) and low-pass filtering at 3-5 kHz, the data were 

digitized at 10-40 kHz and stored on a computer (PC-586; Spike-2, Cambridge 

Electronic Design, Great Britain). Visual stimuli (moving gratings of different 

orientation and direction of movement) were generated on the screen of a second 

computer using subroutines of the Vision Works stimulation system (Cambridge 

Research Systems, New Hamshire, USA). Parameters of visual stimulation, sequence 

of stimuli (randomized) and communication to the data acquisition computer were 

controlled by custom-written software. The screen was positioned 57 cm in front of 

the animal and was focussed on the retina using appropriate lenses. Background 

illumination was 2.37 cd/m2. Luminance of the dark and light stimuli was 0.02 and 

12.8 cd/m2, respectively. Stimuli were presented monocularly to the dominant eye. 

Cells were classified as simple or complex according to standard criteria (Orban, 

1984) and by using the spike response modulation index, defined as a half of the 
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peak-to-peak modulation divided by the mean increase of the spiking frequency 

during presentation of an optimal moving grating (Dean & Tolhurst, 1983; Skottun et 

al., 1991).  

 

In vitro intracellular recordings were made in slices of rat or cat visual cortex and rat 

and mice hippocampus. The details of slice preparation and recording were similar to 

those previously used (Volgushev et al., 2000). The Wistar rats or mice (P21-P35 

Charles River GmbH, Suzfeld, Germany) were anaesthetized with ether, decapitated 

and the brain was rapidly removed. One hemisphere was mounted onto an agar block 

and 350-400 μm thick sagittal slices containing the visual cortex and/or hippocampus 

were cut with a vibrotome (TSE, Kronberg, Germany or Leica, Bensheim, Germany) 

in ice cooled oxygenated solution. Slices of the cat visual cortex were prepared from 

brains obtained at the end of acute in vivo experiments in which one of the 

hemispheres remained intact. The animal was deeply anaesthetised by increasing 

halothane concentration in a N2O:O2 (70:30) gas mixture to 3-3.5% and perfused 

with an ice-cooled oxygenated solution of the same ionic composition as that used 

for slice preparation. The visual cortex of the intact hemisphere was exposed, and a 

block of tissue containing the visual cortex was cut, removed from the cat, and slices 

(400-500 µm) were prepared as above. After cutting, the slices were placed into an 

incubator where they recovered for at least one hour at room temperature before 

moving on of them in the recording chamber. The solution used during the 

preparation of the slices had the same ionic composition as the perfusion/ 

extracellular solution. It contained (in mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 

1.25 NaH2PO4, 25 NaHCO3, 25 D-glucose and bubbled with 95% O2 and 5% CO2. 

Recordings were made with the slices in submerged conditions at 32-35°C or at room 

temperature. Recordings at room temperature were performed to check if this factor 
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was critical for the observed fast dynamics of action potential initiation. Temperature 

in the recording chamber was monitored with a thermocouple positioned close to the 

slice, 2-3 mm from the recording site. In experiments with tetrodotoxin (TTX), it was 

added to the extracellular solution at concentrations 10-300 nM. Whole-cell 

recordings using patch electrodes were made from neurons of different morphology 

(pyramidal, non-pyramidal) and located in different layers, selected under visual 

control using Nomarski optics and infrared videomicroscopy (Dodt & 

Zieglgänsberger, 1990; Stuart, Dodt & Sakmann, 1993). The patch electrodes were 

filled with K-gluconate based solution (in mM: 127 K-Gluconate, 20 KCl, 2 MgCl2, 

2 Na2ATP, 10 HEPES, 0.1 EGTA and 0.3-1.0% biocytin) and had a resistance of 3-6 

MΩ. Action potentials were evoked by depolarising current steps or by synaptic 

stimulation. Synaptic responses were evoked by electric shocks applied through 

bipolar stimulation electrodes located 0.5-1.5 mm below or lateral to the recording 

site. After amplification using Axoclamp-2A (Axon Instruments), and low-pass 

filtering at 3-5 kHz, data were digitised at 10-40 kHz and fed into a computer (PC-

486; Digidata 1200 interface and pCLAMP software, Axon Instruments). The 

EGTA, HEPES, potassium gluconate, Na2ATP and TTX were obtained from Sigma, 

and the remaining chemicals were obtained from JT Baker BV (Deventer, Holland). 

 

Data sample  

The sample of neurons analysed contained different types of cells. In the in vivo data 

from cats, we classified some of the recorded cells electrophysiologically, according 

to their intrinsic membrane properties, which were assessed from responses to 

injection of depolarising current steps. All electrophysiological types of cells 

described so far in the neocortex were represented in our sample, including regular 
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spiking (RS), fast spiking (FS), intrinsically bursting (IB) and chattering or fast 

rhythmic bursting (FRB) neurons (Fig. 4 in the paper). Some of the neurons were 

labelled with biocytin during the recording. Among these neurons, cells of different 

morphological types and different location within cortical layers were encountered. 

Microphotographs in Fig. 1SI give examples of a layer V pyramidal cell, a layer IV 

spiny stellate cell and a layer III pyramidal cell from our sample.  

In vitro recordings were made in slices of rat and cat neocortex and rat and mouse 

hippocampus. We made whole cell recordings with patch electrodes under visual 

control. This allowed visual pre-selection of cells of different morphological types 

and layer location. According to the classification based on the intrinsic membrane 

properties, three types of neocortical neurons were encountered in vitro: regular 

spiking (RS), fast spiking (FS) and intrinsically bursting (IB) cells.  

The diversity of our in vivo and in vitro data, which include cortical neurons of 

different morphology, layer location and intrinsic membrane properties, makes the 

sample representative. 



 

 

Fig 1SI: Microphotographs of examples of a Layer V pyramidal cell, a layer IV spiny 

stellate cell and a layer III pyramidal cell from our sample. In each panel, the images 

to the right were taken at larger magnifications. 

Data analysis  

We analyzed data from 47 cells recorded in vivo. In each cell, we recorded responses 

to the presentation of moving gratings of different orientations (duration 5-7s), and 

periods of spontaneous activity (10-120s). Altogether, we analyzed 409 in vivo 

recordings. For comparison, we also examined data from 22 cells recorded in slices 

(17 in rat, 3 in mouse, 2 in cat), resulting in 70 in vitro recordings. 
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Each recording contained at least 5 action potentials (APs), and the AP onset 

potentials and AP peak amplitudes fulfilled the following stationarity criterion. The 

stationarity of each recording was tested by computing the standard deviation of the 

values of the MP, the AP peak potentials and the onset potentials for increasing 

window sizes ranging from 100ms to 7s. A recording was classed as stationary if 



the average standard deviation in peak amplitude and spike onset potential differed 

by less than 10% for window sizes between 100ms and 7s. 

All of our recordings fulfilled this criterion and did not exhibit slow drifts of the MP, 

of the AP onset or peak potential. 

All recordings were interpolated to a resolution of tΔ = 10μs using the Matlab pchip 

interpolation filter (Matlab V6.5 (R13)). For each interpolated recording, we 

computed the temporal derivative dV/dt:  

(1)  ( ) 1 1( ) /(2n n n
dV t V V
dt + −= − Δ )t  

In Fig 1-3, this temporal derivative is graphed against the instantaneous MP, yielding 

a “phase plot” representation (see main text).  

 

In each recording, we first detected APs using a voltage threshold set at –30mV. For 

each AP, we then determined the onset potential using as a criterion the point where 

the velocity of the AP exceeded 10mV/ms. For all analyses, we took only APs into 

account that were separated from preceding APs by more than 30ms. 

 

The AP onset rapidness shown in Fig. 4 was determined as follows: For each AP a 

line was fitted to the AP curve in the phase plane (V  vs. dV/dt) representation at 

dV/dt=10 mV/ms. The slope of this line is defined as the onset rapidness of a single 

AP. The onset rapidness for a recording is then given as the mean onset rapidness of 

all APs in the recording. The onset rapidness in vitro was measured at temperatures 

32-35°C and at room temperature. The AP onset span of a recording is defined as the 

difference between maximum and minimum AP onset potential. In in vitro 

experiments, APs were mostly elicited by constant current injections and the 
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membrane potential exhibited no fluctuations. Thus the onset span was assessed only 

in vivo.  

Action potential onset rapidness and onset variability are genuine 

properties of cortical neurons 

In the paper, we show that the large AP onset rapidness together with the large AP 

onset potential variability observed in in vivo intracellular recordings from cortical 

neurons is outside the range of behaviours that can be described by Hodgkin-Huxley 

type models. We are not the first to observe these features of cortical APs per se. 

Sharp, step-like onsets of action potentials recorded in vivo can be seen in previous 

publications from several laboratories, as soon as APs are shown at fine temporal 

resolution (see for example, cat visual cortex: Fig. 2 in Gray, McCormick 1996 

Science 274:109-113; Fig. 5 D,E in Bringuier et al., J.Physiology 1997, 500:751-774; 

Fig. 2A in Azouz, Gray 1999; cat somatosensory cortex: Fig. 6D, 8B in Yamamoto 

et al 1990, Exp. Brain Res. 80:12-22; rat somatosensory cortex: Fig.11 in Brecht et 

al., J. Physiology 2003 553:243-265; cat area 7: Fig. 4 in Timofeev et al., 

Neuroscience 2002, 114:1115-1132). Also the large variability of AP onset potentials 

has been reported before (Azouz, Gray 1999, 2000; Volgushev et al. 2002) and can 

be seen in many of the examples cited above. Nevertheless, it is important to assure 

that these features represent genuine properties of cortical neurons and are not caused 

by experimental manipulations or other artefacts.  

 

In is hard to imagine that the large AP onset rapidness represents a measurement 

artefact. First, the recording circuit in electrophysiological experiments exhibits 

properties of a low pass filter due to resistance and capacitance of the recording 

electrode. It is thus expected to rather wash out rapid acceleration of membrane 
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potential changes. Second, rapid AP onsets are observed using both sharp and patch 

electrodes, that differ considerably in their electrical properties. Third, direct 

evidence that rapid AP onsets are not induced by measurement apparatus comes from 

the in vitro experiments with TTX described in the paper (Fig.5). There, the AP onset 

dynamics was observed to change from in vivo-like rapid onsets in control conditions 

to gradual Hodgkin-Huxley type onsets during application of low concentrations of 

TTX and back to rapid onsets upon washout of the drug. These reversible 

modifications of AP onsets were observed in every cell tested with TTX, in an 

unmodified setup and under continuous recoding. Together these observations 

indicate that large AP onset rapidness is a genuine property of cortical neurons. 

 

Various lines of evidence from our experiments as well as published results of other 

labs indicate that the variability of AP onset potentials is also not of an artefactual 

nature. In principle, it is conceivable that a non-stationary potential drop between the 

reference electrode and the extracellular space of the measured cell or a non-

stationary state of the measurement electrode might bias the variance of AP onset 

potentials towards increased values. However, these factors would manifest 

themselves as systematic trends. Further, such general changes of electrode offset 

potential would shift all measured potential values, including mean membrane 

potential and AP peak. In our analyses, we therefore applied strict stationarity criteria 

such that all quantifications of AP onset dynamics were based on recordings that 

were very stable (c.f. above). Examples of widely different AP onset potentials 

obtained under stationary recording conditions are apparent in Figure 2 (inset). There 

three APs were superimposed such that the times of peak potentials were aligned. 

While the peak potentials of the APs are virtually identical, the onset potentials of the 

three APs differ by up to 8mV For our data, this is a representative example. In 
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general, we find that AP peak and onset potentials are often uncorrelated (data not 

shown). Additional evidence that AP onset variability is not due to recording non-

stationarity, but is a genuine property of neocortical neurons is provided by the fact 

that onset potentials of two APs directly succeeding one another and separated by 

short inter-spike-intervals (<25 ms) are substantially different, as predicted by 

incomplete deinactivation of sodium channels. We note here, that to exclude the 

influence of this type of variability we did not include in our analyses the APs 

appearing less than 30 ms after the preceding spike. Furthermore, similar AP onset 

potential variability was recently observed in vitro in dynamic clamp experiments (de 

Polavieja et al., 2005) that were designed to minimize sources of non-stationarity. De 

Polavieja stimulated cortical neurons with temporally fluctuating inputs and observed 

onset potential variability indistinguishable from in vivo recordings. In such in vitro 

experiments the stability of the potential measurement is well controlled and AP 

onset potential variability is observed even if the stability of the recording is 

maximized by using double-electrode impalement of single neurons, where one 

electrode is used for membrane potential measurement and another one for 

dynamical electrical stimulation.  

 

In summary, these facts show that rapid AP onsets and large variability of AP onset 

potentials are robust phenomena reproducible under a wide variety of recording 

conditions. Most importantly, AP onset rapidness can be artificially and reversibly 

turned down in cells recorded in vitro. Large AP onset potential variability is 

observed even if the stationarity of the recording is controlled to the highest possible 

degree. We are thus confident that large AP onset rapidness and onset potential 

variability are genuine features of AP initiation in cortical neurons. 
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Unique features of action potential initiation in 

cortical neurons 

Björn Naundorf, Fred Wolf, Maxim Volgushev 

Online supplementary information (Part 2 of 3):  

Hodgkin-Huxley type models 

In this part of the Supplementary Information we describe the Hodgkin-Huxley type 

conductance based models used in the study and the modifications which were 

applied to these models, such as changes of sodium channel activation curves and 

single channel stochasticity. We also describe parameter ranges explored. Finally, we 

show that rapidness and onset potential variability of AP initiation are strongly 

antagonistic in the whole class of Hodgkin-Huxley type conductance based models. 
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Hodgkin-Huxley type conductance based models 

For the simulations, we used two different models (Model A and B), which were 

constructed to match the subthreshold MP dynamics and the firing statistics of 

cortical neurons. 

Model A (Destexhe et al.) 

Model A is a single compartment Hodgkin-Huxley type neuron model (Destexhe et 

al, 1999). As shown by Destexhe et al.,1999, this model reproduces the statistics of 

MP fluctuations and spike-trains of neocortical neurons in vivo. In this model, the 

dynamics of the MP is given by,  

(2)  ( ) 1
m L L Na Kd M

dVC g V E I I I A
dt

−= − − − − − − synI , 

with the current densities 

(3)  ( )3
N a NN aI g m h V E= − a  

   ( )4
Kd KKdI g n V E= −  

  ( )M KMI g p V E= − , 

where Cm=1 μF/cm2 is the specific membrane capacity, gL=0.045 mS/cm2 is the leak 

conductance density, and EL=−80 mV is the leak reversal potential. INa is the voltage-

dependent Na+ current and IKd  is the ‘delayed-rectifier’ K+ current, which underlie 

the AP repolarisation. IM is a non-inactivating K+ current causing spike frequency 

adaptation and A is the total membrane area, which was 34636 μm2.  are 

dynamical activation variables (for details see Destexhe et al., 1999).  

, , ,m h n p

 

The total synaptic current consists of excitatory and inhibitory parts: 
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(4)  ( )( ) ( )( )syn e e I II g t V E g t V E= − + − , 

with the reversal potentials  and . The conductances  and  are 

Ornstein-Uhlenbeck processes with correlation times 

eE IE )(tge )(tgI

eτ  and Iτ .  

 

To compare the AP onset dynamics between cortical neurons and the model in the 

presence of a fluctuating input (e.g. Fig. 1c, Fig. 2e,f), we used this model with 

exactly the same parameters as in the above paper. 

 

Robustness against variations in model parameters and structure  

By various modification of the models we tried to achieve a better match of 

recorded and simulated APs. As described in the subsequent sections, we modified 

the sodium current activation curve and the peak conductances, included various 

adaptation currents (Wang et al. 2003), replaced the simple mean channel kinetics 

with a stochastic dynamics of population of individual sodium channels (Schneidman 

et al. 1998), assessed the impact of state-dependent instead of voltage-dependent 

inactivation of sodium channels (Patlak et al. 1991). None of these modifications 

brought the model behaviour anywhere close to reproducing the two salient features 

of the recorded APs.  

To study the impact of sodium channel activation on the AP initiation we modified 

the model described above by changing the Na-peak conductance Nag  (by factors of 

2, 5, 10, 20) and the  activation curve, by changing its steepness by factors of 

0.2, 0.5, 1.5, 2, 5, 10. 

( )m t

The -term describing the activation of the sodium channels was replaced by the 

sodium activation curve measured by Huguenard et al. (1989), with the two 

parameters  and : 

3m

k 1/ 2V
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(5)  1
1/ 2(1 exp(( ) / ) ( )( )Na NaNaI g V V k n t V−= + − + + Δ − E  

 

We used combinations of  (changed by factors of 0.2, 0.5, 1.5, 2, 5, 10) and  (-

10mV, -5mV, 6mV, 12mV, 20mV, 22mV) to change the AP onset rapidness while 

preserving a stationary firing rate of approximately 10Hz. In addition, the potassium 

peak conductance was changed by factors of 2 and 5 to assess its impact on the onset 

potential variability.  

k Δ

Model B: Adaptation currents and AP initiation (Wang et al.) 

To assess the impact of adaptation currents on the response variability in Hodgkin-

Huxley type models, we also implemented a two-compartmental model including 

adaptation currents developed by Wang et al. (2003).  

The model has two compartments, one representing the soma and the initial segment 

( sV ) and the other representing the dendritic tree ( ). The AP generating currents 

are located in the soma. High threshold 

dV

2Ca + , as well as 2Ca + -dependent  

currents are present in both compartments. In addition, the somatic compartment 

incorporates a slow -activated 

K +

Na+ K +  current. 

The dynamics of the model is defined by the following differential equations: 
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, ,

2
2

, , ,

(1) ( / )( ) ( )

(2) ( ( )(1 ) ( ) )

(3) ( ( )(1 ) ( ) )

[ ](4) [ ] /

[ ](5) 3 ( ([ ] ))

(

s
m L Na Ca s KCa s KCa c s d ext

h h s h s

n n s n s

s
Ca s Ca s s Ca s

Na Na pump Na eq

dVC I I I I I g p V V I
dt

dh V h V h
dt
dn V n V n
dt
d Ca I Ca

dt
d Na I R Na

dt

φ α β

φ α β

α τ

α ϕ

+
+

+
+

= − − − − − − − +

= − −

= − −

= − −

= − −

t

, ,

2
2

, , ,

6) ( /(1 ))( )

[ ](7) [ ] /

d
m L Ca d KCa d c d s

d
Ca d Ca d d Ca d

dVC I I I g p V V
dt

d Ca I Ca
dt

α τ
+

+

= − − − − − −

= − −

 

 

The membrane capacity is denoted by , the external current is 21 /mC F cμ= m ( )extI t  

and the leak current is ( )L L LI g V V= − . The coupling current between the soma and 

the dendrite is proportional to dV Vs− , with the coupling conductance 

. The parameter p=(somatic area/total area)=0.5. The maximum 

conductances are given by , 

22mS/cmcg =

0.1Lg = 45Nag = , 18Kg = , , , 1Ca s Ca dg g= = , 

, . The reversal potentials are given by , 

, , . 

, , 5KCa s KCa dg g= = 25mS/cmKNag = 65LV = −

55NaV = 80KV = − 120mVCaV =

The sodium current in the somatic compartment is given by 

3( ) ( )Na Na s s NaI g m V h V V∞= −  with ( ) /( )s m m mm V α α β∞ = + , 

( ) 0.1( 33) /(exp( 0.1( 33)))m V V Vα = − + − +  and ( ) 4exp( ( 58) /12)m V Vβ = − + . The 

inactivation variable  is described by h ( ) 0.07(exp( ( 50) /10))h V Vα = − +  and 

( ) 1/(exp( 0.1( 20)) 1)h V Vβ = − + + . The delayed rectifier is given by 

4 ( )K K s KI g n V V= −  with the activation variable n  given by 

( ) 0.01( 34) /(exp( 0.1( 34)) 1)n V V Vα = − + − + −  and 
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( ) 0.125exp( ( 44) / 25)n V Vβ = − + . The temperature factors are 4h nφ φ= = . The time 

constants are ( ) 1/( )x x xVτ α β= + . 

The high-threshold calcium current is given by 2 ( )( )Ca Ca CaI g v V V V∞= −  with the 

activation variable . The voltage-independent, 

calcium activated potassium current is given by 

( ) 1/(1 exp( ( 20) / 9))v V V∞ = + − +

2 2( ) ([ ] /([ ] ))( )KCa KCa i i D KI V g Ca Ca K V V+ += + − , with 30 MDK μ= . The intracellular 

calcium concentration   is assumed to be governed by a linear equation with 2[ iCa + ]

Caα  proportional to the ratio of the membrane area and the volume immediately 

beneath the membrane,  in the dendritic compartment 

and  in the somatic compartment. The extrusion and 

buffering processes are described collectively by a first-order decay process with a 

time constant 

-1 20.002 M(ms A) cmCaα μ μ=

-1 20.00067 M(ms A) cmCaα μ μ=

80msCaτ =  in the dendrite and  240msCaτ = in the soma. 

The intracellular  [  concentration is incremented by ]iNa+ Na+  influx through  NaI . 

The -dependent -current is determined by Na+ K + ([ ] )( )KNa KNa i s KI g Na V Vω +
∞= − , 

with the activation function  

 

(8) max

50

([ ] )
1 ( /([ ] ) Hi n

i

PNa
EC Na

ω +
∞ +=

+
 

 

max 0.37P =  defines the maximum opening probability of the channels, 

 is the [  for half activation and 50 38.7mMEC = ]iNa+ 3.5Hn =  is the Hill coefficient. 

The influx of [  is controlled by ]iNa+
Na NaIα−  with . 43 10 mMNaα −= ⋅

The extrusion of [  by the ion pump was modelled as 

, where 

]iNa+

3 ( ([ ] ) ([ ] )pump Na i eqR Na Naϕ ϕ+− − + 3 3 3( ) /( )Na px x x Kϕ = − ,  and 15mMpK =
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46 10 mM/mspumpR −= ⋅ . The sodium concentration at the resting state is given by 

. [ ] 8mMeqNa+ =

This model was driven by a fluctuating synaptic input current using the same point 

conductance model as in (Destexhe et al., 1999) and described above. The model was 

subsequently modified in the same way as the first model, i.e. the steepness of 

voltage-dependence of the activation was increased by factors of 0.2, 0.5, 1.5, 2, 5, 

10 while preserving a stationary firing rate of approximately 10 Hz, by either 

changing the mean input current or shifting the activation curve as in Model A. 

In both models, we simulated 5s long periods of neuronal activity, whereby in the 

second model, care was taken that the adaptation currents where statistically 

stationary. The simulated data were then analyzed using the same procedures as the 

experimentally obtained data. 

 

All numerical simulations were performed in C++, all analyses were done using 

Matlab V6.5 (R13). For the numerical integration of the differential equation we 

used an Euler integration with an integration step of . 310 ms−

Channel noise and AP initiation  

In Hodgkin-Huxley type models, the ensemble dynamics of voltage-gated ion 

channels is described by products of continuous activation and inactivation variables 

which, in turn, are modelled as first order kinetics. Since natural membranes have a 

limited number of channels one expects MP fluctuations reflecting  discrete channel 

opening and closing events (Chow & White 1996; Schneidman et al., 1998).  Can 

this discrete switching explain the AP initiation observed in cortical neurons? To 

answer this question, it is instructive to first assess how many channels on average 

are involved in the generation of an AP. The conductance of a single voltage-gated 
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Na-channel is estimated to be on the order of γ = 20 pS (Neumcke & Stämpfli, 1982). 

From the total sodium current flowing through a patch of the membrane, the number 

of channels in a membrane area of size 200 µm² in a pyramidal cell has been 

estimated as approximately N = 12000, yielding a total conductance of 240 nS 

(Schneidman et al, 1998).  

 

To assess if intrinsic channel noise can account for the AP initiation in cortical 

neurons, we implemented discrete Markov models, in which the opening and closing 

of individual sodium and potassium channels was simulated (Schneidman et al., 

1998). The kinetic model for a population of sodium channels that reproduces the 

behaviour of a Hodgkin-Huxley type model for high channel densities is given by the 

following scheme (Patlak, 1991):  

0 1 1 1 2 1 3 1

0 0 1 0 2 0 3 0

3 2

2 3

3 2

2 3

m m m

m m m

h h h h h h h h

m m m

m m m

m h m h m h m h

m h m h m h m h

α α α

β β β
α β α β α β α

α α α

β β β

β  

In this description, each channel has 8 possible states and i jm h⎡ ⎤⎣ ⎦  is the number of 

channels that are in state . An individual channel is open, when it is in the state 

, but closed in all other states. Thus, the total sodium membrane conductance is 

given by 

i jm h

3 1m h

3 1[ ]Na Nag m hγ= . 

The population of voltage-gated potassium channels is modelled by the following 

kinetic scheme: 

0 1 2 3

4 3 2

2 3 4

n n n n

n n n n

n n n n 4n
α α α α

β β β β
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Here, each channel has 5 possible states. A channel is open when it is in the state . 

The total potassium conductance is then given by 

4n

4[ ]K Kg nγ= .  

The rates xα  and xβ  are the standard Hodgkin-Huxley transition rates (Hille, 2001). 

In each time step  of the simulation, the number of channels tΔ ABnΔ  that switch 

between states A and B with rate r is determined by choosing a random number from 

a binomial distribution: 

(9)  ( )Prob( ) (1 )AB A ABA n n
AB

AB

n
n p p

n
Δ −⎛ ⎞

Δ = −⎜ ⎟Δ⎝ ⎠
nΔ

where  denotes the number of channels in state A and p=rΔt. An

In Fig. 2SI, results of a simulation of 3 conductance-based models with the number 

of sodium channels equal to (12000), half (6000) and 10 times lower (1200) than the 

experimental estimate, and a fixed number of potassium channels (3600) are used. 

The same fluctuating current was injected into the three models. With a decreasing 

number of channels, the phase plot trajectories became noisier and the apparent 

variability of the onset potential larger, (B,D,F), but the steepness of the AP onsets 

did not change. With none of the three models, the AP onset dynamics matched the 

values for the onset rapidness and onset potential variability, observed in in vivo 

recordings.  

 

The activation scheme described above is the kinetics that corresponds to the 

classical Hodgkin-Huxley model in the limit of high channel density and negligible 

stochastic fluctuations. This scheme, however, is known to incorrectly represent the 

inactivation of sodium channels, which is state-dependent rather than voltage-

dependent (Hille, 2001). To test, the impact of state-dependent inactivation, we also 

implemented a scheme which includes more dynamical steps for activation and 
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inactivation (Patlak, 1991, Model 7). With none of the schemes tested, the AP onset 

rapidness substantially changed. Channel noise is thus not a plausible candidate to 

explain the AP onset dynamics observed in vivo (e.g. Fig. 2 in the paper). 
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Fig 2SI: Impact of channel noise on the onset dynamics of APs in a conductance 

based neuron model. (A,C,E) Voltage trace of a model neuron with the same 

fluctuating synaptic background input and a different number of voltage-gated 

sodium channels (A: 12000, C: 6000, E: 1200) and 3600 potassium channels. 

(B,D,F): Corresponding phase plots. With a decreasing number of sodium channels 

the AP onset dynamics becomes noisier. Both, the AP onset span and the onset 

rapidness remain unaffected. 

AP onset variability and steepness are antagonistic in Hodgkin-

Huxley type models 

In conductance based models, the dynamics of the MP  is given by: ( )V t

 

(10) 3( ) / ( ) ( ) ( ( ))Na Na KCdV t dt g h t m t V V t I= − + +  

 

Here C  denotes the membrane capacity,  the sodium channel peak conductance, 

 the sodium channel activation and  the inactivation. The activation and 

inactivation follow a first order kinetics, where the time constant of the activation 

Nag

( )m t ( )h t

( )m Vτ  is typically on the order of 0.2ms and the inactivation time constant ( )h Vτ , as 

well as the time constants of all other channels, are typically much larger.  

 

During the initial AP phase, the maximum rate of change of the MP can thus be 

estimated by replacing  by its steady state value  and replacing the 

inactivation variable by a constant : 

( )m t ( )m V∞

0h

 

(11)  3
0 0( ) / ( )( ( ))Na NadV t dt I g h m V V V t∞≤ + −
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Right at the AP onset, the sodium activation curve starts exponentially: 

(12) 
3 1

1/ 2

1/ 2

( ) (1 exp( ( ) / ))
exp(( ) / )

m V V V k
V V k

−= + − −
−

 

A multiplication of  by a factor G is therefore equivalent to a shift of the 

whole curve by . For APs with a gradual onset (

3( )m V

logk G 6k = ), a shift of 10mV 

would therefore require a 5-fold change in the effective sodium peak conductance, 

while for more rapid onsets ( ) it would require a 22000-fold change. 1k =
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Unique features of action potential initiation in 

cortical neurons 

Björn Naundorf, Fred Wolf, Maxim Volgushev 

Online supplementary information (Part 3 of 3):  

Cooperative channel activation 

In this part of the Supplementary Information we introduce a model of AP initiation 

by cooperative activation of voltage-gated sodium channels and characterize its basic 

properties. Then we describe the computational consequences of the characteristic 

features of cortical action potential initiation. Using a novel phenomenological 

neuron model, we show that these features allow a neuronal population to encode 

rapidly varying signals and to suppress responses to slowly varying stimuli. 
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AP initiation with cooperative sodium channel activation 

The large AP onset rapidness typical of cortical APs suggests that during the initial 

phase of APs, sodium channels open in a coordinated fashion. To investigate whether 

cooperative sodium channel activation can quantitatively explain the co-occurrence 

of a large AP onset span and a large AP onset rapidness, we constructed and 

analysed a model for AP generation, in which sodium channel activation could be 

varied between independent and cooperative gating. In the model, individual sodium 

channels open (close) either independently of each other or cooperatively, i.e. the 

opening (closing) of one channel increases the probability of neighbouring sodium 

channels to also open (close). Our model is based on a model of single sodium 

channel gating introduced by Aldrich, Corey and Stevens (1983). The single channel 

model incorporates state-dependent inactivation from the open state, voltage-

dependent inactivation from the closed state and is consistent with sodium channel 

activation curves and channel open times obtained from patch recordings (Aldrich, 

Corey and Stevens 1983; Martina and Jonas 1997). In the cooperative activation 

model, an individual channel i  is coupled to K  neighbouring channels such that the 

opening of each of them shifts the activation curve of channel  by a voltage shift 

towards more hyperpolarized values. With 

i

J− 0J mV= , the model describes 

statistically independent single channel activation. With , channels are 

activating in a cooperative fashion. To model AP generation, mean field equations 

for the resulting sodium current were incorporated into the current balance equation 

of a membrane compartment. The compartment contained - besides the sodium 

channels - a large leak conductance. For simplicity, the model contains no voltage 

dependent potassium channels as their inclusion leaves the nature of AP onsets 

unaffected but complicates the analysis. In the following, we describe the 

0J mV>
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construction of the model and its main properties. As shown in the paper and below, 

(1) there is a critical coupling strength above which the current voltage relationship 

of an ensemble of sodium channels exhibits a step-like activation, deviating from the 

activation curve of an isolated channel.  (2) In a neuronal membrane this leads to the 

generation of APs exhibiting a large onset rapidness. (3) Voltage-dependent 

inactivation from closed states and slow deinactivation of sodium channels lead to a 

large AP onset span. The model, thus does not exhibit an antagonism between AP 

onset rapidness and onset variability.  



 

Figure 3SI (a) State transition scheme of the single sodium channel model. (b) 

Modelling inter-channel cooperativity: In the coupled model, the opening of 

neighbouring channels shifts the single channel activation curve to more 

hyperpolarized potentials such that the probability of channel opening at a given MP 

is increased. 

 

The single channel model 

Our model of cooperative sodium channel activation is based on a single channel 

model originally introduced by Aldrich, Corey and Stevens (1983). Its state transition 

scheme (Fig. 3SI a) has three states: open, closed and inactivated and incorporates 

three types of state transitions: voltage-dependent activation and deactivation, 

voltage-independent inactivation from the open state, and voltage-dependent 
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inactivation from the closed state and de-inactivation from the inactivated to the 

closed state.  

Voltage-independent inactivation from the open state occurs with rate 1
Iτ − . 

Transitions between closed and open states and between inactivated and closed states 

occur with rates ( )A Vα  (opening), ( )A Vβ (closing) and  ( )CI Vα (de-inactivation), 

( )CI Vβ (inactivation), respectively (Fig. 3SI a). The dynamics of a population of such 

channels is described by kinetic equations for the fraction of open channels and 

the fraction of available channels

( )O t

( )H t  

( ) ( )
( ) ( )

1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
A I A

CI CI I

O t V H t O t V O t

H t V H t V H t O t O t

α τ β

α β

−

−

= − − +

= − − − −

�

� τ
 

For discussing model properties it is useful to consider two characteristic functions: 

The instantaneous single channel activation curve,  and the equilibrium 

inactivation function 

( )o V∞

( )I V∞ . If the time scale of activation is shorter than the 

inactivation time constant Iτ ,  the activation of channels from the available fraction, 

( )H t , is described by the instantaneous single channel activation curve 

(13)  . ( )( ) ( ) / ( ) ( )A A Ao V V V Vα α β∞ = +

For constant membrane potential and negligible sodium channel activation, the 

equilibrium inactivation function 

(14)  ( )( ) ( ) / ( ) ( )CI CI CII V V Vβ α β∞ = + V  

describes the equilibrium fraction of inactivated channels as a function of membrane 

potential. 
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Mean field model of cooperative gating 

Based on the above model of single channel gating we formulated a mean field 

model of cooperative sodium channel activation. To derive this model, we assumed 

that each channel is coupled to K  neighbouring channels. Opening of any of these 

neighbours is then assumed to cause a shift of the instantaneous activation curve of 

the channel by  towards lower membrane potentials. The activation and 

deactivation rates of channel  are then, 

J−

i

(15)  
( ) ( )

( ) ( )

A
i A ij j

j

A
i A ij j

j

V V J

V V J

α α σ

β β σ

= +

= +

∑

∑
 

where  if channels  andijJ = J i j are coupled, 0ijJ =  else, and jσ  is a binary single 

channel state variable labelling channels in the open state: 1(0)jσ =  if channel j  is 

open (not open). A mean field model of cooperative channel gating is obtained by 

replacing the voltage shift term ij j
j

J σ∑  by its population average ( )KJ O t . The 

dynamics of the open and available fractions are then, 

(16)  
( ) ( )

( ) ( )

1

1

( ) ( ( )) ( ) ( ) ( ( )) ( )

( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
A I A

CI CI I

O t V KJ O t H t O t V KJ O t O t

H t V H t V H t O t O t

α τ β

α β τ

−

−

= + − − + +

= − − − −

�

�
. 

The case of independent gating is recovered if the coupling strength is set to 

zero, . For , the cooperative case, the dynamics of the open and available 

fraction does not passively follow the voltage time-course but contains a positive 

feedback interaction between sodium channels. 

0J = 0J >
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Figure 4SI: Schematic representation of the collective activation curves of sodium 

channels for varying degrees of inter-channel coupling. 

The collective sodium activation curve 

The impact of cooperative gating is revealed by considering the fraction of open 

sodium channels relative to the available fraction, as a function of the MP for 

, subsequently called the collective sodium activation curve. Assuming a 

temporally constant available fraction , the collective sodium activation curve 

satisfies the equation 

1 0Iτ − =

0H

(17)  , 0( ) ( ( ))J Jo V o V H KJ o V∞ ∞ ∞= +
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where  is the instantaneous activation curve of independent channels. This 

equation is a self-consistency relation for . In the uncoupled case, , the 

collective sodium activation curve equals the single channel activation curve. For 

, the collective sodium activation curve  becomes progressively steeper 

than  with increasing values of and develops a discontinuous jump at a 

critical potential when the coupling strength becomes larger than a critical 

( )o V∞

( )Jo V∞ 0J =

0J > ( )Jo V∞

( )o V∞ J

*V J



value  (Fig. 4SI). This means that for a supercritical coupling , a small 

increase in MP can cause the opening of a macroscopically large fraction of sodium 

channels, indicating a phase transition in the collective behaviour of the population 

of channels.  

*J *J J>

AP generation with cooperative sodium channels  

To study the impact of cooperative sodium channel activation on the generation of 

APs we incorporated the current mediated by the population of coupled sodium 

channels, ( )( ) ( ) ( )Na Na NAI t g O t V V t= − , where  is the sodium peak conductance, 

and  the sodium current reversal potential, and a leak current 

Nag

NaV

( )( ) ( )L L LI t g V V t= − , with the leak conductance  and the reversal potential , 

into the current balance equation for a membrane compartment of capacitance 

Lg LV

MC . 

We simulated this system driven by a fluctuating input current which was modelled 

by an Ornstein-Uhlenbeck process. The dynamics of the compartment is described 

by the following system of differential equations: 

(20)  
( ) ( )

( ) ( )
( ) ( )

0

1

1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ) ( ( )) ( )

( ) ( ) 1 ( ) ( ) ( ) ( ) ( )

M L L Na NA

A I A

CI CI I

z t z t t

c V t g V V t g O t V V t I z t

O t V KJ O t H t O t V KJ O t O t

H t V H t V H t O t O t

τ τη

σ

α τ β

α β τ

−

−

= − +

= − + − + +

= + − − + +

= − − − −

�
�

�

�

. 

where τ  is the correlation time of the input current, 0I  its average value, and σ  its 

standard deviation. 

Rate functions and parameters 

The rate functions describing individual sodium channel activation / deactivation and 

inactivation / deinactivation where chosen as, 
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(21)  

( )( )( )
( )( )( )

( )( )( )
( )( )( )

1

1/ 2

1

1/ 2

1/ 2

1/ 2

1

1

1

1

1 exp /

1 exp /

1 exp /

1 exp /

( )

( )

( )

( )

A A

A A

CI CI

CI CI

A A

A A

CI CI

CI CI

V V k

V V k

V V k

V V k

V

V

V

V

α τ

β τ

α τ

β τ

−

−

−

−

−

−

+ − −

+ −

+ − −

+ −

=

=

=

=

 

With this choice the instantaneous single channel activation curve, and the 

equilibrium inactivation function are of sigmoidal shape 

(22)  
( )( )( )
( )( )( )

1

1/ 2

1

1/ 2

( ) 1 exp /

( ) 1 exp /

A A

CI CI

o V V V k

I V V V k

A
−

∞

−

∞

= + −

= + −
  

and the relaxation times for the two transitions (considered independently) are 

voltage-independent constants Aτ  and CIτ . 

Figure 5 of the paper shows numerical simulations of the model for parameter values  

1/ 2 1/ 235 , 6 , 0.1 , 0.5 , 80 , 4 , 30A A CI CI
A I CIV mV k mV ms ms V mV k mV mVτ τ τ= − = = = = = =  

of the uncoupled activation dynamics and  

2 2 2

2 2
0

50 , 1 / , 2 / , 80 , 68.4 / , 50 ,

0 / , 12 /
M L L Na Nams C F cm g mS cm V mV g mS cm V mV

I A cm A cm

τ μ

μ σ μ

= = = = − = =

= =
of the currents and conductances. 

With these parameters, the single channel activation curve is consistent with results 

obtained from patch recordings. Inactivation from the closed state has a broad 

voltage dependence and a relatively large timescale, leading to substantial fluctuation 

of the level of inactivation even in the absence of AP activity. For Fig. 5a, the 

coupling strength was chosen supercritical 3.2 , 1000J mV K= =   leading to a 

discontinuous current voltage relationship. In Figure 5 of the paper, numerical 

simulations of the model obtained for these parameters are compared to simulations 

without cooperativity  (Fig.5b), and with a fast and voltage-independent 0J =
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mVdeinactivation and inactivation from the closed state  

(Fig.5c). 

1/ 20, 4 , 80CI
CIJ ms Vτ= = =

The impact of the coupling on the onset potential variability is depicted in Fig. 5SI. 

The AP onset potential variability is determined by the available fraction of channels. 

  

Fig 5SI: Impact of the 

channel coupling on onset 

potential variability. The 

AP onset potential is 

determined by the 

available fraction of 

channels H.  

 

 

Functional consequences of ‘anomalous’ AP initiation  

To understand the functional implications of a sharp AP onset in combination with a 

variable onset potential we formulated a phenomenological neuron model capturing 

the salient features of cortical AP initiation and analyzed its dynamical response 

properties when driven by fluctuating inputs. We idealized the rapid onset of APs at 

variable onset potentials by assuming that an AP is initiated instantaneously when 

the MP reaches a time-dependent threshold potential. The dynamics of the threshold 

potential was constructed to reproduce a key feature of  the statistics of AP onset 

potentials: A large fraction of the AP onset variability is explained by a correlation 

between the onset potential and the mean MP preceding an AP (Henze & Buzsaki, 



2001, Azouz &Gray 2003). The model shows that the large and history dependent 

fluctuations in AP onset potential equip a neuron with high pass filter characteristics 

and therefore with a very effective way of suppressing responses to slowly varying 

inputs. 

 

The phenomenological model has two degrees of freedom: The MP  and a time-

dependent firing threshold 

( )V t

( )tθ . The MP consists of two components: A Gaussian 

stochastic process  with the properties: ( )u t

 

2 2
0

2 2

(23) ( ) , ( ) ,

(24) ( ) 0, ( ) ,

V

V

u t V u t

u t u t

σ

σ

= =

= = �� �

 

 

where the dots denote the first temporal derivative. The second part is a low-pass 

filtered time dependent signal ( )f t , where the filter frequency is given by the 

inverse relaxation time constant of the membrane Mτ : 

 

(25)  ( ) ( ) ( )M f t f t Signal tτ = − +�  

 

Each time the MP crosses the threshold ( )tθ  from below, i.e. with a rate of change 

, a spike is emitted. Because in the regime considered here, the correlation 

time is much shorter than the mean time between two adjacent APs, we didn't 

incorporate an explicit afterhyperpolarization into the model.  

( ) 0V t >�

The dynamics of the threshold is modelled by a first order kinetics, driven by the MP 

 with a time constant ( )V t θτ : 
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)(26)  0 0( ) ( ( )c V t Vθτ θ θ θ= − + −�

 

where 0θ  is the threshold voltage and c  the coupling between the threshold and the 

MP. Since we model the MP as a stochastic process, we will consider in the 

following an ensemble of such neurons and ensemble averaged quantities. For each 

neuron in this ensemble the MP fluctuations are independent, every neuron, however, 

receives the same input ( )f t . The coding of this input by the ensemble averaged 

firing rate is the quantity studied. 

 

The average number of APs in the ensemble of neurons in a time interval  

is given by: 

( , )t t t+ Δ

(27) ' ( ( ') ( ')) ( ') ( ( '))

(28) ' ( ( ') ( ')) ( ') ( ( '))

(29) ' ( '),

t t

t

t t

t
t t

t

N dt u t t u t u t

dt u t t u t u t

dt t

δ θ

δ θ

ν

+Δ

+Δ

+Δ

= − Θ

= − Θ

=

∫

∫

∫

� �

� �  

where the angular brackets i  denote the average over the ensemble. In the last 

equation we have introduced the time dependent firing rate ( )tν , which is thus given 

by: 

 

(30) ( ) ( ) ( ) ( ( ) ( )) ( ) ( ( )) ( ( ), ( ) | )t du t du t u t t u t u t P u t u t tν δ θ
∞

−∞

= − Θ∫ � � � �  

 

Here ( )δ i  denotes the Dirac distribution, ( )Θ i is the Heaviside function and the dots 

denote the first temporal derivatives. The time dependent joint probability density of 



( )u t  and  at time t, ,  is given by: ( )u t� ( ( ), ( ) | )P u t u t t�

 

(31) 1
2 2

1 ( ) ( ) ( ) ( )( ( ), ( ) | ) (2 ) exp
2V V

V V

u t f t u t f tP u t u t t πσ σ
σ σ

−
⎧ ⎫⎛ ⎞+ +⎪ ⎪= − +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

�
�

���  

 

To study the response of the model to dynamically changing inputs, we assumed that 

the time dependent input signal is given by a cosine with amplitude A  and frequency 

ω . The function ( )f t  is then given as: 

 

(32) ( )
2

2 2( ) cos( ) sin( )M
M

M

Af t tτ tω τ ω ω
τ ω

−

−= +
+

 

 

Since the threshold time constant θτ  is typically much larger than the membrane time 

constant, the threshold dynamics is approximated by: 

 

(33) 
2

02 2 2 2

(1 )cos( ) ( ) sin( )( )
(1 )(1 )

M M
M

M

t tt Ak θ θ

θ

τ τ ω ω τ τ ω ωθ τ θ
τ ω τ ω

− + +
= +

+ +
 

 

Evaluating the integral in Eq. (30) with this approximation we obtain an expression 

for the time dependent firing rate: 

 

(34) 

2 2
1

2 2

( ( ) ( )) ( )( ) (2 ) exp exp ( )(1 erf( ( ) /( 2 ))
2 2 2V V V

V V

f t t f tt fθ πν πσ σ σ
σ σ

− t f t
⎧ ⎫⎛ ⎞⎛ ⎞− ⎪ ⎪= − − + +⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪ ⎪⎝ ⎠⎩ ⎭

� �
�

� � �
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To study the response for small values of A  we expand ( )tν  in powers of A , giving 

the rate modulation in linear response approximation: 

 

(35) , 2
0 1( ) ( ) cos( ) ( )t A t Oν ν ν ω ω ϕ= + + + A

 

with: 

 

( )
( )

2
0

0 2

1/ 2
2 2 2 4 2 2 2 2 22

0 00
1 1/ 22 3 2 2 2 2

2 2 2 2
0

(36) exp
2 2

(1 ) 2 ( 2 (( 1) ) )
(37) ( ) exp

2 8 (1 )(1 )

( 2 (1 ) 2 ( ( 1 )) )
(38) ( ) arctan

2

V

VV

V VV V

V V M

V M V

c k

k c

θ θ θ

θ

θ θ θ

σ θν
πσ σ

πω τ ω σ θ σ π τ ω σ θ τ ω σθν ω
σ πσ τ ω τ ω

ω π τ ω σ θ τ τ τ ω σ
ϕ ω

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

+ + + − +⎛ ⎞
= −⎜ ⎟

+ +⎝ ⎠

+ + + − −
= −

�

� �

�
2 2 2 2 2

0(1 ) 2 (1 ( ) )M V M Vc kθ θ θπτ ω τ ω σ θ τ τ τ ω σ

⎛ ⎞
⎜ ⎟⎜ ⎟+ + − + +⎝ ⎠�

 

In the limit ω → ∞ , the amplitude of the rate modulation 1 ( )ν ω  becomes constant 

and independent of c : 

 

(39) 
2

1 0
1 2( ) ( 8 ) exp

2M V
V

θν ω πτ σ
σ

− ⎛ ⎞
→ ∞ = −⎜ ⎟

⎝ ⎠
, 

 

the phase lag ( )ϕ ω → ∞  goes to zero. 
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This means, that even for very high stimulation frequencies, the model will respond 

to the input with a finite amplitude of the firing rate response, although the amplitude 

of ( )f t  and ( )tθ  approaches zero for ω → ∞ . This apparently counterintuitive 

result can be understood from the equation for the instantaneous firing rate (Eq. 34). 

It does not only incorporate the functions ( )f t  and ( )tθ , but also the temporal 



derivative ( )f t�  which has a finite high-frequency limit. The finite high-frequency 

limit of the response function reflects the idealization of a sharp AP threshold, i.e. 

AP initiation with infinite AP onset rapidness. Models with finite AP onset rapidness 

in general exhibit a cut-off frequency, which depends on AP onset rapidness and 

increases when AP onset rapidness is increased (Fig. 6SI; Fourcaud 2003, Naundorf 

et al., 2005). 

 

In the limit 0ω → , 1 ( )ν ω  is given by: 

 

(40) 0
1 12(0) 2 / ( 1) ( )M V

V

c
θ τ σ

ν π ν
σ

= − � ∞ , 

 

and the phase lag (0)ϕ  is zero. 

 

These results show that the suppression of slowly varying inputs by the threshold 

variability in combination with the facilitation of the response at high frequencies by 

a high onset rapidness, equips a neuron model with high-pass filter characteristics. It 

is important to note that at low-frequencies, the amplitude of the rate modulation 

decreases with an increasing coupling constant  and becomes zero for , i.e. 

when the threshold is completely coupled to the mean modulation of the MP (Figure 

7SI). In this regime, responses to slowly varying inputs are suppressed without a 

firing response. This behaviour qualitatively differs from the type of high-pass filter 

characteristic induced by AP-driven spike frequency adaptation (Benda and Herz 

2003). With spike frequency adaptation, slowly varying inputs are never completely 

suppressed (see Eq.5.2 in Benda and Herz 2003).  

c 1c =
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Fig 6SI: Linear response transfer function and phase shift of the  V ψ−  model. (A) 

Transmission amplitude 1( )ν ω  and (B) phase for the case of a fully coupled 

threshold (c = 1) and different stationary firing rates (1 Hz, 5 Hz, 15 Hz, 30 Hz). 

(C,D) Transmission amplitude and phase for a partially coupled threshold (c=0.75). 

The transfer functions exhibit a pronounced resonance and settle on a finite value for 

ω → ∞ . For the case of a fully coupled threshold, the transfer function goes to zero 

for ω →0. Parameters: 

dV/dt 01.5,1.75, 2.0, 2.25mV, 1mV/ms, 30ms, 5mVV ψσ σ τ ψ= = = = . 
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Fig 7SI: Effect of increasing the AP onset rapidness. With increasing onset 

rapidness, the transmission function shifts to larger values irrespective of the 

stationary firing rate. For the case of an instantaneous AP onset dynamics (fixed 

threshold), the transfer function remains finite in the limit ω →∞. Curves are labelled 

for different stationary firing rates. (For details see Naundorf et al., 2005) 
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Action potentials in cortical neurons show a 
variable threshold and a sudden rise in mem-
brane potential at initiation. Naundorf et al.1 
fail to explain these features using single- or 
double-compartment Hodgkin–Huxley-
style models, suggesting instead that they 
could arise from cooperative opening of Na+ 
channels, although there is no direct biologi-
cal evidence to support this. Here we show 
that these so-called unique features are to 
be expected from Hodgkin–Huxley models 
if the spatial geometry and spike initiation 
properties of cortical neurons are taken into 
account — it is therefore unnecessary to 
invoke exotic channel-gating properties as 
an explanation.

Cortical pyramidal cells initiate spikes in 
the axon initial segment (AIS) about 30–60 μm 
from their soma. These spikes then propagate 
antidromically through the soma and den-
drites2–4. A well known feature of antidromic 
spikes is their sudden rise from baseline5. 
These critical properties were not considered 
by Naundorf et al.1.

We made simultaneous whole-cell record-
ings from the AIS by patching the cut end of 
the axon (Fig. 1, legend) and the soma of layer-
5 pyramidal neurons in vitro6 during spontane-
ous spike generation (Fig. 1). Somatic spikes 
showed a rapid rise, or ‘kink’, at initiation (Fig. 
1a, b) and the slope of the phase plot of  spike 
dV/dt versus V at dV/dt = 15 mV ms−1 was 25 ± 
6.8 ms−1 (mean ± s.d.; n = 32). The phase plots 
of dV/dt versus V typically revealed a biphasic 
rise, which was suggestive of two underlying 
components (Fig. 1b; n = 30/32), as observed 
in many cell types7,8. This biphasic component 
was not evident in the recordings of Naundorf 
et al.1, although the low peak dV/dt of their 
recordings indicates that their spikes may not 
have been fully represented. 

Intrasomatic injection of a noisy conduct-
ance that mimics the arrival of excitatory and 
inhibitory synaptic activity9 resulted in signifi-
cant variation in the apparent spike threshold 
(n = 6; Fig. 1c, green lines), as observed in the 
recordings of Naundorf et al.1.

In contrast to somatic spikes, those recorded 
at the site of spike initiation, the AIS, showed a 
slower rise (n = 10; Fig. 1d, e). The slope of the 
phase plot of spike dV/dt versus V at dV/dt = 15 
mV ms−1 was much lower for the AIS (3.8 ± 
1.7 ms−1; n = 6; P<0.01; Fig. 1d, e) than it was 
for the soma  (Fig. 1a, b). The slow rise at spike 
initiation in the AIS is not an artefact of our 
method of axonal recording (Fig. 1, legend). On 
intrasomatic injection of a noisy conductance 
that mimics synaptic activity9, the apparent 

spike threshold was less variable for the AIS (n 
= 6; Fig. 1f, green lines) than it was for the soma 
(Fig. 1c).

Spike initiation in the AIS is mediated by 
either a high Na+-channel density in the AIS, 
as indicated by immunocytochemistry10,11, or 
by a lesser density of Na+ channels, which have 
a low threshold for activation12. Using a previ-
ous model of spike initiation in a layer-5 cor-
tical pyramidal cell13, we adjusted the axonal 
and somatic densities of Na+ and K+ channels 
until the spike waveform and its derivative 
were similar to those of our actual recordings 
(compare Figs 1 and 2).  

Our Hodgkin–Huxley model initiated spikes 
in the AIS that then propagated antidromi-
cally through the soma and dendrites, as 

in real pyramidal cells. At the soma, these 
spikes showed a rapid rise at initiation 
(Fig. 2a, b), and the slope of the phase plot for 
spike initiation at dV/dt = 15 mV ms−1 was 
21 ms−1. Intrasomatic injection of artificial 
synaptic barrages9 into the modelled neuron 
revealed a high variability of apparent spike 
threshold in the soma (Fig. 2c).

As in the whole-cell recordings, the rise in 
the model spike at initiation was smoother at 
the AIS  (Fig. 2d, e) than at the soma (Fig. 2a, b). 
The slope of the phase plot for spike initiation 
at dV/dt = 15 mV ms−1 was considerably lower 
for the model AIS (4 ms−1) than for the soma, 
and both were in the range observed in normal 
cells. Intrasomatic injection of artificial synap-
tic barrages9 showed a less variable threshold in 
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Hodgkin and Huxley model — still standing? 
Arising from: B. Naundorf, F. Wolf & M. Volgushev Nature 440, 1060–1063 (2006)

Figure 1 | Properties of spike initiation in the soma and axon of cortical pyramidal cells. a, Somatic 
spike exhibits a ‘kink’ at its onset. b, Phase plot (dV/dt versus V) and close-up of rapid initiation 
(inset) of the spike shown in a. c, Close-up of the phase plot of somatic spike initiation during noisy 
intrasomatic current injection9, showing a broad distribution of thresholds (green lines). d, Whole-cell 
axonal recording (50 μm from the soma). e, Phase plot of the axonal spike. Note the smoothly rising 
dV/dt. f, Overlay of dV/dt versus V for the onset of axonal spikes, showing lower variability (compare 
with the soma) of spike threshold (green lines). 
Methods. Simultaneous axonal and somatic whole-cell recordings were obtained with the multiclamp 
700B amplifier from ferret prefrontal cortical layer-5 pyramidal cells in slices maintained in vitro at 
36 oC (ref. 6). Spikes shown in a, d, as well as in c, f, were recorded simultaneously.  Spikes occurred 
either during spontaneous synaptic activity6 or in response to the intrasomatic injection of a noisy 
(10–15 mV) current injection9. Whole-cell axonal recordings obtained through patching the cut 
end of the axon (terminal bleb) do not result in abnormal smoothness of spikes because spikes 
recorded from distal (> 100 µm) axonal sites also show an onset kink owing to spike propagation 
(see also www.mccormicklab.org).  
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the AIS (Fig. 2f) than in the soma (Fig. 2c), as 
we found for real neurons (Fig. 1c, f). 

We found that several other Hodgkin–Hux-
ley models of cortical pyramidal cells, even 
one based on a relatively low density of Na+ 
conductance in the axon, replicated the ‘kink’ 
and variability of somatic spikes (Fig. 2 legend). 
These features of spike initiation in the soma 
were dependent on the initiation of spikes in 
the AIS: increasing the somatic Na+ conduct-
ance to a high level (7.5 nS μm−2) and removing 
Na+ conductance from the axon in the model 
presented here resulted in a loss of the kink at 
the foot of the spike (soma slope, 4.1 ms−1) and 
a reduction in spike threshold variability in the 
soma (results not shown).

Our findings reveal that leading Hodgkin–
Huxley models of cortical pyramidal cell spike 
initiation capture the so-called unique features 
observed by Naundorf et al.1. We attribute 
these features simply to recording from a site 
that is distant from the site of spike initiation 
and to the non-uniform distribution of spike 
properties over the somatic and axonal mem-
brane. The initiation of spikes in the axon that 
then back-propagate into the soma can result 
in a rapid change in membrane potential (the 
kink) at the foot of the somatic spike. The large 
current supplied by the axonal spike precedes 
and overlaps with the current supplied by the 
local generation of the action potential in the 
soma during the rising phase of the spike. This 
results in a more rapid rise at the foot of the 
spike in the soma than would occur if there 
were no preceding spike in the axon. The 
apparent high threshold variability with intra-
somatic recordings merely results from mem-
brane potential differences between the soma 
and the actual site of spike initiation, the axon, 
at the time that spikes are generated. These 
membrane-potential differences arise from 
local electrophysiological differences, as well 
as spatial non-uniformity in synaptic activ-
ity. We conclude that the observations made 
by Naundorf et al.1 are predictable by Hodg-
kin–Huxley theory and the known physiology 
of spike initiation2–4, and that there is no need 
to invoke exotic interchannel cooperativity to 
explain their observations.
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Figure 2 | Hodgkin–Huxley model of a layer-5 cortical pyramidal cell. a, Somatic spike shows a ‘kink’ at 
its onset, as in the real neuron. b, Phase plot (dV/dt versus V) and close-up of rapid initiation (inset) of 
the spike shown in a. c, Close-up of the phase plot of somatic spike during noisy intrasomatic current 
injection, showing a broad distribution of thresholds (green lines). d, Axonal spike (45 µm from the 
soma). e, Phase plot of the axonal spike. Note the smoothly rising dV/dt. f, Overlay of dV/dt versus V 
for the onset of axonal spikes, showing lower variability of spike threshold (green lines).
Methods. Results were obtained from a model layer-5 cortical pyramidal cell13 with the intrasomatic 
injection of a 10–15 mV noisy conductance. The model contained the following conductances: 
soma (Na+, 0.75 nS µm–2; K+, 0.15 nS µm–2); axon hillock and initial segment (Na+, 7.5 nS µm–2; K+, 
1.5  nS µm–2); dendrite (Na+, 0.1  nS µm–2; K+, 0.002  nS µm–2; M-current, 0.0003  nS µm–2). Axonal 
length, 50 µm; soma size, 20 × 30 µm. These parameters were used to match the maximal dV/dt 
rates, durations and initiation site of spikes in our neurons (Fig. 1). Similar results are obtained from 
several Hodgkin–Huxley models of cortical pyramidal cells, including those using a high, medium or 
relatively low density of axonal Na+ conductance12–14, and the results from these simulations were well 
within the range of real cortical cells (see also www.mccormicklab.org). 

McCormick et al.1 question whether the 
rapid onset and highly variable thresholds 
of action potentials2 are genuine features of 
cortical action-potential generators — that is, 

whether they reflect the voltage-dependence 
of the underlying sodium currents. Instead, 
they consider these features to be epipheno-
mena, reflecting lateral currents from a 

remote initiation site, and, contrary to direct 
evidence3, they assume that sodium currents 
show canonical kinetics. 

Although the lateral current hypothesis of 
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the AIS (Fig. 2f) than in the soma (Fig. 2c), as 
we found for real neurons (Fig. 1c, f). 

We found that several other Hodgkin–Hux-
ley models of cortical pyramidal cells, even 
one based on a relatively low density of Na+ 
conductance in the axon, replicated the ‘kink’ 
and variability of somatic spikes (Fig. 2 legend). 
These features of spike initiation in the soma 
were dependent on the initiation of spikes in 
the AIS: increasing the somatic Na+ conduct-
ance to a high level (7.5 nS μm−2) and removing 
Na+ conductance from the axon in the model 
presented here resulted in a loss of the kink at 
the foot of the spike (soma slope, 4.1 ms−1) and 
a reduction in spike threshold variability in the 
soma (results not shown).

Our findings reveal that leading Hodgkin–
Huxley models of cortical pyramidal cell spike 
initiation capture the so-called unique features 
observed by Naundorf et al.1. We attribute 
these features simply to recording from a site 
that is distant from the site of spike initiation 
and to the non-uniform distribution of spike 
properties over the somatic and axonal mem-
brane. The initiation of spikes in the axon that 
then back-propagate into the soma can result 
in a rapid change in membrane potential (the 
kink) at the foot of the somatic spike. The large 
current supplied by the axonal spike precedes 
and overlaps with the current supplied by the 
local generation of the action potential in the 
soma during the rising phase of the spike. This 
results in a more rapid rise at the foot of the 
spike in the soma than would occur if there 
were no preceding spike in the axon. The 
apparent high threshold variability with intra-
somatic recordings merely results from mem-
brane potential differences between the soma 
and the actual site of spike initiation, the axon, 
at the time that spikes are generated. These 
membrane-potential differences arise from 
local electrophysiological differences, as well 
as spatial non-uniformity in synaptic activ-
ity. We conclude that the observations made 
by Naundorf et al.1 are predictable by Hodg-
kin–Huxley theory and the known physiology 
of spike initiation2–4, and that there is no need 
to invoke exotic interchannel cooperativity to 
explain their observations.
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Figure 2 | Hodgkin–Huxley model of a layer-5 cortical pyramidal cell. a, Somatic spike shows a ‘kink’ at 
its onset, as in the real neuron. b, Phase plot (dV/dt versus V) and close-up of rapid initiation (inset) of 
the spike shown in a. c, Close-up of the phase plot of somatic spike during noisy intrasomatic current 
injection, showing a broad distribution of thresholds (green lines). d, Axonal spike (45 µm from the 
soma). e, Phase plot of the axonal spike. Note the smoothly rising dV/dt. f, Overlay of dV/dt versus V 
for the onset of axonal spikes, showing lower variability of spike threshold (green lines).
Methods. Results were obtained from a model layer-5 cortical pyramidal cell13 with the intrasomatic 
injection of a 10–15 mV noisy conductance. The model contained the following conductances: 
soma (Na+, 0.75 nS µm–2; K+, 0.15 nS µm–2); axon hillock and initial segment (Na+, 7.5 nS µm–2; K+, 
1.5  nS µm–2); dendrite (Na+, 0.1  nS µm–2; K+, 0.002  nS µm–2; M-current, 0.0003  nS µm–2). Axonal 
length, 50 µm; soma size, 20 × 30 µm. These parameters were used to match the maximal dV/dt 
rates, durations and initiation site of spikes in our neurons (Fig. 1). Similar results are obtained from 
several Hodgkin–Huxley models of cortical pyramidal cells, including those using a high, medium or 
relatively low density of axonal Na+ conductance12–14, and the results from these simulations were well 
within the range of real cortical cells (see also www.mccormicklab.org). 

McCormick et al.1 question whether the 
rapid onset and highly variable thresholds 
of action potentials2 are genuine features of 
cortical action-potential generators — that is, 

whether they reflect the voltage-dependence 
of the underlying sodium currents. Instead, 
they consider these features to be epipheno-
mena, reflecting lateral currents from a 

remote initiation site, and, contrary to direct 
evidence3, they assume that sodium currents 
show canonical kinetics. 

Although the lateral current hypothesis of 
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McCormick et al. is superficially plausible, their 
recordings are inadequate for showing that the 
dynamics of axonal action-potential initiation 
conforms to the canonical model. Their so-
called axonal recordings are actually obtained 
from ‘blebs’ — injury-induced swellings of cut 
axons on the slice surface. The injured axons, 
when forming blebs, reorganize their entire 
cytoskeleton, including the destruction of the 
sub-membrane spectrin network4 that inte-
grates sodium channels into the supramolecu-
lar machinery of the normal initial segment5. 
As the behaviour of axonal sodium channels is 
highly sensitive to their cellular environment6, 
the smooth action-potential waveforms in the 
blebs, instead of revealing the true dynamics 
of action-potential initiation, are more likely 
to be caused by the disorganized state of the 
bleb membrane.

The model of McCormick et al.1 does not 
conform with the known physiology of layer-5 
pyramidal cells. Contradicting direct meas-
urements7,8, it assumes a high ratio of axonal-
to-somatic sodium currents. Even with these 
physiologically unrealistic settings, their model 
still does not reproduce the experimental 
data. In their in vitro recordings, as in our in 
vivo recordings (Fig. 2 (panels a, c) in ref. 2), 
somatic action potentials rise almost vertically 
out of the cloud of subthreshold fluctuations. 
In their model, however, the range of action-
potential onset potentials hardly overlaps with 
the range of subthreshold fluctuations, being 
shifted towards more depolarized poten-
tials (Fig. 2 (panel c) in ref. 1). The model of 

McCormick et al. therefore in fact provides 
further evidence that canonical models are 
incapable of correctly describing the observed 
dynamics of action-potential initiation2,3.

However, McCormick et al. highlight an 
important issue. How can the action-poten-
tial dynamics at a remote initiation site be 
critically probed, when action-potential 
waveforms recorded from thin processes, 
such as axons, are likely to be compromised 
by technical problems9? Our analysis identi-
fies an essentially non-invasive approach for 
addressing this question (see supplementary 
information of ref. 2). It is based on quantify-
ing the ability of a neuron to phase-lock its 
spikes to a weak test stimulus in the irregular 
firing regime2,10,11. 

Theoretical studies indicate that canonical 
generators of action potentials have a very lim-
ited ability to encode high-frequency inputs, 
showing cut-off frequencies of phase-locking 
(υc) that are of the order of their mean firing 
rate10,11. By contrast, models with intrinsically 
high onset rapidness (r) can show arbitrarily 
high cut-off frequencies2,10–12. If the rapid-
ness of the action-potential onset is genuinely 
increased by a factor of 10, then cut-off fre-
quencies above 100 Hz are predicted by dimen-
sional analysis (υc � r), even for mean firing 
rates of around 10 Hz. Both in vivo and in vitro 
studies have revealed signatures of such fast 
responses in the neocortex12,13, supporting 
genuinely rapid initiation of action potentials 
in cortical neurons (see also http://www.nld.
ds.mpg.de/actionpotentials). 
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