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Perspective on-Neuron Model Complexity

Wilfrid Rall

Introduction

There is a wide range of choice in model complexity, from very
simple to rather complex neuron models. Which model to choose
depends, in each case, on the context. How much information do
we already have about the neurons under consideration? What
questions do we wish to explore? ’

Sometimes we wish to model a particular biological neuron
whose anatomy and physiology are known in considerable exper-
imental detail. In such cases, we may choose to specify a model
that includes at least some of the dendritic branching of the neuron,
because synapses from one source may be distributed preferentially
to either a distal or a proximal dendritic location, while synapses
from another source may end mainly at the soma, or on a different
dendritic tree of the same neuron. Also, there may be a functionally
significant nonuniformity in the distribution of channel densities of
several ion channel types over the surface of the soma and den-
drites. How much detail is needed depends on the biological ex-
periments to be simulated and the questions asked.

Conversely, many network modelers are not constrained by an-
atomical or physiological data. For some network modeling, this
is partly justified by a paucity of available data. However, more
often, network modelers are constrained by their mathematical

methods, which lead them to focus on abstract networks composed

of extremely simple units. The simplest units are two-state, binary
units, analogous to atomic spin, previously studied for condensed
matter physics (see, e.g., OPTIMIZATION, NEURAL). Such binary
units do not resemble neurons, but they do have a strong appeal
for nerve-net modelers, who have generated an extensive literature.
That literature lies outside the scope of the current article.

When simple binary units are compared with a dendritic neuron
model (especially with nonuniform distributions of synapses and
ion channels), it becomes apparent that one dendritic model neuron
can perform tasks that would require a network of many simple
units to duplicate. For the purpose of machine design, it may seem
quite appropriate to consider the trade-offs in cost and flexibility
(between the one realistic model and the many binary units), but
for functional insights and understanding of biological nervous sys-
tems, I freely state my bias for the more realistic neuron models. I
do not choose the most complex, in the sense of including all
known anatomical and physiological details; I favor an interme-
diate level of complexity that preserves the most significant dis-
tinctions between regions (soma, proximal dendritic, distal den-
dritic, different trees), especially when further justified by
nonuniform distributions of synapses and ion channels (see also
Segev, 1992).

The claim is sometimes made that network properties depend
primarily on the connectivity between the units, and not on the

properties of the units. Although this may be true for some gross
network properties, I do not believe it to be true for many of the
actual biological networks that perform important, complicated
tasks. I regard it as a worthwhile challenge for like-minded neural
modelers to provide interesting demonstrations in support of this
belief. The challenge is to demonstrate a useful computation or
discrimination that can be accomplished with a dendritic neuron
model, or a network composed of such models, and then show that
this useful capacity is lost when all of the dendritic membrane is
lumped with the soma, and all of the inputs to each neuron are now
delivered to that lumped membrane. There are valuable examples
that already meet this challenge, several of which are presented in
three later sections of this article. Other examples can be found in
a review by Borst and Egelhaaf (1994; see also VisuaL COURSE
CONTROL IN FLIES).

Brief Historical Notes

Neurons are biological cells, and their electrical properties depend
on ions and the cell membrane, in a manner brilliantly elucidated
by Hodgkin, Huxley, and Katz during the period 1948-1952. It is
a fascinating historical coincidence that two seeds of their impor-
tant insights can be found in a single 1902 volume of Pfluegers
Archiv, in pioneering articles by Bernstein and by Overton. Fol-
lowing the earlier theoretical insights of Nernst and Planck, Bern-
stein recognized the importance of the potassiurn ion concentration
difference across the membrane in determining a non-zero resting
potential; he regarded excitation as a brief breakdown of the mem-
brane, a concept that prevailed until 1948, when Hodgkin and Katz
showed that the key is a sudden overwhelming increase in mem-
brane permeability to sodium ions. Overton’s 1902 paper had cor-
rectly emphasized the importance ef the external sodium ion con-
centration to the excitability properties of nerve, but no one put
these ideas together in 1902. Between 1900 and 1914, several in-
vestigators, including Hermann, Lucas, and Lapique, recognized
the importance of membrane capacitance; the concept of nerve
membrane as a leaky integrator, with a threshold for an action
potential, was used to understand the strength-duration curve for a
threshold stimulus. During the 1930s, several investigators, includ-
ing Rashevsky, Hill, and Monnier, developed mathematical models
of excitation and inhibition; Rashevsky’s textbook Mathematical
Biophysics (1948) includes many examples of network modeling
by himself; by Householder, Landahl, and others; and by Mc-
Culloch and Pitts, whose famous 1943 paper arose in the context
of Rashevsky’s research seminars at the University of Chicago (see
also the historical notes in Schwartz, 1990). Ever since that time,
many neuron modelers have been content with the leaky integrator
neuron model, which reduces a neuron to a single node that
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integrates synaptic excitation (+) and synaptic inhibition (—) de-
livered to it-by other neurons. Several errors caused by these over-
simple assumptions were demonstrated by compartmental com-
putations in 1962; see Rall’s chapter in Reiss (1964) or in Segev,
Rinzel, and Shepherd (1995). Other chapters in Reiss (1964) also
provide several interesting early perspectives on neural modeling.
The mathematical modeling of nonlinear membrane properties has
been presented and discussed in an outstanding early review by
FitzHugh (1969), and in a chapter by Rinzel and Ermentrout that
appears in Koch and Segev (1989).

The concept of a nerve axon as an extended core conductor (i.e.,
membrane cylinder with ionic conducting media inside and out-
side) goes back to the 1870s, when it was treated mathematically
by Hermann and Weber; both the concept of passive electrotonus
in membrane cylinders and the mathematics (of passive cable the-
ory) were explored over the years, culminating in classic papers by
Hodgkin and Rushton and by Davis and Lorente de N6, both
around 1946-1947; see references in Rall (1977). Before 1900,
neuroanatomical studies by Ramén y Cajal demonstrated the ex-
tensiveness of dendritic branching for most neuron types; this was
confirmed by many anatomists, and later (in the 1950s), use of the
electron microscope made it possible to verify the existence of very
many synapses on - the dendritic branches and on the dendritic
spines of neurons. These anatomical facts, together with the intro-
duction of intracellular microelectrode recording from single den-
dritic neurons (in the 1950s), made it urgent to extend cable theory
to the dendrites of individual neurons. This was begun in the late
1950s and carried forward into the 1960s and 1970s; for a review,
see Jack, Noble, and Tsien (1975) or Rall (1977); see also Koch
and Segev (1989), McKenna, Davis, and Zornetzer (1992), Rall et
al. (1992), Segev et al. (1995), and DENDRITIC PROCESSING.

“

Dendritic Neuron Model Complexity:
Geometric Versus Membrane Complexity

The concept of complexity in dendritic neuron models can be ex-
plored quite efficiently by making a two-dimensional chart. One
dimension would be membrane complexity, ranging from the sim-
ple case of a passive linear membrane to that of postsynaptic mem-
brane models with time-varying ion permeability (or conductance),
and then to excitable membrane models with voltage-dependent
ion conductances as described by Hodgkin and Huxley (see AX-
ONAL MODELING), or as now described with increasing detail in
terms of many different species of ion channels whose voltage and
time dependence are currently being characterized (see IoN CHAN-
NELS: KEYS TO NEURONAL SPECIALIZATION). The other dimension
would be geometric complexity, ranging from the simple case of
an isopotential region of membrane (a soma, or a space-clamped
section of a cylinder) to that of a uniform membrane cylinder with
two sealed ends (or with one end voltage clamped, or current
clamped), and then to several dendritic trees attached to a soma
(with or without an axon), where the soma may be shunted and the
branching of the trees may be specified to varying degrees of ar-
bitrariness. The most complicated geometric case, with arbitrary
branching and shunted soma, has recently been solved analytically
(for transients, assuming passive membrane) in a mathematical tour
de force by Major, Evans, and Jack (1993); see also Holmes, Segev,
and Rall (1992). The less complicated, but illuminating, case of
idealized branching with a point soma was solved earlier by Rall
and Rinzel; see the 1973 and 1974 papers reprinted in Segev et al.
(1995). However, these analytical methods do depend on the as-
sumption of linear membrane properties. When nonlinear mem-
brane complexity is combined with geometric complexity, the tran-
sient solutions can be obtained computationally by using
compartmental models; see 1964 and 1968 papers reprinted in Se-

gev et al. (1995); see also DENDRITIC PROCESSING and several
chapters in Koch and Segev (1989) and in McKenna et al. (1992).

Dendritic Model Can Provide
Spatiotemporal Discrimination

Figure 1 summarizes a demonstration of how a dendritic neuron
model could perform a discrimination between two contrasting spa-
tiotemporal patterns of synaptic input (i.e., possible movement de-
tection); this discrimination is lost if the compartments and inputs
are lumped together. & neuron is represented by a chain of ten
compartments; compartment 1 represents the soma, while com-
partments 2 to 10 represent dendritic membrane of the same neu-
ron, with increasing cable distance from the soma. One spatiotem-
poral input sequence, A-B-C-D, has the proximal dendritic input
first, followed in time by progressively more distal dendritic input
locations. The other input pattern, D-C-B-A, is opposite in having
the most distal input first, followed in time by progressively more
proximal input locations. Comparison of the resulting computed
voltage transients (EPSP at the soma), shown in Figure 1, reveals
that input sequence D-C-B-A yields a significantly larger voltage
amplitude than does input sequence A-B-C-D. Intuitive under-
standing of this computed result is obtained by noting that the de-
layed proximal input builds on membrane depolarization that has
spread to the soma (with delay) from the distal dendrites (which
were activated earlier). If the voltage threshold for spiking at the
soma were tuned between these two peak amplitudes, a spike would
be produced by sequence D-C-B-A, but a spike would not be pro-
duced by sequence A-B-C-D; this would constitute a discrimination
between these two sequences. The dashed curve in the figure shows
the computed result when the compartments are lumped together;
either sequence of input synapse activation then produces the same
intermediate result, and no discrimination would be possible.

Models for Mitral and Granule Cell Populations
in Olfactory Bulb

A rather different example is provided by the neuron models used
for the mitral cell and granule cell populations in simulating ex-
periments on the OLFACTORY BULB (q.v.) of rabbit; see the 1968
paper of Rall and Shepherd in Segev et al. (1995); or see figures
2.11 and 2.12 in Koch and Segev (1989). Here, the task was to
model and compute extracellular field potentials that matched those
observed experimentally in olfactory bulb when the mitral cell
population was activated in near synchrony by means of an an-
tidromic volley. Compartimental models were used; a nine-
compartment model (three axonal, one somatic, and five dendritic)
was used to simulate antidromic activation of a mitral cell, while
a ten-compartment model was used to simulate nonspiking activity
in the dendrites of an axonless granule cell. The dendritic com-
partments were absolutely essential for the computation of electric
current flow between different dendritic regions of each granule
cell and between the dendrites and soma of each mitral cell; without
these currents, it would have been impossible to compute the field
potentials generated by the synchronously activated neuron popu-
lations. Also, this modeling led to a critically important distinction
in the depth distribution of the two fields: the larger, longer-lasting
field potentials generated by the very large population of granule
cells extended to significantly greater depth in the olfactory bulb
than did the earlier, smaller, briefer field potentials generated by
the mitral cell population. The difference between these two fields
was such that neither population could have generated the other
field. This provided the key to our prediction of (and the functional
interpretation of subsequent electron microscopic evidence for)
dendrodendritic synaptic interactions between the mitral secondary
dendrites and the distal dendrites of the granule cells, which are
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Figure 1. Effect of spatiotemporal dendritic pat-
tern of synaptic input on the computed EPSP at
the soma, for a ten-compartment model. Upper
diagram indicates the mapping of a soma and
dendritic tree into a chain of ten equal compart-
ments. Compartment 1 represents the soma
membrane, while compartments 2 to 10 represent
dendritic membrane, from proximal to distal lo-
cations. The middle diagram (at left) shows the
synaptic input sequence A-B-C-D, meaning
proximal dendritic input location active first, fol-
lowed by successive activation at increasingly
more distal input locations; this input pattern pro-
duced the soma voltage transient (computed
composite EPSP) labeled A-B-C-D at lower left.
The middle diagram (at right) shows the opposite
synaptic input sequence. D-C-B-A, meaning dis-
tal dendritic input location first, followed by suc-
cessively more proximal input locations; this in-
put pattern produced a significantly different
soma voltage transient (computed composite
EPSP), having a delayed rise to a larger peak
amplitude, labeled D-C-B-A. In both cases, each
input compartment (shown in black) received a
synaptic excitatory conductance pulse (G, = G,,
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intermingled in the external plexiform layer of the bulb. If these
cells had been modeled as lumped somas, without dendrites, neither
the successful simulation of the experimental field potentials nor
the exciting new insights about a dendrodendritic pathway for re-
current inhibition would have been possible.

Similarly, for the earlier simulations and insights obtained for
motor neurons of cat spinal cord, we found that observations made
at the soma seemed paradoxical until they were understood in terms
of synaptic events that occur in distal dendrites (see the 1967 paper
in Segev et al., 1995); these results and insights would not have
been possible without dendritic compartments in the neuron field.

Comment on Functional Aspect
of Dendrodendritic Interactions

To highlight an important functional difference, note first that mo-
tor neurons do exhibit the classical functional polarity envisaged

2% a5 46 47 7 15 2

¢ 25
k4

by Ramén y Cajal and Sherrington (as well as most modelers). The
dendrites receive inputs from many sources (their effects converge
on the soma); the output (when spike threshold is exceeded) is an
all-or-nothing action potential propagated by the axon to muscle
units that may be quite distant; i.e., classically, input is received
by the dendrites and output is delivered by the axon. In contrast,
the dendrites of both the mitral cells and the granule cells are func-
tionally different, because they both send as well as receive syn-
aptic information, locally. The mitral secondary dendrites, which
are smooth and spineless, send nonspiking synaptic excitatory out-
put, which is received as input by the spines (see DENDRITIC
SpiNEs) of the adjacent granule cells. The granule cells have no
axons and perhaps no action potentials; their spines receive graded
synaptic excitatory input and then send graded synaptic output that
is inhibitory to the adjacent mitral cell dendrites. It is important to
emphasize that this is not a rare anomaly found only in the 6ifactory
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bulb; evidence for dendrodendritic synapses and for graded local
synaptic interactions is now found in many parts of the brain (e.g.,
retina and inferior olive). In 1965, when we (Rall et al.; see 1966
and 1968 papers reprinted in Segev et al., 1995) first presented our
interpretations of dendrites that send as well as receive, some Critics
resisted this concept as heretical; however, our functional interpre-
tation of these dendrodendritic synapses is now widely accepted by
physiologists and anatomists. This kind of graded two-way syn-
aptic interaction is very different from the classical functional po-
larity just described for motor neurens; it provides graded func-
tional coupling between neurons (without axonal impuises). The
implications have so far hardly been explored in theoretical net-
works. Such exploration will require explicit modeling of dendritic
compartments; a point neuron model would be useless for this.
Note also that computational explotation of localized plastic
changes at synapses and at dendritic spines depends on neuron
models that include dendritic compartments.

Network Rhythmogenesis Using the Traub Model
and a Reduced Model ,

A 19-compartment cable model for the pyramidal cells of the CA3
region of guinea pig hippocampus was developed by Traub et al.
(1991; see also the chapter by Traub and Miles in McKenna et al.,
1992). Based on experimental measurements, parameters were cho-
sen for each compartment, using up to six active ionic conduc-
tances, and controlled by ten-channel gating variables. They suc-
ceeded in finding a set of physiologically reasonable parameters
for which the network of model neurons could simulate several
important aspects of the experimental repertoire of the slightly dis-
inhibited hippocampal slice preparation. Although Traub et al. rec-
ognized that their successful simulations of network behavior de-
pended on specifying significantly different ion channel densities
for the soma and for the dendrites, the critical importance of this
difference was made starkly clear by the modeling of Pinsky and
Rinzel (1994); they obtained essentially the same behavioral rep-
ertoire by using a network composed of a severely reduced neuron
model consisting of only two compartments per pyramidal cell.
One compartment represented the soma and proximal dendrites,
while the other compartment represented the distal dendrites. To
be more specific, the ion channels for fast-spiking currents (inward
sodium, and delayed rectifier) were restricted to the soma-like com-
partment, and the ionic channels for the slower calcium currents
(calcium-inward and calcium-modulated currents) were restricted
to the dendrite-like compartment. I hasten to add that these results
also show that at least two compartments are needed for simulations
of this behavior; a single lumped compartment, with all of the ion
channels in paralle], could not produce the same behavior, espe-
cially the rhythm, which basically involves an alternating flow of
current between the two coupled compartments. A special advan-
tage of the reduced neuron model is that much simpler computa-
tions can explore how much the interesting behavior depends on
the values of key parameters, especially the parameter that defines
the tightness of coupling between the two compartments. Also, the
behavior of very large networks can be explored more efficiently
using such a reduced neuron model. Further study may show that
the two-compartment model cannot match the fuller model in cer-
tain important tests, but, in any case, these findings so far represent
a very satisfying example that illustrates the thesis of this article.

Discussion

Tn an earlier essay offering perspective on neural modeling (achap-
ter in Binder and Mendell, 1990), I provided a completely different
set of examples. One of these provided a detailed consideration of
the number of degrees of freedom to be found in a neuron model

composed of a thousand compartments. Such models exist today
because of tremendous improvements in anatomical methods and
in computation facilities now available to experimental investiga-
tors. Because they have the morphological data and a computer,
why not put everything into the model? The answer is that you can
if you wish to, but you should be aware of the huge number of
degrees of freedom implied by the large pumber of parameters that
must be specified; as someone once pointed out, given enough free
parameters, be could fit an elephant. Is the membrane uniform, or
do we know the density of every channel species in every mem-
brane compartment? How are the inputs distributed to the many
compartments? Today, the data needed for such detailed specifi-
cations are largely missing; however, such data are beginning to
become at least partly available for some neurons. Where the data
are not available, the modeler must make reasonable guesses. If it
seems reasonable to assign the same parameter values to many
neighboring compartments, one should consider lumping those
compartments together to produce a simpler model with fewer
compartments. Nevertheless, one important merit of the larger
model is that it can be used to test whether it can perform some
interesting task that cannot be performed by the reduced model.

As stated earlier, my preference is for intermediate levels of com-
plexity; I vote for the smallest number of compartments that can
preserve what one judges to be the functionally important differ-
ences between dendritic regions with regard to ion channel densi-
ties and to distributions of synapses from different sources. If a
five-compartment model can provide a good approximation of the
interesting properties of a 1,000-compartment model, I would pre-
fer the smaller model, for two important reasons: (1) it helps
sharpen our intuitive understanding about what is essential to ob-
taining the behavior of interest, and (2) it can greatly facilitate
computations with networks composed of such neuron models. I
expect modeling of this kind will continue to be particularly fruitful
in the near future (see also the discussion by Segev, 1992).

Concluding Comment

As when drawing, painting, sculpting, or composing music, so t0o,
when deeply engaged in neural modeling, I believe that much of
the fun and satisfaction comes from interactions between my con-
scious mind and my subconscious sources of creativity. It seems
that preliminary sketching serves to plant seeds in the subcon-
scious, where they can grow, if nurtured. Conscious pursuit of the
problem can then stimulate differentiation and development in the
subconscious and may produce fruits that can reach conscious
awareness (popping up like mushrooms produced by an under-
ground mycelium). Such fruits may provide exciting new insights
for the conscious mind. Indeed, the pleasure of such creative dis-
covery can become almost addictive for those fortunate enough to
have both the interest and the opportunity for creative activity. I
hasten to add that a lot of hard work is usually required to test and
polish before one can produce a finished product. Pioneering in
dendritic neuron modeling provided me with such an opportunity;
now [at the time of the First Edition}, with retirement upon me, 1
hope to persist by sculpting, painting, and by designing a house for
a natural mountain setting.

[Reprinted from the First Edition]

Road Maps: Biological Neurons and Synapses; Grounding Models of
Neurons '

Background: 1. Introducing the Neuron

Related Reading: Dendritic Processing
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Phase-Plane Analysis of Neural Nets

Bard Ermentrout

Introduction

Models of neural networks often involve the solutions to differ-
ential equations that describe the time evolution of these complex
systems. The dynamical behavior of these networks ranges from
the convergence to an equilibrium (generally desired in connec-
tionist applications) to oscillatory behavior (in models of central
pattern generators and bursting) through possibly chaotic behavior.
There are many ways to analyze these models; the most commonly
used techniques entail simulation. In this article I will give an over-
view of an alternative technique for studying the qualitative be-
havior of small systems of interacting neural networks. One form
that the models take is (Ellias and Grossberg, 1975; Hopfield, 1984;
Wilson and Cowan, 1972):

dx, : ‘
1,-——'=~x,-+ﬁ(2w,~jxj+s,-> i=1,...,n
dt j=1

where x; represents the activity or firing rate of the ith neuron, 1; is
the time constant, w;; are the connection weights, s, are inputs, and
Jf; are typically saturating nonlinear functions that have the form
shown in Figure 1. That is, the nonlinear functions are increasing
and bounded. Some typical examples are:

f@) = tanh() @)

f) = tan™'() ©)
1

fx) = m @

Often, a slightly different form of (1) is chosen where the nonli-
nearities are inside the sums. The transformation from one to the
other is elementary and all of the following holds for either type
of model.

A complete analysis of networks of the form in Equation 1 is
obviously impossible. However, if n < 2, then a fairly complete
description of Equation 1 can be given. Thus, the goal of this article
is to introduce the reader to the qualitative theory of differential
equations in the plane. In particular, I will analyze two neuron

networks that consist of (1) two excitatory cells, (2) two inhibitory
cells, and (3) an excitatory and an inhibitory cell. The advantages
of restricting the analysis to these small networks are the special
topology of the plane, the completeness of the analysis possible,
and finally the case of exposition. Indeed, an overview of nonlinear
dynamics can be obtained through these simple examples. Beer
(1995) has attempted to exhaustively study the dynamics in the
case n = 2 and gives a nearly complete overview of the possible
types of behavior that can be expected. However, he does miss
several interesting examples (Ermentrout, 1998, pp. 371-373). An-
other more general approach for the analysis of large numbers of
coupled systems is to use bifurcation methods that enable one to
reduce the dimensionality of the resulting equations and then apply
techniques such as those used here. While planar systems may seem
to be a rather extreme simplification, there is some justification for
it. For example, in some local cortical circuits, there is no structure
in the connectivity and there are essentially two types of neurons,
excitatory and inhibitory. Thus, we can view the simple planar
system as representing a population of coupled excitatory and in-
hibitory neurons. This approach was used successfully to study
cortical processing in the rodent somatosensory system (Pinto et
al., 1996) and to explain the effects of altering inhibitory interneu-
rons in the hippocampus (Tsodyks et al., 1997).

f(x)
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B

Figure 1. Typical nonlinear input-output function of a single model neuron.




