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Abstract

The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions 

and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium 

concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial 

difference in concentration (percentage-wise). These rare events can affect dynamics discretely in 

such way that they cannot be evaluated by a deterministic and continuous simulation. Stochastic 

models of such a system provide a more detailed understanding of these systems than existing 

deterministic models because they capture their behavior at a molecular level. Our research 

focuses on the development of a high performance parallel discrete event simulation environment, 

Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic 

reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a 

simulator which is widely used within the neuroscience community. We simulate two models, a 

calcium buffer and a calcium wave model. The calcium buffer model is employed in order to 

verify the correctness and performance of NTW by comparing it to a sequential deterministic 

simulation in NEURON. We also derived a discrete event calcium wave model from a 

deterministic model using the stochastic IP3R structure.

Index Terms

PDES; NSM; NTW; discrete event calcium wave model; parallel stochastic discrete event 
simulation

1 Introduction

The human brain may be viewed as a densely connected network of approximately 86 

Billion neurons [1]. As is well known, the neuron is the computational building block of the 
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human brain. Each neuron receives inputs from thousands of other neurons via its dendrites 

and in turn connects to thousands of other neurons via its axon. The point of contact between 

the axon and the dendrite of another neuron is called the synapse. The inter-cellular space 

between the presynaptic and postsynaptic neurons is called the synaptic space or synaptic 

cleft. When a synapse is activated by an electrical impulse from a presynaptic neuron, it 

releases chemical substances (called neurotransmitters) into the synaptic cleft which diffuse 

across the synaptic space to the post-synaptic neuron. The neurotransmitter molecules can 

then bind to special receptors located on the membrane of the postsynaptic neuron. 

Receptors are membrane proteins that are able to bind a specific chemical substance, such as 

a neurotransmitter.

The membrane of a neuron is semi-permeable and has ion channels within it which control 

ion flow (including sodium, potassium, and calcium) between the exterior and the interior of 

the cell body. Movements of ions through these channels result from the diffusion of the ions 

down concentration gradients and the voltage difference created by different concentrations 

of these ions on the exterior and the interior of the membrane. Some of the channels are 

voltage gated; they are controlled, i.e. opened or closed, by the electrical membrane 

potential.

Neurons use a number of signaling pathways to regulate their internal activity. A signaling 

pathway is initiated when an extracellular molecule activates a specific receptor located on 

the cell surface. In turn, this receptor triggers a biochemical chain of reactions and/or 

diffusions inside the cell and then creates a response. These signaling pathways fall into two 

main groups depending on how they are activated. Many of them are activated by external 

stimuli and the cell responds to both intra- and extra-cellular cues, and it can detect these 

through various signaling cascades wherein molecules react, diffuse, and/or are transported. 

Others respond to information generated from within the cell, usually in the form of 

metabolic messengers. In these signaling pathways information is conveyed either through 

protein-protein interactions or is transmitted via diffusing molecules which are referred to as 

second messengers. A second messenger is an intra-cellular substance, e.g. a calcium ion, 

that mediates cell activity by relaying a signal from an extracellular molecule, (e.g. a 

neurotransmitter) which is bound to the cell’s surface. In this case the neurotransmitter is the 

first messenger. In a neuron, the calcium ion plays a crucial role in neuronal channel 

dynamics and ultimately in the behavior of the entire neuron [4]. It also acts as a second 

messenger in the cell and triggers processes such as initiating the biochemical cascades that 

lead to the changes in receptor insertion in the membrane. This underlies synaptic plasticity, 

the ability of synapses to strengthen or weaken over time in response to increases or 

decreases in their activity, to muscle contraction, and the secretion of neurotransmitters at 

nerve terminals. Because of the importance of calcium in neural transmission the accurate 

and efficient simulation of intra-cellular calcium dynamics has become an important 

research issue for neuroscientists.

Intra-cellular calcium signaling pathways make use of biochemical reactions as well as the 

diffusion of calcium ions. These pathways are an example of a reaction-diffusion system. 

Such a system describes the population dynamics of one or more species distributed in space 

which are propelled by two major events: reaction and diffusion. Partial differential equation 
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are commonly used to model such system and employ continuous simulation. These models 

are not very accurate, however, for a small number of ions in a small compartment such as a 

neuronal spine [4]. These compartments are so small and calcium concentrations are so low 

that several calcium molecules diffusing into them can make a nontrivial difference in their 

concentration. Again the concentrations in continuous simulators are expressed by real 

numbers instead of integers, resulting in incorrect behaviors. As a result stochastic discrete-

event simulation has emerged as a method to complement differential equations in 

biochemical simulations [18] [14].

A system consisting of a collection of chemical reactions can be modeled by a chemical 

master equation. Such an equation models the distribution of the chemical reactants in the 

system [4] probabilistically for each point in time. In general, it is very difficult to solve this 

equation. In [5] Gillespie introduced a Monte Carlo simulation algorithm for this model. 

Under the assumption that the molecules of the system are uniformly distributed, the 

algorithm simulates a single trajectory of the chemical system. Simulating a number of these 

trajectories then gives a picture of the system. The algorithm uses an exponential distribution 

to compute the time of the next event (i.e. reaction) and employs elementary combinatorics 

to compute the likelihood of a particular reaction occurring.

[6] describes the Next Reaction Method, which attempts to reduce the computation time of 

the propensities in Gillespie’s algorithm. It makes use of a dependency graph among the 

reactions which is used to identify the reactions which are in need of an update. Gillespie’s 

algorithm then updates the states of all of the reactants. [8] modifies the Next Reaction 

Method by re-sorting the event queue in the order of the probability of execution of the 

reactions. A number of other efforts aimed at improving the efficiency of the Gillespie 

algorithm have been made, including [7], [9].

A key assumption in the Gillespie algorithm is that the particles are distributed 

homogeneously in space. This, however, is not the case because particles in neurons are not 

distributed homogeneously in space because neurons are so large that diffusion cannot 

equilibrate them and the diffusion of ions in a neuron takes place. This diffusive behavior 

must be included in a realistic model. Molecular dynamic simulations [10] [15] [16] could 

be used to model individual particles but take into account inter-particle forces, rendering 

them computationally expensive. Instead, we make use of a less expensive Monte Carlo 

algorithm, the Next Sub-volume Method (NSM) [11]. The NSM partitions space into cubes 

and represents the diffusion of ions between these cubes by events. Other events are used to 

characterize reactions within the cubes. NSM makes use of the Gillespie algorithm to 

compute next event times within the cubes and relies upon the use of a priority queue to 

determine the next event and diffusion times. Our parallel simulator, Neuron Time Warp 

(NTW), makes use of the NSM algorithm the reason that particles are not distributed 

homogeneously in neurons.

Calcium plays a pivotal role among the second messenger systems of a neuron. The 

mechanism by which calcium is transmitted in particular neuron domains is a subject of 

active research. Any model will surely not provide an accurate view of molecular dynamics 

within a cell. However, a stochastic reaction-diffusion simulator capable of working at scale 
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can help to provide a clearer understanding of calcium transmission. The sequential 

stochastic discrete event simulation of a large scale reaction-diffusion system is slow. 

Parallel Discrete Event Simulation (PDES) can be used to overcome this performance 

bottleneck [24]. Adapting PDES techniques to stochastic simulation using NSM was 

demonstrated in [22] [23] [24] [25]. In our research we employ real biological models which 

are of significance to neuroscientists.

This paper describes a parallel discrete event simulator, called NTW, which can be used to 

execute a 3D stochastic reaction-diffusion model. We use of NTW to simulate the calcium 

dynamics in a neuron. NTW is an optimistic simulator based on Time Warp. It makes use of 

a multi-level queue for the pending event set and a single rollback message in place of 

individual anti-messages. The multi-level queue structure disperses contention for the 

priority queue which naturally occurs in a parallel simulator. Single rollback messages 

decrease the overhead of Time Warp rollbacks.

We previously made use of a model of a dendrite branch on which to evaluate NTWs 

performance in [2]. We employed a spatial Lotka-Volterra model and verified the accuracy 

of the models. We evaluated the performance of NTW using MPI and shared memory 

models on a multi-core machine.

In this paper we make use of two models which simulate the calcium dynamics in a neuron- 

a calcium buffer and a calcium wave model. The calcium buffer model is employed to verify 

the correctness of NTW by comparing it to a sequential deterministic simulation in 

NEURON [3], a simulation environment in which complex nerve models can be created and 

simulated. It is widely used within the neuroscience community. We also examined NTW’s 

performance using the calcium buffer model. We derived a discrete event calcium wave 

model from a deterministic model [33] [35] and used it to simulate a calcium wave in a 

neuron. We experimentally integrated NTW with NEURON.

The rest of the paper is structured as follows. Section 2 contains the background and related 

work while section 3 focuses on the experimental integration of NTW with NEURON. 

Section 4 describes NTW and section 5 contains experimental results. Section 6 is devoted 

to a description of future work and the conclusion.

2 Background and Related Work

There are two types of algorithms which have been used for stochastic simulation of 

neurons, particle-based and lattice-based [14]. In particle based methods, the state of the 

system is the number and location of particles in the sub-cellular space. The location of a 

particle and the system time are governed by probability distributions (e.g. the distribution in 

[14]). Particles engage in a reaction when they are close enough. MCell [15], Smoldyn [16] 

and CDS [17] are particle based simulators. In lattice-based methods, the sub-cellular space 

is subdivided into lattice points or voxels using a mesh generation algorithm, and molecules 

are represented within each voxel. NSM is a lattice-based algorithm, in which space is 

partitioned into mesh grids called sub-volumes (i.e. voxels). Reactions can happen between 

molecules in the same grid and molecules can diffuse to adjacent grids. As we employed the 
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next sub-volume method in which reactions between adjacent grids are ignored, we also 

ignored reactions between adjacent grids in NTW. STEPS [18] is a spatial extension of the 

Gillespie’s Stochastic Simulation Algorithm (SSA), and NeuroRD [14] are based on a 

spatial extension of the Gillespie tau-leap algorithm. These tools develop sequential 

versions, while our intention is to produce a parallel algorithm capable of large scale 

simulations.

2.1 Next Sub-volume Method: NSM

NSM is a discrete-event approach to simulating both reactions and diffusion of species 

within a volume which contains an inhomogeneous distribution of particles [11]. The 

volume is divided into sub-volumes which are assumed to be well-stirred. Figure 1 contains 

such a computational sub-volume.

There are two types of events used in this approach: 1) those which represent reactions 

inside a sub-volume and 2) those which represent diffusion between adjacent sub-volumes. 

NSM makes use of the Gillespie algorithm to compute the next event time within a sub-

volume. Within the main loop of the algorithm the sub-volume with the smallest next event 

time is selected and the event type is then determined using the reaction rates. The event is 

then executed and the state is updated. Note that the update is done only in a small region. 

NSM relies upon priority queues for both the next event time and the diffusion time.

2.2 Parallel Stochastic Discrete-Event Simulation

A PDES is composed of a set of processes which are executed on different processors. The 

processes model different parts of a physical system. Each process is referred to as a Logical 

Process (LP). The LPs communicate with each other via time stamped messages. Events are 

stored in an event list, Each LP processes its events in increasing time stamp order. The 

efficient management of the event list has a significant effect on the performance of the 

parallel simulation. Although processing the events in a sequential simulation is done by 

using a centralized list, such an approach is not possible in a parallel simulation as it would 

be too inefficient. Hence errors can result in a parallel simulation from out of order event 

execution (causality errors). The problem of maintaining causality is referred to as the 

synchronization problem - the idea is to make sure that the execution of the parallel 

simulation produces the same sequence of events as if all of the events had been processed 

by a single process. There are two main approaches for solving the synchronization 

problem-conservative and optimistic. Time Warp (TW) synchronization is a widely used 

optimistic synchronization protocol and is the one which we make use of in NTW [2].

NSM can be applied to PDES by discretizing space into sub-volumes and assigning a of sub-

volumes to each LP. Interactions between LPs involve the diffusion of events between 

neighboring sub-volumes. In order to evaluate the parallel execution of the NSM algorithm, 

[22] uses two Time Warp based approaches. Both represent sub-volumes by LPs and 

messages between sub-volumes contain the diffusion events. One of the simulators makes 

use of grid computing. Preliminary results on small models were encouraging. As pointed 

out by the authors, a number of areas including window management and state saving 

remain to be investigated.
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[23] points out that a conservative synchronization is not suitable for use with the NSM due 

to the zero lookahead property of the exponential distribution. An optimistic algorithm was 

implemented and preliminary results obtained for a predator-prey model (Lotka-Volterra). 

The performance of the simulation was hampered by a lack of control over the window size.

[24], [25] investigates the performance of optimistic synchronization algorithms in 

simulations of a reaction-diffusion system based on Gillespie’s SSA [5]. They present a 

variant of the Next Sub-volume Method called the Abstract Next Sub-volume Method 

(ANSM). Three optimistic synchronization algorithms were employed: Time Warp(TW) 

[26], an optimistic approach with risk-free message sending called Breathing Time Bucket 

(BTB) [27] and a hybrid approach combined the above two were used for the simulation of a 

predator-prey model. The moderate optimistic approaches resulted in better performance. 

They did not employ a 3D grid geometry in their simulation.

XTW [28], an optimized version of TW, introduces a new optimistic synchronization 

mechanism to improve the performance of Time Warp. XTW consists of a new event 

scheduling algorithm, XEQ, and a new rollback mechanism, rb-message. XEQ has an O(1) 

cost bounded on the number of simulated entities (not on the number of events). Rb-message 

not only reduces the computing cost of annihilating previously sent messages, but also 

dramatically reduces the memory cost by eliminating the output queue in each LP. NTW 

inherits all of those features in XTW.

Without employing PDES, [21] developed the Lattice Microbes software to efficiently 

sample trajectories from either the Chemical Master Equation (CME) and Reaction 

Diffusion Master Equation (RDME) on a high performance computing infrastructure 

(workstation containing a Supermicro X9DRG-QF motherboard with dual Xeon E5-2640 

CPUs and four GTX680 GPUs using NVIDIA drive), taking advantage of GPUs to increase 

performance. They employed a multiple thread approach to get efficient shared-memory 

communication between host threads, and avoided high GPU context switching overheads 

that would otherwise occur for multi-process access approach (i.e. with MPI). They 

considered uniform sub-volumes with some spacing and employed a multi-particle diffusion 

method. They use a dynamic load balancing to deal with inhomogeneous workloads. 

Employing a very small model (four reactions and 4 species), two and four GPUs provide a 

speedup over the single device, however for smaller volumes the benefit of four GPUs is 

correspondingly smaller. Eight GPUs did not provide any speedup when the sub-volume size 

was smaller than 64 cubic microns.

None of those above mentioned approaches employed a real neuronal geometry and did not 

employ a real model (e.g. calcium buffering, calcium wave model etc.) as a benchmark to 

verify their simulators. We use models derived from real NEURON models to verify NTW’s 

correctness and to examine its performance.

2.3 Intra-cellular Calcium Signaling Pathways

A signaling pathway is initiated when a molecule activates a specific receptor located on the 

cell surface or on the inside of a cell. In turn, this receptor triggers a biochemical chain of 

events inside the cell which creates a response. Neurotransmitters transmit signals across a 
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synapse between two neurons. When a receptor on a post-synaptic neuron receives a 

neurotransmitter, it initiates intra-cellular signaling pathways. The role of Ca2+ signaling is 

very important to a neuron’s response.

The basic mechanism of calcium signaling depends upon increases in the intra-cellular 

concentration of calcium ions. In most cells the concentration of intra-cellular calcium 

oscillates with a period ranging from a few seconds to a few minutes. These oscillations 

often take the form of waves. At rest, the concentration of calcium in the cell cytoplasm is 

low while outside the cell and in the internal compartments of the cell (e.g. the endoplasmic 

reticulum (ER)) it is high, as shown in figure 2. The ER acts as an internal warehouse of 

calcium ions from which calcium can exit to the cytosol through channels such as inositol 

triphosphate receptors, IP3R, (e.g. it can also exit via RyR or leak). The IP3Rs are located on 

the surface of the ER. Calcium ions, Ca2+, can be pumped back from the cytosol to the ER 

by ATPase pumps.

When a postsynaptic neuron is electrically excited by receiving neurotransmitters at 

receptors, its voltage gated calcium channels (VGCC) located in the plasma membrane are 

opened and some calcium ions enter into the cytosol. This excitation also activates 

transmembrane proteins (a type of membrane protein spanning the width of the biological 

membrane to which it is permanently attached) to facilitate communication between cells by 

interacting with chemical messengers and G-proteins. G-proteins are a family of proteins 

involved in transmitting signals from stimuli coming from outside a cell to the inside of the 

cell. They function as molecular switches. The G-protein activates a Phospholipase C (PLC) 

enzyme and produces two second messengers, di-glyceride (DAG) which remain in the 

membrane and IP3, which diffuses through the cytoplasm of the cell and binds to IP3 

receptors (IP3R). When an IP3R channel is triggered by both Ca2+ and IP3, it is opened and 

allows the fast release of calcium from the ER to the cytoplasm, as shown in figure 2.

Typical calcium signaling pathways involve both binding and enzymatic reactions while 

molecules move through the intra-cellular space randomly. Hence binding and enzymatic 

reactions in combination with diffusion are the basic building blocks for modeling intra-

cellular signaling pathways [4]. Recent intra-cellular calcium model consists of deterministic 

reaction-diffusion equations coupled to stochastic transitions of the calcium channels. The 

calcium and buffer concentrations in the cytosol are represented by partial differential 

equations (PDE). Stochastic quantities are the discrete states of channel units which 

determine the open/close state of a channel. The intra-cellular calcium concentration is 

determined by calcium diffusion, the transport of calcium ions through the ER membrane 

and the binding and unbinding of buffer molecules. The reaction terms, buffer binding and 

unbinding of calcium are modelled by the mass action kinetics in which the rate of a 

chemical reaction is proportional to the product of the concentrations of the reacting 

chemical species.

In a neuron calcium releases do not occur with a regular period, but are strongly influenced 

by stochastic process [13] [19]. The exact nature of these stochastic processes is not clear, 

but the most plausible explanation is that stochastic opening and closing of the IP3R is the 

most important influence causing irregularity in the calcium release. In [30], the calcium 
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dynamics of a cell is formulated as a hybrid model in which the reaction-diffusion equations 

are used (a high concentration of calcium and buffers in the cytosol is assumed) and the 

opening/closing of channels is stochastic. In this paper we develop an IP3R model and a 

stochastic simulation to predict the behavior of individual channels.

3 NEURON and NTW

NEURON [3] is a simulation environment which was primarily developed by Michael Hines 

at Yale. In this environment, complex nerve models can be created by connecting multiple 

one-dimensional sections together to form arbitrary neuron morphologies. NEURON also 

allows for the insertion of membrane properties in these sections (including channels, 

synapses, and ionic concentrations). In NEURON, the ion channels of axons and soma are 

typically of the Hodgkin-Huxley type [12]. NEURON is very flexible and supports a wide 

class of models.

The computation executed by the nervous system involves the spread and interaction of 

electrical and chemical signals within and between neurons and glia cells (a type of cell in 

the brain which supports neuronal communication and also plays a vital role in the 

development of human intelligence). Those signals can be modeled by the diffusion equation 

and the cable equation, which are partial differential equations in which the potential 

(voltage, concentration) and the flux (current, movement of a solute) are smooth functions of 

time and space. In NEURON, these partial differential equations are solved numerically by 

converting them into difference equations.

A deterministic reaction-diffusion model is not accurate [4] when a small number of Ca2+ 

ions are involved (e.g. a neuronal spine which is a small membranous bump on a neurons 

dendrite which typically receives input from a single synapse of an axon). Those quasi-

isolated compartments like spines are so small and calcium concentrations are so low that 

one extra molecule diffusing in by chance can make a nontrivial difference in concentration 

(percentage-wise). These rare events can affect dynamics discretely in such way that it 

cannot be evaluated in a deterministic simulation. Stochastic models of such a system 

provide a more detailed understanding of these systems than existing deterministic models 

because they capture their behavior at a molecular level. A sequential version of NTW is 

already integrated with NEURON. The experimental integration of parallel NTW with 

NEURON is also done as to check its compatibility with NEURON. The interaction between 

NTW and NEURON is shown in figure 3.

Python has direct access to NEURON and can import NEURON’s different computational 

modules by using the import statement. On the other hand, NTW’s code is in C++ and 

Python does not have direct access to C++ code. However, Python can use ctypes, a foreign 

function interface module (included in Python 2.5 and above) which allows for the loading 

of dynamic libraries and calls C functions. Hence Python can provide information such as 

the geometry (i.e. neighbor informations for each sub-volume, species and reactions, sub-

volume size, etc.) from the NEURON simulator to NTW through the C-C++ interface.
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NTW is an individual module which interacts with NEURON using Python’s ctypes 

interface. Hence prior to the parallel simulation, pointers to all of NEURON’s data structures 

are sent to NTW. As a result NTW can access NEURON’s data structures and can update 

NEURON’s state for event (reaction or diffusion) processing. NTW can update NEURON 

states immediately when NTW process an events during the simulation.

4 NTW

We have designed and implemented a parallel discrete event simulator, NTW, to simulate 3D 

stochastic reaction-diffusion system. We use NEURON’s front end as NTW’s front end, 

making it possible for a group of chemical reactions to be input by the user. This enables the 

user to experiment with different reactions and different concentrations of molecules and 

ions as well as their associated reaction rates. It is also possible to experiment with different 

diffusion rates between adjacent cells.

NTW inherited the multi-level priority queue from XTW [28]. A history queue used to 

record scheduling history has been added. Every sub-volume (SV) in NSM is an LP in 

NTW. The reactions and the diffusion between sub-volumes are events in NTW.

4.1 Architecture

LPs are grouped together into clusters which, in turn, can be distributed among separate 

physical computational units. We currently allocate one cluster per core. Each cluster 

processes the events belonging to its LPs in increasing time-stamped order. There is a 

special cluster, called a controller, which is in charge of distributing the simulation 

workload, computing the Global Virtual Time (GVT): minimum time stamp among all 

unprocessed and partially processed messages in the system, and collecting the simulation 

results. We employ Matterns algorithm [29] to calculate the GVT. Checkpointing is done 

upon the arrival of a diffusion event at a cluster. The architecture and communication 

overview of NTW is shown in figure 4.

In every cluster there are two event queues, the clEQ and the inputExtEQ. The clEQ is used 

to sort the events generated by local LPs (i.e. within the same cluster). Its top event is the 

lowest time stamped event of the cluster. All events from different clusters are temporarily 

put into inputExtEQ and then forwarded to an input channel event queue, ICEQ. The priority 

SV queue is a container of SVs. The head of the SV priority queue always points an SV of 

minimal local time of next event within the cluster.

In a three-dimensional geometry, an SV can have at most six adjacent SVs, i.e. neighbors. 

The structure of an SV is the result of this observation. Each SV has a SV event queue 

(SVEQ), input channel event queue (ICEQ) which is used to hold diffusion events from 

neighbors, a processed event queue (PEQ), a state saving queue (SQ) and a history queue 

(HQ). Readers who are interested in the details of multi-level queuing may turn to [28].

The history queue (HQ) is an addition to the structure described in XTW [28]. It can be 

viewed as an array of its neighbors, in which each element of the HQ stores the time stamp 

of the last event sent to the corresponding neighbor. The HQ is used when the SV has to be 
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rolled back. For example, suppose that the local virtual time of SV i is 100, its HQ[0] is 80 

and HQ[1] is 90. Assume that SV i receives a straggler and is rolled back to a checkpoint at 

88. After retrieving the local virtual time and recovering state it can send rb-messages. It is 

clear that a rollback-message (rb-message) should be sent to the neighbor defined by HQ[1] 

and does not need to be sent to the neighbor defined by HQ[0].

4.2 Event Flow

The event set in NTW consists of a rd-event, a diffusion-event and a rb-message event. 

When an LP receives an event message, it checks to see what sort of message it is. If the 

message is a straggler, the LP rollbacks. If it is a rb-message, events from input channel 

queue with time stamps greater than the rb-message’s time stamp are removed. Otherwise 

the message is placed into the input channel queue. The algorithm is depicted in figure 5. 

When a cluster receives a diffusion event from an LP located in another cluster, it is placed 

in the inputExtEQ and then forwarded to the appropriate ICEQ.

The steps for processing events in SVs follow NSM approach in which rd-events are always 

scheduled to head of the SV priority queue whereas diffuse events are always scheduled to 

any neighbor (depending on random number) SVs, see figure 6.

5 Experimental Work and Analysis

Ca2+ is an important second messenger signal in many cell types, with diverse roles, from 

fertilization to regulating gene expression [35]. It is of critical importance to neurons as it 

participates in the transmission of the depolarizing signal and contributes to synaptic activity 

[32]. Ca2+ signaling waves in neurons were discovered more recently and is not yet fully 

understood however is thought to play an important role in synaptic transmission which is 

the form of secretion that leads to the release of neurotransmitters [32]. Nowadays, 

neuroscientists believe neuronal transmission has great impact in the process of learning and 

the formation and consolidation of memory [32].

Our experiments made use of two models - a calcium buffer [4] on a dendritic branch 

derived from NEURON simulation environment and a newly derived discrete event calcium 

wave model on a cylinder of 3D grid of sub-volumes cubes (derived from NEURON 

simulation environment) and on an one dimensional geometry.

We make a comparison between a deterministic simulation in NEURON and a stochastic 

parallel simulation in NTW on a calcium buffer model to verify NTW’s accuracy with 

respect to deterministic computation. We use the same reaction and diffusion rates, the same 

geometry (dendritic branch). We also employed the calcium buffer model to ascertain NTWs 

performance.

We use a discrete event calcium wave model derived from a deterministic model [35] [33].

5.1 Calcium Buffer Model

Free calcium, Ca2+, is buffered by intra-cellular buffers (e.g. calmodulin or parvalbumin). It 

can escape from these buffers, resulting in an almost constant concentrations of cytosolic 
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calcium. This observation can be used to verify our simulator. The buffer model includes 

two reactions as follows:

r0:Ca + Buf
C1

CaBuf

r1:CaBuf
C2

Ca + Buf

Here, the reaction constant, C1, for reaction r0 is 0.01/μMms and for reaction r1 the reaction 

constant, C2, is 0.01/ms. The diffusion constant of Ca is 0.0001 μm2/ms. Buf and CaBuf are 

not mobile species i.e. diffusion constant for those are 0.

The cylinder and branch are basic shapes for modeling neurites in NEURON. We use a 

dendritic branch geometry, also referred to as Y shaped, which is taken from a NEURON 

model. The Y-Shape geometry consists of three cylinders, each 10 microns long and 1 

micron in diameter. Total volume of 3 connected cylinders is about 23.56 μm3 and whole 

volume is sub-divided into 2766 sub-volumes. All sub-volumes are considered same in size 

and it is 0.25 × 0.25 × 0.25 cubic microns. Each cluster has near to the same number of 

SV’s. The distribution of sub-volumes in a neuronal branch among the clusters is shown in 

figure 7.

Hardware and Software Platform—The simulation platform was an Intel(R) Core(TM) 

i7-3770S CPU with 4 physical cores (8 logical processors) and 16GB RAM Each core can 

execute 2 threads in parallel. Hence there are 8 logical processors. The operating system is 

Ubuntu 12.04, with kernel 3.2.0-29-generic-pae. The MPI version is (Open MPI) 1.4.3, gcc 

version is 4.6.4. NTW is implemented by C++.

Concentrations were recorded for both the deterministic and parallel stochastic algorithms - 

see figure 8 for different concentrations. We employed a Y-shape geometry with the same 

reaction and diffusion rates and obtained almost the same behavior for both simulations. In 

the high concentration experiment, the initial concentrations in NEURON model for Ca, Buf 

and CaBuf were 8.0 μM, 4.0 μM and 0.0001 μM respectively. In order to verify the accuracy 

of the parallel simulation, we kept the same configurations. The parallel version was run on 

four cores (one controller and three workers). The same experiment was done for low 

concentrations- 0.8 μM, 0.4 μM and 0.0001 μM for Ca, Buf and CaBuf respectively. The 

standard deviation plots for both the high and low concentration experiments are shown in 

figure 9.

To compare the results obtained by the NTW sequential (one controller with one worker) 

and parallel (one controller with several workers) stochastic simulations, we employed the 

calcium buffer model on the same Y-shape geometry. The NTW sequential and parallel (one 

controller with three workers) simulation with a standard deviation is shown in figure 10.

For all of the stochastic simulation experiments, the average of three parallel stochastic runs 

is considered. The standard deviation of three stochastic runs is shown in figure 11. The 

average standard deviation of the three stochastic runs (on 25 sample points) for Ca, Buf, 

and CaBuf are 0.01 μM, 0.006 μM and 0.095 μM respectively.
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Performance—To measure the speedup of the parallel simulator, we employed a calcium 

buffer model on a neuronal branch and ran the parallel simulation for 5.7 virtual time units 

during which 1.2 million events were processed. The simulation took 2.53 seconds for one 

worker and for two workers it required 1.27 sec, as shown in the table 1.

The execution time and speedup plot for the calcium buffer model on the Y-shape geometry 

are portrayed in figure 12 and figure 13 respectively. When a dendrite branch is distributed 

over multiple logical processors, communication latency is created and the execution time 

flattens out at 7 logical processors.

The number of rollbacks increases linearly when the number of worker process increases, 

the result of increased communication between the workers. With proper load balancing we 

can distribute the communication workload over the processors and decrease the number of 

rollbacks.

5.2 Stochastic Discrete Event Calcium wave model: including Ca2+ activating and Ca2+ 

inhibiting sites dynamics

In the deterministic approach, the calcium concentration in the cytosol, [Ca_C], is calculated 

at every time step from different (in and out) fluxes- JIP3R, JSERCA, and JLEAK [35]. In the 

stochastic approach, different events (Channel Open, Release, Pump back and Leak) at 

discrete points of time are considered. The event frequency can be controlled by their (in/

out) flux rates, as derived in a mathematical model [35]. We have derived a stochastic 

reaction-diffusion discrete event calcium wave model from the deterministic model by 

considering only two bindings sites (activating and inhibiting Calcium sites). Because of the 

high occurrence of IP3 binding and unbinding [33] ignored the IP3 binding site in their IP3R 
model. Parameter values were obtained from [35] to produce a calcium wave propagation in 

an unbranched one dimensional geometry (length of 200 micron and diameter of 1 micron). 

We also observe Ca2+ wave propagation in a cylinder with a diameter of 1 micron and a 

length of 20 micron which consists of 3D grid of 1701 sub-volumes.

The stochastic channel dynamics of IP3R—The IP3R releases Ca2+ from the ER to 

the cytosol. It consists of four identical sub-units, each of which is composed of three 

binding sites [33]: an activating Ca2+ site, an inhibiting Ca site and an IP3 binding site. The 

three binding sites allow for eight different states Xijk for each subunit. The index i stands 

for the IP3 site, j for the activating Ca2+ site, and k for the inhibiting Ca2+ site. An index is 1 

if an ion is bound and 0 otherwise. Transition probabilities per unit time for transitions 

which involve the binding of a molecule are proportional to the concentration of that 

molecule. The channel is open if the subunit is in X110, i.e., they have bound Ca2+ at the 

activating site and IP3. Because the transition rates between the states X0JK and X1JK (IP3 

binding and dissociation) are two orders of magnitude faster than the other transition rates 

[33] ignored the IP3 binding site. We also consider the same approach and assumed that the 

channel has a possibility of opening if the subunits is X10.

The binding and dissociation of calcium Ca2+ at the activating and inhibition sites are 

stochastic events rendering the opening and closing of the channel a stochastic process. This 

stochastic process is coupled to the concentration of cytosolic calcium because the binding 
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probabilities per unit time depend on it and the number of open channels determines the 

concentration.

The transitions corresponding to reactions follow:

R0: IP3RInhibit

rc1
IP3RNot_Inhibit

R1: IP3RNot_Inhibit

rc2
IP3RInhibit

R2: IP3RNot_Active

rc3
IP3RActive

R3: IP3RActive

rc4
IP3RNot_Active

R4:Ca_E
rc5

Ca_C

R5:Ca_C
rc6

Ca_E

R6:Ca_E
rc7

Ca_C

The, first two reactions, R0 and R1, correspond to Ca2+ binding and unbinding at the Ca2+ 

inhibition site. R2 and R3 are calcium binding and unbinding at the calcium activation site. 

Reaction R4 is for calcium release from ER to cytosol. R5 and R6 are for the Sarco/

Endoplasmic Reticulum Ca2+-ATPase (SERCA) pump from cytosol to ER and leaking Ca2+ 

to cytosol, respectively. Calcium in the cytosol is Ca_C and calcium in the Endoplasmic 

Reticulum, ER, is Ca_E. Two mobile species in this model are Ca_C, for which the diffusion 

constant is DC = 0.75μm2/ms and IP3, for which the diffusion constant is DIP3= 1.75μm2/ms. 

We assume Ca_E is not mobile, so its diffusion constant is, DCE = 0.

In NSM, at every iteration, the reaction rates for all of the reactions are evaluated. In order to 

calculate a reaction rate, we follow the flux rate calculation of the deterministic model [35]. 

For experiment, the reaction constants were set as follows: rc1 = 1.0, rc2 = 1.0, rc3 = 1.0, rc4 
= 1.0, rc5 = 10.0, rc6 = 0.5 and rc7 = 1.5.

The calculation of NSM reaction rates are given below:

Reaction rate for reaction R0 (to not inhibit IP3R) and R1 (to inhibit IP3R 
Channel): The rate of R0 reaction i.e. Ca not inhibiting rate = rc1 * IP3RInhibit * hinf.

The rate of R1 reaction i.e. Ca inhibiting rate = rc2 * IP3RNot_Inhibit * (1–hinf).

Here, hinf = Kinh/(Kinh + [Ca_C]).

[Ca_C] is the local concentration of calcium in the cytosol.

Initially, IP3RInhibit = 0 and IP3RNot_Inhibit = 4 (as for 4 sub-units) which causes R1’s 

reaction rate to be greater than the R0′ s reaction rate. That means initially that all of the 

channels are in an inhibited state i.e. XJ1. When the R0′ s reaction rate is greater than R1’s rate 

the channel is in not in an inhibited state i.e. XJ0.
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Reaction rate for reaction R2 (to activate IP3R) and R3 (to inactivate IP3R 
Channel): The rate of R2 reaction i.e. Ca activating rate = rc3 * IP3RNot_Active * (1–ninf).

The rate of R3 reaction i.e. Ca inactivating rate = rc4 * IP3RActive * ninf.

Here, ninf = [Ca_C]/(KAct + [Ca_C])

Initially, IP3RNot_active = 4 and IP3RActive = 0 which causes R2’s reaction rate to be greater 

than R0’s reaction rate. So all of the channels are in inactivate state i.e. X0K. When R3’s 

reaction rate becomes greater than R2’s reaction rate, the channel becomes active i.e. X1K.

Reaction rate for reaction R4 (to release Ca2+ from ER to cytosol): The reaction rate of 

R4, i.e. the Release rate = rc5 * (JIP3R)

Here, JIP3R = VIP3R * x * n * m * h * ([Ca_E]–[Ca_C])

Where,

n = IP3RActive/(IP3RActive + IP3RNot_Active)

m = IP3/(IP3 + KIP3)

h = IP3RNot_Inhibit/(IP3RInhibit + IP3RNot_Inhibit)

x = number of IP3R channels per cluster.

Here x = 1 i.e. one IP3R channel per cluster.

VIP3R and KIP3R are constants.

It is notable that release depends on m, n, and h.

• If IP3 is not available i.e. m = 0 and release rate will be 0. This means release 

event will never happen.

• Similarly, h depends on IP3RNot_Inhibit. When, IP3RNot_Inhibit is 0 then h is also 

0, which means that the channel is in an inhibited state and the release event 

cannot occur. The state of IP3RNot_Inhibit or IP3RInhibit is managed by reaction R0 

and R1.

• n depends on IP3RActive. When, IP3RActive is 0 then n is also 0. This means IP3R 
is in an Ca inactivated state. The value of IP3RActive and IP3RNot_Active is always 

updated by reaction R2 and R3.

Reaction rate for reaction R5 (to pump back Ca2+ from cytosol to ER): The reaction rate 

or pumping rate = rc4 * JSERCA

Here, JSERCA = VSERCA ∗ ([Ca_C]2/(KSERCA
2 + [Ca_C]2).

and VSERCA and KSERCA are constants.
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Reaction rate for reaction R6 (leak Ca from ER to cytosol): The reaction rate i.e., the leak 

rate = rc5 * JLEAK.

Here, JLEAK = VLeak * ([Ca_E] [Ca_C]).

and VLeak is a constant.

All constants are taken from deterministic model [35] are shown in table 2.

5.3 Propagation of Calcium Wave

Figure 14 shows a calcium wave through an array of sub-volumes, each of which has only 

one IP3R receptor. When (1) there is a small number of Ca2+ and IP3 ions are available (2) 

the calcium activated site being activated and no calcium inhibition, the IP3R channel 

releases Ca2+ from the ER to the cytosol, creating a small calcium wave called a ‘blip’. 

Several blips in a IP3R cluster creates a ‘puff’. Because each cluster has only one IP3R, we 

do not distinguish between blips and puffs in our experiments. Due to the puffs, the 

cytoplasmic calcium concentration is raised as shown in figure 14. The released calcium 

then diffuses to neighboring sub-volumes and activates nearby IP3R via “calcium induced 

calcium release” (CICR). Thus a global propagation of a calcium wave is evoked, figure 14. 

In short, Ca2+ release at one IP3R can trigger Ca2+ release at adjacent IP3R via CICR, 

leading to the generation of Ca2+ waves.

Model verification and wave propagation—In order to to observe wave propagation 

experimentally, we employed an array of two hundred 1×1×1 cubical micron SVs connected 

linearly as shown in figure 15. In every sub-volume we modeled the cytosolic and 

endoplasmic reticulum compartments by using a fractional volume for each, as shown in 

figure 1.

Initial concentration for both Ca2+ and IP3 are 0.0033 μM (i.e. 2 Ca2+ molecules per SV) 

and 0.0 μM respectively. After a period of time, the concentration of IP3 is increased to 

0.332 μM (i.e. 200 IP3 molecules per SV) in the middle six SVs (i.e. SV97 to SV102) and 

observed the spreading of a Ca wave as shown in figure 16. Similarly to observe the 

spreading of calcium wave through a 3D grid, we employed a cylinder with a diameter of 1 

micron and a length of 20 micron which consists of 3D grid of 1701 0.25×0.25×0.25 cubical 

micron sub-volumes. Initial concentration for both Ca2+ and IP3 are 0.0033 μM (i.e. 2 Ca2+ 

molecules per SV) and 0.0 μM respectively. After a period of time, the concentration of IP3 

is increased to 106.27 μM (i.e. 1000 IP3 molecules per SV) in the middle nine SVs (i.e. 

SV845 to SV853) and observed the spreading of calcium through a 3D grid cylinder as shown 

in figure 17.

Because there is high concentration of IP3 in SV97 to SV102, the release event can only 

occur at those SVs. IP3, and then spread gradually along the dendrite, resulting in a Ca2+ 

activation of the IP3 receptors (IP3Rs). Activation of IP3Rs permit release of Ca2+ from the 

endoplasmic reticulum stores into the cytosol. This causes the concentration of calcium in 

cytosol, [Ca_C] to increase and to start to diffuse in both directions (left and right) from the 

middle and to affect the neighbor SVs as well. In addition the IP3 also diffuses to neighbors 
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and causes neighboring SVs to start to release events. Thus a global wave of calcium in the 

cytosol, Ca_C, starts to propagate in both directions with respect to time (1 ms to 30 ms) as 

shown in figure 16. The calcium wave is travelling very fast (about 3.3 micron per ms), 

which is far from a real biological neuron (1 micron every 20 ms). In fact we reproduced the 

qualitative dynamics and moved on because we are interested in the performance of NTW 

with our discrete model.

Steady state IP3R channel dynamics—We developed an IP3R model and a stochastic 

simulation to predict the behavior of individual channels. The IP3R model plays a central 

role not only for the understanding of channel kinetics but also as a building block for 

constructing larger scale models of cellular calcium signaling. Figure 18 describes the 

dependence of IP3R channel open probability (Po) as a function of cytosolic Ca2+ for 

different concentration of IP3.

Experiment: Initially all channels of the domain (sub-volume SV0 to SV199 each of which 

has only one IP3R channel) are closed. The concentration of Ca2+ in cytosol is .0033 uM and 

the concentration of the IP3 in cytosol is 0 uM. After a very short period of time, the 

concentration of IP3 (for all SVs) rises to .0083 uM. This causes all of the IP3R channels to 

open and increases the level of Ca2+ concentration in the cytosol very sharply. When Ca2+ 

concentration in cytosol is reached into a certain point, here it is .035 uM, all channels starts 

to close and reach into a steady state.

Open probability (Po) calculation: The NSM algorithm first calculates the total reaction and 

diffusion rates at every iteration. Then it decides whether the event is reaction or diffusion 

event randomly. If the event is a reaction, NSM selects a reaction out of the 7 reactions. The 

model consists of 7 reactions, R0 to R6, where R4 is the open reaction i.e. release Ca2+ from 

ER to cytosol. The open probability Po is defined as the ratio of the total number of R4 

reactions occurring (release events), NR4 to the total number of reaction events, N. Po = 

NR4/N. Figure 18 is the plot of Po for different concentration levels of cytosolic calcium with 

3 different concentrations of IP3.

[34] experimentally observed that the channel open probability is a bell-shaped function of 

the concentrations of calcium in cytosol, [Ca_C]. The open probability varies with respect to 

IP3 concentrations. We also obtained the same behavior, validating our stochastic discrete 

event calcium wave model. It is notable that when calcium concentration is about .073 μM 
the open probability is very low (less than .02). In a stochastic simulation, the channel open 

probability Po never goes to zero as in steady state some releases do occur.

Performance—The execution time of our model in the neuronal branch geometry is 

displayed below in figure 19. We first note that it takes 5 worker processes for the execution 

time of the model to be divided in half. In the Calcium buffer model it took 2 workers to 

achieve this.

The reason for this has to do with the large computational imbalance between the areas in 

the model with high calcium (covered areas) and those with low calcium (uncovered areas). 
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This imbalance results in a large number of rollbacks-they increase almost linearly with the 

number of process-see figure 20 and degrade the performance of the simulation.

Our experiments clearly revealed this computational imbalance. Table 3 shows experimental 

data comparing the workloads of the covered and uncovered areas.

Some take-away from these experiments

• 95% more events are processed in the covered area than in the uncovered area. 

Among the processed events in the covered area about 15% are reaction events 

and about 85% are diffusion events. We conclude that it is important to detect the 

covered area in order to determine the proper distribution of sub-volumes among 

the worker processes.

• The size of the covered area increases with time, so dynamic load balancing is 

worthwhile investigating.

• The rate of spreading of the covered area depends on the speed of calcium wave 

which in turn depends on the concentration of IP3. If the concentration of IP3 is 

high, the Ca wave spreads quickly, otherwise slowly [35]. Hence we can detect 

the covered area via the concentration of IP3 in the SVs.

We intend to explore the utility of a load balancing algorithm for this problem.

6 Conclusion

This paper describes a parallel simulation environment for a stochastic reaction-diffusion 

model, Neuron Time Warp (NTW). NTW was built as part of the NEURON project 

(www.neuron.yale.edu) and has been experimentally integrated with NEURON. 

Deterministic models for the chemical activity of a neuron have existed for some time, but 

cannot portray chemical behavior in a neuron when there are a small number of molecules 

involved in both the reactions and diffusion of these molecules. Stochastic models do 

provide us with a more detailed view. The reason for developing a parallel simulation is to 

be able to simulate a larger part of a neuron or a network of neurons in some detail.

We made use of NTW for two models in this paper, a calcium buffer model and a calcium 

wave model. The calcium buffer model was used primarily to compare the behavior of NTW 

to that of a deterministic model as a means to verify NTW. The calcium wave model, on the 

other hand, is intended to investigate the behavior of a calcium wave which plays an 

important role transmission in a neuron. We developed a discrete event calcium wave model 

with diffusible IP3, diffusible Ca2+, IP3 receptors (IP3R), endoplasmic reticulum (ER) Ca2+ 

leak and an ER pump (SERCA). Our results indicated that the bulk of the computation 

moves with the spreading of the actual wave.

We are in the process of developing a load balancing algorithm for NTW. This is a topic of 

vital importance for the simulation of networks of neurons which contain hundreds of 

thousands or indeed millions of sub-volumes, i.e. large-scale realistic models. We intend to 

make use of techniques from artificial intelligence to build these algorithms similar to the 

ones described in [31]. We are combining the load-balancing algorithms with a window-
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control algorithm which reduces the number of rollbacks, as in [31]. The load balancing/

window control algorithms described in [31] were used in the context of parallel gate level 

simulation of VLSI circuity. We are planning to explore the use of sub-volumes with 

different shapes and sizes which are connected in arbitrary ways in order to better 

accommodate different neuronal morphologies and models.

We end this paper with the proverbial view from 10,000 feet. NTW relies on the 

decomposition of a model into sub-models (sub-volumes in this paper, LPs in general) in 

order to effect a parallel simulation. This approach can also be made use of in the field of 

systems biology in order to create a realistic cell simulation. We should note that realistic 

cell simulation is one of the major goals of systems biology. Differential equation models 

can be used for part of a model and discrete event models can be used for other parts, 

depending on the desired level of detail. Either or both of these models can be executed in 

parallel.

Glossary

diffusion-event One type of NTW events. When rd-event does as a 

diffusion event it generates a diffuse-event which is 

forwarded to a neighbor sub-volume.. 5

rb-message It is a notification message from a rolled back LP to 

neighbor LPs so that neighbor LPs are being corrected.. 5

rd-event One type of NTW events which may occur reaction or 

diffusion.. 5

rollback When a straggler message arrives, a rollback to the time 

stamp of the straggler is performed and all of processed 

events with a greater time stamp than that of the straggler 

are re-executed.. 5

speedup Speedup is defined as the ratio of the sequential execution 

time to the parallel execution time.. 7

straggler A late arrival event message into a logical process is 

referred as straggler.. 5

ACRONYMS

clEQ Cluster Event Queue. 5

GVT Global Virtual Time. 5

LP Logical Process. 3

NSM Next Sub-volume Method. 1, 2

NTW Neuron Time Warp. 1, 2
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PDES Parallel Discrete Event Simulation. 1, 2
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Fig. 1. 
Computational sub-volume domain for neuron.
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Fig. 2. 
Calcium wave signaling in neuron.
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Fig. 3. 
Typical interaction between NEURON and NTW.
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Fig. 4. 
The architecture and communication overview of NTW.
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Fig. 5. 
LP level event receiving.
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Fig. 6. 
Cluster level event processing.
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Fig. 7. 
Conceptional partitioning of SVs of neuronal branch among the processes.
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Fig. 8. 
Varying concentration in deterministic and parallel stochastic simulation for a. high 

concentration b. low concentration.

Patoary et al. Page 29

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Standard deviation between deterministic and parallel stochastic for a. high concentration b. 

low concentration.
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Fig. 10. 
a. Varying concentration in NTW stochastic sequential and parallel simulation. b. 

Corresponding standard deviation plot.
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Fig. 11. 
Standard deviation of three parallel stochastic runs.
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Fig. 12. 
Execution time of calcium buffer model in parallel simulation.
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Fig. 13. 
Speedup of NTW as a function of number of worker process.
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Fig. 14. 
Calcium wave propagation through a linear geometry with one IP3R channel per micron.
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Fig. 15. 
Linear connection of computational sub-volumes, SVs.
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Fig. 16. 
Observation of calcium wave propagation in linear geometry.
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Fig. 17. 
Observation of calcium wave propagation in a cylinder with a diameter of 1 micron and a 

length of 20 micron which consists of 3D grid of 1701 sub-volumes.
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Fig. 18. 
Steady state open probability as function of calcium in cytosol, Ca_C.

Patoary et al. Page 39

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 19. 
Execution time of calcium wave model in parallel simulation.
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Fig. 20. 
Rollback with multiple worker processes in calcium wave model simulation.
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TABLE 1

Performance table of calcium buffer model in parallel simulation

Number of workers, N Average physical time, T(N), in sec. Speedup, S(N) = T(1)/T(N)

1 2.53 1

2 1.27 1.993

3 0.96 2.66

4 0.68 3.7

5 0.57 4.44

6 0.48 5.27

7 0.46 5.5
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TABLE 2

All constants for calcium wave model

VIP3R 0.0002

KAct 0.0004

KIP3 0.0013

Kinh 0.0019

KSERCA 0.0001

VSERCA .00003249

VLeak 0.00003
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