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a b s t r a c t

We study the effects of dendritic tree topology and biophysical properties on the firing dynamics of a leaky-

integrate-and-fire (LIF) neuron that explicitly includes spiking dynamics. We model the dendrites as a multi-

compartment tree with passive dynamics. Owing to the simplicity of the system, we obtain the full analytical

solution for the model which we use to derive a lower dimensional return map that captures the complete

dynamics of the system. Using the map, we explore how biophysical properties and dendritic tree architecture

affect firing dynamics. As was first reported in earlier work by one of the authors, we also find that the

addition of the dendritic tree can induce bistability between periodic firing and quiescence. However, we go

beyond their results by systematically examining how dendritic tree topology affects the appearance of this

bistable behavior. We find that the structure of the dendritic tree can have significant quantitative effects

on the bifurcation structure of the system, with branchier topologies tending to promote bistable behavior

over unbranched chain topologies. We also show that this effect occurs even when the input conductance

at the soma is held fixed, indicating that the topology of the dendritic tree is mainly responsible for this

quantitative change in the bifurcation structure. Lastly, we demonstrate how our framework can be used to

explore the effect of biophysical properties on the firing dynamics of a neuron with a more complex dendritic

tree topology.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Neurons can have extensive spatial geometries, but are typically

odeled as single compartment objects, with no explicit spatial

ependence. This modeling choice is often made for mathematical

ractability and/or computational efficiency. However, many neurons

re not electrotonically compact, and single compartment models

annot be expected to capture the full range of dynamical behaviors

f neurons. Dendrites (the branched structures emanating from the

ell body, or soma) can substantially affect the electrical activity of

ingle neurons. For instance, the types of ion channels and their den-

ity along the dendritic tree can alter the firing patterns of neurons

1–3]. Even dendrites endowed with passive (linear) ion channels can

lter the frequency and firing dynamics of neurons in interesting and

ometimes counter-intuitive ways [4–6]. Thus, a full understanding

f these neural firing behaviors requires the analysis of more detailed

odels.
∗ Corresponding author. Tel.: +1 7322412521.
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The effects of dendritic tree architecture on the electrical activity

f neurons were first explored by Rall, who demonstrated that each

egment of the tree can be effectively modeled as a one-dimensional

able [7–9]. However, mathematical analysis on the resulting system

f coupled one-dimensional partial differential equations quickly be-

omes intractable once nonlinear ionic currents are included in the

endrites. In this case, various computational studies have shown

hat the interaction of dendritic topology and the nonlinear ionic cur-

ents affect both the firing frequency and the type of firing (regular,

ursting) in neurons, e.g., [2,3,10]. Alternatively, when the dynam-

cs of each of the dendritic tree segments is linear or quasi-linear,

Green’s function can be derived which captures how the architec-

ure of the tree affects the filtering of a current stimulus input to the

endrite [11–13]. Although the Green’s function approach allows for

large reduction in computational complexity in exploring how the

embrane potential of dendritic trees responds to time-varying in-

uts, these approaches assume linearity, which prohibits the inclu-

ion of any nonlinear spike-generating mechanisms. As such, Green’s

unction approaches are limited in their applicability to exploring

ow dendritic topology affects neuronal firing dynamics.

Recently, Schwemmer and Lewis were able to explore the effects

f passive dendritic properties on the dynamics of a leaky-integrate-

http://dx.doi.org/10.1016/j.mbs.2015.08.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.08.014&domain=pdf
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and-fire (LIF) model neuron [14] that explicitly includes spike effects

[6]. Owing to the simplicity of the LIF neuron, they were able to obtain

the analytical solution of the system, which they used to show that

the inclusion of the dendrite sometimes caused the system to display

bistability between periodic oscillations and quiescence, reminiscent

of Hodgkins’ type 2 excitability [15]. However, as the dendrite was

modeled as a single one-dimensional passive cable, the branching

structure of the dendritic tree is ignored. Here, we extend the results

of [6] in order to explore how the topology of a passive dendritic tree

affects the firing dynamics of the LIF neuron. To accomplish this, we

model the dendritic tree as a system of n ordinary differential equa-

tions connected by electronic coupling, i.e., each segment of the den-

dritic tree is now assumed to be a single isopotential compartment

[16]. The soma is again modeled using LIF dynamics that explicitly

include spike effects. Owing to the simplicity of the system, we are

able to obtain the full analytical solution to the n + 1-dimensional

system, and use it to derive an n-dimensional return map which cap-

tures the dynamics of the full system. Using this framework, we seek

to understand how dendritic tree properties alter firing dynamics. In

particular, we systematically explore how the interaction of dendritic

biophysical properties and dendritic tree structure affect the appear-

ance of the bistable behavior that was previously reported in [6]. We

find that dendritic topology has a strong quantitative affect on the bi-

furcation structure of the system, with more complex, branchier den-

dritic tree topologies tending to promote bistability.

This paper is organized as follows. In Section 2, we describe our

multi-compartment LIF model. We then show how one can analyti-

cally derive the solution to the system, and use the solution to con-

struct the return map. Using the return map, we systematically ex-

plore how biophysical parameters interact with simplified dendritic

topologies to affect firing dynamics. We find that dendritic topology

has a strong quantitative affect on the bifurcation structure of the sys-

tem. Lastly, we demonstrate the flexibility of the model by exploring

the firing dynamics of a neuron with a more complex dendritic topol-

ogy.

2. Multi-compartment leaky-integrate-and-fire model

We model a neuron as an isopotential somatic compartment elec-

trically coupled to a passive dendritic tree. As opposed to other ap-

proaches that have modeled the dendritic tree using a series of cou-

pled passive cables (e.g., [8,13]) or a single equivalent cylinder (e.g.,

[6]), we choose to model the tree as a series of coupled isopotential

compartments, i.e., a multi-compartment model (e.g., [16–18]). This

greatly simplifies the analysis while still allowing us to explore the

effects of dendritic architecture on the firing dynamics of the sys-

tem. The somatic dynamics are described by a leaky-integrate-and-

fire (LIF) model that explicitly includes a spike [6,14] while each of

the n dendritic compartments contains passive (linear) dynamics. For

concreteness, we initially focus on two specific dendritic topologies.

We refer to the first topology as the “branch” model, where all n den-

drites are attached to the soma and nothing else. The second topology

will be referred to as the “chain” model and consists of the soma con-

nected to a linear chain of dendritic compartments, with each com-

partment being connected to at most two other compartments.

2.1. Somatic dynamics

The non-spiking dynamics of the membrane potential of the so-

matic compartment V̄S(t̄) are given by

m
dV̄S

dt̄
= −gLS(V̄S − ELS) + ĪS + ĪD

coupl(t), (1)

where Cm is the membrane capacitance, gLS is the somatic leakage

conductance, ELS is the somatic leakage reversal potential, ĪS is the ex-

ternal current applied to the soma, and ĪD
coupl

(t) is the current flowing
rom the dendritic tree into the soma. The specific form of ĪD
coupl

(t)

epends on the architecture of the dendritic tree, and we will dis-

uss two example cases in the sections that follow. When V̄S reaches

threshold voltage V̄th at time t̄ = t̄
j
s (V̄S(t̄

j
s ) = V̄th) the jth spike is

licited in the soma. During the spike, the somatic potential is given

y

¯
S(t̄) = h̄(t̄ − t̄ j

s ), t̄ ∈ (t̄ j
s , t̄ j

s + T̄a], (2)

here h̄(t̄) is a function that describes the shape of the somatic spike.

ore specifically, h̄(t̄) is a continuous function that takes the somatic

otential from the maximum spike height h̄(0) = H̄ to the reset po-

ential at the end of the spike h̄(T̄a) = V̄R (see Section 3.1 for a dis-

ussion of the specific types of spike shapes we use). After a time T̄a,

he somatic dynamics are switched back to (1) at t̄ = t̄
j
s + T̄a. Thus, T̄a

epresents the temporal duration of the somatic spike.

In the next two sections, we describe the dynamics of the den-

ritic compartments. In particular, we describe the branch and chain

odels in detail. However, in the Appendix, we show how this frame-

ork can be applied to any arbitrary topology for the dendritic tree.

.1.1. Branch model

In the branch model, all n dendritic compartments are coupled di-

ectly to the soma, and no coupling exists between the dendritic com-

artments. Let V̄i denote the membrane potential of the ith dendritic

ompartment. The dynamics are then given by

m
dV̄i

dt̄
= −gLDi

(V̄i − ELDi
) + Īi + gCi

Ai

(V̄S − V̄i), (3)

here gLDi
is the leakage conductance, ELDi

is the leakage reversal po-

ential, Īi is the external current, gCi
is the coupling conductance mea-

ured in mS, and Ai is the surface area of the dendritic compartment

easured in cm2. In this case, the current flowing from the dendritic

ree into the soma is given by

D̄
coupl(t) =

n∑
i=1

gCi

AS

(V̄i − V̄S), (4)

here AS is the area of the somatic compartment.

.1.2. Chain model

In the chain model, we have a different set of differential equa-

ions. Note that the first n − 1 dendrites are connected to both the

receding and subsequent dendrites, and the nth dendrite is only

onnected to the previous compartment. Using the notation above,

e write the equation for the voltage of dendrite i ∈ {2, . . . , n − 1}:

m
dV̄i

dt̄
= −gLDi

(V̄i − ELDi
) + Īi + gCi

Ai

(V̄i−1 − V̄i)

+ gCi+1

Ai

(V̄i+1 − V̄i). (5)

or the dendrites at the ends, we have:

m
dV̄1

dt̄
= −gLD1

(V̄1 − ELD1
) + Ī1 + gC1

A1

(V̄S − V̄1) + gC2

A1

(V̄2 − V̄1),

m
dV̄n

dt̄
= −gLDn

(V̄n − ELDn
) + Īn + gCn

An
(V̄n−1 − V̄n). (6)

n this case, the current flowing from the dendritic tree into the soma

s given by

D̄
coupl(t) = gC1

AS

(V̄1 − V̄S). (7)

or convenience, we list all model parameters along with their phys-

cal interpretations in Table 1.
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Table 1

List of dimensional parameters.

Dimensional parameters

Cm Membrane capacitance gLS Somatic leakage conductance

Īi Current injected into dendrite i ELDi
Dendritic leakage reversal potential

ĪS Current injected into the soma ELS Somatic leakage reversal potential

V̄i Membrane potential of dendrite i Ai Surface area of dendrite i

V̄S Somatic membrane potential AS Somatic surface area

t̄ Dimensional time gCi
Coupling conductance

gLDi
Dendritic leakage conductance

Table 2

List of nondimensional parameters.

Nondimensional parameters

Vi Normalized membrane potential of dendrite i

VS Normalized somatic membrane potential

β i Normalized leakage reversal potential of dendrite i

βS Normalized leakage reversal potential of the soma

Ii Normalized current injected into dendrite i

IS Normalized current injected into the soma

αi Ratio of surface area of the soma to the area of dendrite i

γ i Ratio of leakage conductance of dendrite i to dendrite 1

γ S Ratio of somatic leakage conductance to dendrite 1

gi Normalized coupling conductance
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.2. Nondimensionalization

For ease of mathematical analysis, we nondimensionalize the sys-

em using the following substitutions, with i = 1, 2, . . . , n:

S(t) = V̄S(t̄/τ1) − ELD1

V̄th − ELD1

,Vi(t) = V̄i(t̄/τ1) − ELD1

V̄th − ELD1

, βS = ELS − ELD1

V̄th − ELD1

,

i = ELDi
− ELD1

V̄th − ELD1

, IS = ĪS

gLD1
(V̄th − ELD1

)
, Ii = Īi

gLD1
(V̄th − ELD1

)
,

S = Cm

gLS

, τi = Cm

gLDi

, αi = AS

Ai

, γS = gLS

gLD1

, γi = gLDi

gLD1

, gi = gCi

ASgLD1

.

ith the above scalings, we have Vth = 1, β1 = 0, and γ1 = 1. All

ondimensional parameters are also listed along with their interpre-

ation in Table 2.

Applying the above scalings, we arrive at the equations for the

ondimensional somatic voltage dynamics

dVS

dt
= −γS(VS − βS) + IS + ID

coupl(t) if t /∈ (t j
s , t j

s + Ta],

VS(t) = h(t − t j
s ) if t ∈ (t j

s , t j
s + Ta],

(8)

here t
j
s = t̄ s

j
/τ1, Ta = T̄a/τ1, and h(t) = (h̄(t̄/τ1) − ELD1

)/(V̄th −
LD1

). Similarly, H = (H̄ − ELD1
)/(V̄th − ELD1

) and VR = (V̄R −
LD1

)/(V̄th − ELD1
) are the nondimensional height of the somatic

pike and reset potential, respectively. We call a set of parameters

iophysically-plausible if all conductances and areas are strictly

ositive.

.2.1. Branch model

Applying these transformations to the dimensional representa-

ion of the branch model yields the following equation for the dy-

amics of the nondimensional dendritic voltages

dVi

dt
= −γi(Vi − βi) + Ii + αigi(VS − Vi). (9)

he nondimensional current flowing from the dendritic tree into the

oma is given by

D
coupl =

n∑
i=1

gi(Vi − VS). (10)
(

.2.2. Chain model

For the chain model, the dynamics of the nondimensional den-

ritic voltages are given by

dV1

dt
= −V1 + I1 + α1g1(VS − V1) + α1g2(V2 − V1), (11)

dVi

dt
= −γi(Vi − βi) + Ii + αigi(Vi−1 − Vi)

+αigi+1(Vi+1 − Vi), i = 2, . . . , n − 1,

dVn

dt
= −γn(Vn − βn) + In + αngn(Vn−1 − Vn).

he nondimensional current flowing from the dendritic tree into the

oma is given by

D
coupl = g1(V1 − VS). (12)

.3. Matrix formulation

The above dimensional and nondimensional systems can be con-

eniently represented in matrix form. Let V be a vector where the first

elements represent the nondimensional dendritic voltage Vi, and

he (n + 1)th element represents the nondimensional somatic volt-

ge VS:

=

⎡
⎢⎢⎣

V1

...
Vn

VS

⎤
⎥⎥⎦ (13)

his matrix formulation is sufficiently general to represent any den-

ritic topology, and we will conduct much of our analysis in this form.

e are able to re-write the nondimensionalized system of differential

quations for both the branch and chain topologies in the following

orm:

dV

dt
= ANSV + bNS, (14)

here NS refers to the fact that this is the evolution of the voltage

hen the system is not spiking, ANS is an (n + 1) × (n + 1) matrix of

oefficients, and bNS is a (n + 1) × 1 vector of constants. Similarly, we

e-write the spiking system in matrix form:

dVD

dt
= ASVD + bS(t − t j

s ),

VS(t) = h(t − t j
s ),

(15)

here VD is an n-dimensional vector of nondimensional dendritic

embrane potentials. Here, AS is the top-left n × n submatrix of ANS,

nd has one fewer row and column since the differential equation no

onger governs the somatic voltage. The dependency on the somatic

oltage is moved into the vector bS(t).

Regardless of the topology, we find that the multi-compartment

IF neuron displays two types of stable characteristic behavior de-

ending on parameters: (i) time independent steady-states, and

ii) steady periodic oscillations.
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2.4. Matrix formulation of branch and chain models

For concreteness, we provide the matrix formulation of both the

branch and chain models. That is, we specify ANS, AS, bNS, and bS(t)

as described by Eqs. (14) and (15). However, we emphasize that our

model can be applied to any dendritic architecture (see Section A.1).

Additionally, in Section A.1, we show that for biophysically-plausible

settings of the parameters and for dendritic architectures where the

corresponding graph of compartments has no cycles, the eigenvalues

of the ANS and AS matrices will always be real and strictly negative.

2.4.1. Branch model

When the system is not spiking, the matrix ANS and vector bNS for

the branch model are given by

ANS
branch =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 − α1g1 0 0 · · · α1g1

0 −γ2 − α2g2 0 · · · α2g2

0 0 −γ3 − α3g3 · · · α3g3

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · αngn

g1 g2 g3 · · · −γS −∑n
i=1 gi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and bNS
branch =

⎡
⎢⎢⎢⎢⎣

I1

γ2β2 + I2

.

.

.

γSβS + IS

⎤
⎥⎥⎥⎥⎦. (16)

When the neuron is in the spiking regime, the system adheres to a

different set of first-order linear differential equations. In the spik-

ing system, the vector bS(t) is now time-dependent, and both AS and

bS(t) have one fewer dimension since the somatic voltage is entirely

described by the spike shape h(t). For the branch model, these quan-

tities are given by

AS
branch =

⎡
⎢⎢⎢⎣

−1 − α1g1 0 · · · 0

0 −γ2 − α2g2 · · · 0

...
...

. . .
...

0 0 · · · −γn − αngn

⎤
⎥⎥⎥⎦

and bS
branch(t) =

⎡
⎢⎢⎢⎣

α1g1h(t) + I1

α2g2h(t) + γ2β2 + I2

...

αngnh(t) + γnβn + In

⎤
⎥⎥⎥⎦. (17)

2.4.2. Chain model

Similarly, in the system with the chain topology, when the neuron

is not spiking, the quantities ANS and bNS are given by

ANS
chain

=

⎡
⎢⎢⎢⎢⎢⎣

−1 − α1g1 − α1g2 α1g2 0 · · · α1g1

α2g2 −γ2 − α2g2 − α2g3 α2g3 · · · 0

0 α3g3 −γ3 − α3g3 − α3g4 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

g1 0 0 · · · −γS − g1

⎤
⎥⎥⎥⎥⎥⎦

and bNS
chain =

⎡
⎢⎢⎢⎣

I1

γ2β2 + I2
.
.
.

γSβS + IS

⎤
⎥⎥⎥⎦. (18)

When the neuron is in the spiking regime, the quantities bS(t) and AS

are given by
S
chain

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 − α1g1 − α1g2 α1g2 0 · · · 0

α2g2 −γ2 − α2g2 α2g3 · · · 0

0 α3g3 −γ3 − α3g3 · · · 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 · · · −γn − αngn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

nd bS
chain

(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1g1h(t) + I1

γ2β2 + I2

.

.

.

γnβn + In

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

.5. Input conductance

Since we seek to explore how the topology of the dendritic tree

ffects the firing dynamics of the multi-compartment LIF neuron, we

eed to control for the change in current flow between the soma and

endritic tree caused by the addition of dendritic compartments. In-

ut conductance is a measure of the influence of the dendritic tree on

he soma [8]. In order to isolate and more clearly examine the effects

f dendritic topology, we require a method of computing and control-

ing for the input conductance in our multi-compartment LIF neuron,

hich we describe here.

We define normalized input resistivity as the change in the non-

piking somatic steady-state voltage V ss
S

in response to the presence

f a somatic input current IS. More precisely,

−1 =
V ss

S − V ss
S

∣∣
IS=0

IS
,

here G is the input conductance. Since Vss = −(ANS)−1bNS (see

q. (14)), we have:

−1 = −
[
(ANS)−1 (bNS − bNS|Is=0)

IS

]
n+1

= −[(ANS)−1]{n+1,n+1}, (20)

ince the matrix-vector product selects the last column of the matrix

ANS)
−1. Therefore, G is the inverse of the element at (n + 1, n + 1)

f −(ANS)−1, which is a function of αi, gi, and γ i. When all βi = 0

nd dendritic injected currents Ii = 0, then the somatic component

f the input conductance is equivalent to the threshold current for

onostable firing. Using Cramer’s rule and the fact that the matrix AS

s equivalent to ANS with the last row and column removed, we can

rite the input conductance equivalently as:

= −det (ANS)

det (AS)
. (21)

sing this expression, if the determinant in the numerator is ex-

anded as a sum of minors, we notice that the input conductance is

inear in γ S, or any other term that appears in the diagonal element

n ANS but not in AS. Applying the definition to the two-compartment

odel, we recover the expression from [6] (Eq. (5.8))

= g1

α1g1 + 1
+ γS. (22)

For the branch model with n dendrites, the input conductance is:

G−1 = (ANS)−1
{n,n} =

(
−γS −

n∑
i=1

gi +
n∑

i=1

αig
2
i

γi + αigi

)−1

,

= γS +
n∑

i=1

giγi

γi + αigi

, (23)

hich is computed using block inversion of ANS. For the chain model

ith two dendrites, the input conductance is:

= g1(γ2 + α2g2 + α1g2γ2)

γ2 + α2g2 + α1g2γ2 + α1g1(γ2 + α2g2)
+ γS. (24)
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1 Note that this equation is simply the (n + 1)st component of (28) evaluated at t =
t j+1

s .
When comparing two different dendritic topologies, one way to

solate the effect of topology on the firing dynamics of the system is

o require that the input conductance is same for both topologies, i.e.,

= G̃. Thus, for a given value of a parameter x, we can compute G(x),

nd then solve for the value of x̃ such that G(x) = G̃(x̃). For example,

uppose we wish to study the effect of changing g1 in both the two-

ompartment and the three-compartment branch model. Setting the

nput conductances to be equal gives the expression:

g1

α1g1 + 1
+ γS = g2γ2

γ2 + α2g2

+ g̃1

α1g̃1 + 1
+ γS.

olving for g̃1 yields

˜1 = g1 − g2γ2(α1g1 + 1)2

g1g2γ2α2
1

+ g2γ2α1 + γ2 + a2g2

.

hus, using the above equation for g̃1 allows the two-compartment

nd the three-compartment branch model to have the same input

onductance as g1 is varied. For higher-dimensional comparisons,

his can be difficult to find analytically, and so a numerical proce-

ure, such as a root-finder, can be used to solve G(x) = G̃(x̃) for x̃, for

very value of x requested. As in this example, the relationship can be

ighly non-linear. We show in Section A.3 that the input conductance

s monotonically increasing with respect to any biophysical parame-

er: αi, gi, and γ i. In addition, for a fixed set of parameters, the input

onductance increases monotonically with the number of dendrites.

his relationship guarantees that there is at most one solution x̃ such

hat G(x) = G̃(x̃).

.6. Return map construction

In this section, we derive an n-dimensional return map that takes

he state of the neuron at the end of the jth spike to the state of the

euron at the end of the ( j + 1)st spike or to the quiescent steady

tate. This n-dimensional map completely captures the firing dy-

amics of the n + 1-dimensional multi-compartment LIF model. Con-

tructing the return map requires solving both the non-spiking and

piking systems to determine the state of the neuron after the next

pike. These solutions can easily be obtained owing to the linearity of

oth the non-spiking and spiking systems. In effect, the map becomes

matrix update which can be implemented efficiently and applied to

omplex high-dimensional dendritic configurations.

.6.1. Spiking solution

Assume that the system is at the beginning of the jth spike so that

= t
j
s . In this case, the somatic voltage is determined by the function

(t) while the voltages of dendritic compartments are governed by

15). We assume that the voltage of dendritic compartment i is ini-

ially at some potential V
j

i
. That is, we solve system (15) with the ini-

ial condition V(t
j
s ) = V j ≡ [V

j
1
, . . . ,V

j
n ]T . To compute the solution to

he spiking system, we first diagonalize the matrix AS = SS�S(SS)−1

here �S is the diagonal matrix containing the eigenvalues of AS, and
S is the matrix with corresponding eigenvectors in each column. The

piking solution is then given by

S(t) = SS exp{�S(t − t j
s )}

×
(

(SS)−1V j +
∫ t−t j

s

0

exp{−�Ss}(SS)−1bS(s) ds

)
, (25)

here exp { · } is the matrix exponential. The above solution describes

he evolution of the state of the neuron until the end of the jth spike

i.e., t ∈ [t
j
s , t

j
s + Ta)).

The spiking solution can also be expressed as a map that takes the

embrane potentials of the dendritic compartments at the onset of

he jth spike Vj to the dendritic potentials at the end of the jth spike

j+ 1
2 = [V

j+ 1
2

1
, . . . ,V

j+ 1
2

n ]:

S : V j → V j+ 1
2 = VS(t j).
s
hus, �S is the linear map given by

S(V j) = �SV j + KS, (26)

here

�S = SS exp{�STa}(SS)−1

KS = SS exp{�STa}
(∫ Ta

0

exp{−�Ss}(SS)−1bS(s)

)
. (27)

.6.2. Non-spiking solution

At the end of the jth spike, the voltages of the dendritic com-

artments are given by V j+ 1
2 while the voltage of the somatic

ompartment is at its reset potential VR. To obtain the voltage

volution during the time between the end of the jth spike and the

nset of the ( j + 1)st spike, we solve system (14) with the initial con-

ition V(t
j
s + Ta) = [V

j+ 1
2

1
, . . . ,V

j+ 1
2

n ,VR]T . Again, we first diagonalize

he matrix ANS = SNS�NS(SNS)−1 where �NS is the diagonal matrix

ontaining the eigenvalues of ANS, and SNS is the matrix with corre-

ponding eigenvectors in each column. The solution of system (14) is

hen given by

NS(t) = (I − Wj(t))Vss + Wj(t)V
(
t j

s + Ta

)
, (28)

here

j(t) = SNS exp
{
�NS

(
t − t j

s − Ta

)}
(SNS)−1, (29)

is the (n + 1) × (n + 1) identity matrix, Vss = −(ANS)−1bNS is the

teady-state solution of (14) and exp { · } is again the matrix expo-

ential. The above solution describes the evolution of the state of the

euron until the next spike is elicited (i.e., t ∈ [t
j
s + Ta, t

j+1
s )). With

iophysically-plausible values for the parameters, the eigenvalues are

egative and real, and so as t → ∞, exp {�NSt} will approach the zero

atrix. As a result, VNS(t) will approach Vss. Whether or not the neu-

on reaches threshold and fires the ( j + 1)st spike depends on the pa-

ameter values and the dendritic voltages at the end of the jth spike
j+ 1

2 . More precisely, the neuron will fire the ( j + 1)st spike if the

omatic voltage reaches Vth = 1. This condition translates to the fol-

owing transcendental equation 1

NS
S

(
t j+1

s

)
= V ss

S +
[
Wj

(
t j+1

s

)]
{n+1,n+1}

(
VR − V ss

S

)
+

n∑
i=1

[
Wj(t j+1

s )
]
{n+1,i}

(
V

j+ 1
2

i
− V ss

i

)
= 1, (30)

aving a finite positive solution for t
j+1
s . In the above equation,

Wj(t
j+1
s )]{n+1,i} refers to the (n + 1, i)th element of the matrix

j(t
j+1
s ) (see Eq. (29)), and we have used the fact that the first n ele-

ents of the vector V(t
j
s + Ta) are equivalent to the vector V j+ 1

2 . Re-

all again that the non-spiking system (14) has n + 1 dimensions with

he (n + 1)st dimension being the dynamics for the somatic voltage.

f a positive solution to (30) does not exist, the neuron evolves to

he quiescent steady state without firing. As (30) is a transcenden-

al equation, the smallest positive solution is approximated using a

umerical root-finding method.

The non-spiking solution can be expressed as a map that takes the

embrane potentials of the dendritic compartments at the end of the

th spike V j+ 1
2 to the membrane potentials of the dendritic compart-

ents at the onset of the ( j + 1)st spike V j+1 = [V
j+1

1
, . . . ,V

j+1
n ].

NS : V j+ 1
2 → V j+1 =

[
VNS

(
t j+1

s

)]
{1:n},
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(a) (b) (c)

Fig. 1. Variety of spike shapes. Somatic voltage traces in the three-compartment branch model with spike shape parameters p = 0.05 for (a), p = 0.55 for (b), and p = 0.90 for (c).

Note that the firing frequency increases with p, which we explore in later sections. The other parameters used to generate these figures were: α1 = α2 = 5, g1 = g2 = 3, βS = 1,

γS = 16, VR = −2, I1 = I2 = 0, IS = 11, and Ta = 0.04. The maximal potential of the spike was 25.
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where [VNS(t
j+1
s )]{1:n} denotes the first n elements of the n + 1 di-

mensional vector VNS(t
j+1
s ). More precisely,

�NS(V j+ 1
2 ) =

⎧⎨
⎩

�NS
j

V j+ 1
2 + KNS

j
, if a positive solution,

to (30) exists

[Vss]{1:n}, otherwise,

(31)

where

�NS
j =

[
Wj

(
t j+1

s

)]
{1:n,1:n}

KNS
j =

[(
I − Wj

(
t j+1

s

))
Vss
]
{1:n} + VR

n∑
i=1

[
Wj

(
t j+1

s

)]
{i,n+1}. (32)

2.6.3. The return map

Using the two maps we detailed in the previous sections, we can

define a new map � which takes the voltages of the dendritic com-

partments at the time of the jth spike Vj to the voltages of the den-

dritic compartments at the time of the ( j + 1)st spike V j+1 or the qui-

escent steady state [Vss]{1: n}

V j+1 = �(V j) = �NS ◦ �S(V j)

=

⎧⎨
⎩

�NS
j

[�SV j + KS] + KNS
j

, if a positive solution

to (30) exists,

[Vss]{1:n}, otherwise.

(33)

By iterating this n-dimensional map, the dynamics of the full multi-

compartment neuronal model can be assessed. Note, however, that

even though (33) is linear, each iteration involves solving the tran-

scendental Eq. (30) for t
j
s , in order to evaluate �NS

j
and KNS

j
. Fixed

points of this map correspond to either periodic oscillations or qui-

escent behavior. While we would like to prove that the map is a con-

traction, the transcendental nature of Eq. (30) makes this difficult.

3. Results

We now examine the behavior of the multi-compartment LIF neu-

ron by analyzing the map derived in the previous section. First, we

describe the functional forms for the spike shape function h(t) that

we use in our analysis. We then determine the parameter values at

which the time-independent “quiescent” steady-state ceases to exist

and the parameter values at which stable periodic oscillations appear.

Similar to [6], we find that the system can display bistability between

periodic firing and quiescence. However, we find significant quantita-

tive differences in the firing dynamics of the system depending upon

the topology of the dendritic tree.
.1. Spike shape

We describe the construction of the spike shape family and its pa-

ameterization in this section. The goal is to attain a one-parameter

escription of the spike shape that captures a large variety of wave-

orms. We found that a sum of two exponentials would provide the

xpressive freedom to do so:

p(t) = − pb

pa − pd

exp

{
pdt

Ta

}
+
(

H + pb

pa − pd

)
exp

{
pat

Ta

}
, (34)

here pa = 5.9022p − 5.3478 and pb = −80 exp{−7.377p} −
(10−5). The value of pd is solved for numerically with the con-

traints h(Ta) = VR and h(0) = H. To solve for pd, we used Dekker’s

ethod [19] to find the root of the expression h(Ta) − VR. For values

f p between 0 and 1, we observe that the first exponential is asymp-

otically dominant and a unique root exists. Also note that time is

caled by the spike duration Ta. This is to ensure that any change in

a will result in a horizontal linear scaling of the spike shape. The

onstants used in the expressions for pa and pb were set such that

he resulting spike shape exhibited afterhyperpolarization and a

iverse range of waveforms. The shape of the spike can be controlled

ith the parameter p, where p = 0 has a much thinner spike with a

arge subsequent region of afterhyperpolarization. For p ≈ 0.6, the

pike has a shape similar to a line, connecting h(0) = H to h(Ta) = VR.

inally, when p = 1, the spike shape becomes much larger, curving

pward and then falling sharply back down to h(Ta) = VR. The voltage

races in Fig. 1 show the effect of varying p on the shape of the

esulting spike. This parameterization allows us to continuously

xplore the effect of a changing spike shape with and without

fterhyperpolarization, including a very wide spike shape that adds

onsiderable current to the system.

.2. Return map analysis

The return map enables us to explore the firing dynamics of the

ull multi-compartment LIF model. We characterize the firing state

f the neuron into three classes: the quiescent steady state, monos-

able periodic firing, and a bistable state where periodic firing and

he quiescent state co-exist. In the quiescent state, no matter what

he initial membrane potentials are, the neuron will eventually cease

ring and approach a time independent steady state as time goes

o infinity. Similarly, in the monostable firing state, the neuron will

ontinue spiking periodically, regardless of the initial conditions. The

onostable firing state can be reached by increasing the applied cur-

ent to the soma IS so that the steady state somatic voltage is above

hreshold, i.e., V ss
S

> Vth = 1. This threshold current Ith corresponds

he current at which the (n + 1)st component (the somatic element)
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(a) (b) (c)

Fig. 2. Firing rate vs. input. Simulated normalized firing frequency plotted against input somatic current IS of: (a) the one-compartment LIF model, (b) two-compartment model,

and (c) three-compartment branch model where α1 = α2 = 1, g1 = g2 = 3, γ2 = 1, γS = 12, β2 = βS = 0, I1 = I2 = 0, VR = −2, Ta = 0.1, and a spike with maximal potential 80 with

shape parameter p = 0.05.
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Fig. 3. Three compartment voltage trace. A voltage trace of the three-compartment

branch model where α1 = 5, α2 = 1, g1 = g2 = 4, γ2 = 1, γS = 64, β2 = 5, βS = 1, I1 =
10, I2 = 0, IS = −5, VR = −2, Ta = 0.04, and a spike with maximal potential 10 with

shape parameter p = 0.55. The initial conditions are V1 = V2 = 3.5 and VS = −3. The

curves were generated using order-4 Runge–Kutta to simulate the system. The circles

indicate the values of the solution as predicted by the non-spiking and spiking portions

of return map.
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f Vss = −(ANS)−1bNS is equal to the threshold potential Vth = 1:

ss
S = −[(ANS)−1 · bNS]n+1 = −[(ANS)−1]{n+1,n+1}bn+1(IS)

−
n∑

i=1

[(ANS)−1]{n+1,i}bi = 1, (35)

here [(ANS)−1]{n+1,i} is the element of the matrix (ANS)−1 in the row

+ 1 and column i and bi is the ith element of the vector bNS. Invert-

ng the function bn+1(IS) allows us to solve for this threshold current

th = b−1
n+1

(
Vth +∑n

i=1 [(ANS)−1]{n+1,i}bi

[ANS]{n+1,n+1}

)
. (36)

ote that the term bn+1(IS) is typically a linear function of IS and thus

ts inverse b−1
n+1

( · ) can easily be computed. For example, the thresh-

ld somatic current for the branch model with two dendrites is given

y

th = VthB

(α1g1 + 1)(γ2 + α2g2)
− I1g1

α1g1 + 1

− g2(I2 + β2γ2)

γ2 + α2g2

− βSγS, (37)

here B = g1γ2 + g2γ2 + γ2γS + α2g1g2 + α2g2γS + α1g1g2γ2 +
1g1γ2γS + α1α2g1g2γS. We note that this threshold current is

ndependent of the spike shape. Whenever IS > Ith, then the system

s guaranteed to be in the monostable firing regime.

For the single compartment LIF model, the system can only be

n either the quiescent state or the monostable firing state depend-

ng on the value of IS as shown in Fig. 2(a). However, for the multi-

ompartment LIF neuron and for certain settings of the parameters,

here exists a range of values of IS < Ith where the system can be in

ither the quiescent state or the periodic firing state depending upon

he initial conditions. This bistability is illustrated in Fig. 2(b) for the

wo compartment model and in Fig. 2(c) for the three compartment

ranch model. In previous work [6], it was shown that bistability in

he two-compartment model resulted from a somato-dendritic ping-

ong effect, where the dendritic compartment becomes sufficiently

epolarized from the previous somatic spike that the resulting flow

f current back into the soma after the spike causes the soma to

each threshold and fire a subsequent spike. Although the mecha-

ism for bistability is the same in the multi-compartment LIF model,

he topology of the dendritic tree can have significant quantitative

ffects on the size of the bistable region in parameter space. For ex-

mple, in comparing Fig. 2(b) and (c), one can see that the addition

f the second dendritic compartment causes bistability to persist for

larger range of values for IS. Fig. 3 plots an example voltage trace

or the three compartment branch model in the bistable regime. The
ing-pong effect can be seen as the dendritic potentials remain highly

epolarized at the end of the somatic spike.

To better understand how this bistability emerges in higher di-

ensional systems, we visualize the discrete return map (33) with

wo dendritic compartments in a “phase plane”. We put phase plane

n quotes as the system is discrete and standard phase plane analysis

s applied to continuous dynamical systems. To generate the vector

eld for the map, we use

V j+1
1

− V j
1

V j+1
2

− V j
2

]
=
[

�1(V
j

1
,V j

2
) − V j

1

�2(V
j

1
,V j

2
) − V j

2

]
hich represents the total change in the V1 and V2 components over

ne iteration of the map. Thus, the right-hand side of the above equa-

ion can be viewed as a vector field for the reduced system which

s plotted in Fig. 4 for the three compartment branch model with

hree different values of IS. More precisely, the vector field in Fig. 4

isualizes the direction and relative magnitude of the difference be-

ween the next and the current iteration of the return map, over



68 A. Saparov, M.A. Schwemmer / Mathematical Biosciences 269 (2015) 61–75

(a) Quiescent (b) Bistable

(c) Monostable

Fig. 4. Return map. A vector field representation of the return map where the arrows indicate the direction and relative magnitude of the difference between the next iteration and

current iteration of the map. Here the three-compartment branch model is used, and the other parameters: α1 = 3, α2 = 1, g1 = g2 = 4, β2 = βS = 0, γ2 = 1, γS = 12, I1 = I2 = 0,

IS = 5.1 (top-left), IS = 13.1 (top-right), and IS = 13.2 (bottom-left). As the current is increased, we see the neuron switches from the quiescent state (top-left) into a bistable regime

(top-right), and finally, monostability (bottom-left). The spike duration is Ta = 0.1, the spike height is H = 80, and shape parameter is p = 0.05. The solid curve separates the spiking

region from the non-spiking region.
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the possible values of the current iteration. The values of V2 where

�1(V1,V2) − V1 = 0 and V1 where �2(V1,V2) − V2 = 0 respectively

represent the V1 and V2 nullclines and are plotted as the dashed and

dashed-dotted lines. The solid line in the plots separates the region

where the neuron does not spike and the region where the neu-

ron spikes at least once (i.e., a finite positive solution to (30) exists).

Fig. 4(a) plots the phase plane when the system is in the quiescent

state: the only stable steady state is (V ss
1

,V ss
2

), at the intersection of

the V1 and V2 nullclines. Bistability is shown in Fig. 4(b) as a second

stable steady-state corresponding to the intersection of the nullclines

in the upper right quadrant now coexists with the quiescent state.

Lastly, Fig. 4(c) shows the monostable firing regime where the quies-

cent state no longer exists.

Next, we explore how the spike shape we detailed in the previous

section affects the size of the bistable region in the two compartment

model. Fig. 5(a) plots a two-parameter bifurcation diagram of the in-

jected somatic current IS versus the spike shape parameter p. Above

the solid line (which corresponds to Is = Ith, the system is always in

the monostable firing regime. However, as the spike shape is varied,
ne can see that for values of IS < Ith the system displays bistability.

his shows that wider spike shapes readily promote bistability. How-

ver, as Fig. 5(b) shows, wider spike shapes also cause large changes

n the firing frequency of the system. Thus, in order to remove the ef-

ect of spike shape on the firing frequency, we focus our subsequent

xploration on the system with the spike shape p = 0.05. This thin-

er spike is more similar to spike shapes observed in recordings from

iological neurons, and is in a range where bistability is not read-

ly observed (see Fig. 5(a)) and where the firing frequency does not

ary greatly for values of p near 0.05. Thus, any bistable behavior we

bserve will be due to the parameters of the system as well as the

endritic tree topology.

.3. Effects of dendritic tree properties on the firing dynamics of the

ulti-compartment LIF model

As the system has a very large number of parameters, we focus

n key insights obtained by varying a subset of the parameters in the

odel. Specifically, we examine: α , the ratio of the surface area of
1
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(a) (b)

Fig. 5. Effect of spike shape parameter. Left: A two-parameter bifurcation diagram exploring the effect of the spike shape parameter on the stability of the two-compartment

model. The solid line is IS, th , the threshold injected current such that any higher current will result in the neuron always spiking periodically, as described by Eq. (36). Right: A plot

of normalized spike frequency as a function of the spike shape parameter p where IS is fixed to 6.4. The parameters used to generate this figure were: α1 = 3, g1 = 5, βS = 0, γS = 6,

and I1 = 0. The maximal potential of the spike was set to H = 80. The spike duration Ta is fixed to 0.1.

(a) Two-compartment (b) Chain model (c) Branch model

Fig. 6. Effect of α1 in two and three compartments. Two-parameter bifurcation diagrams showing differences in stability with varying α1, the ratio of the somatic area to the

surface area of the first compartment, between the two-compartment model, the three-compartment chain model, and the three-compartment branch model, respectively, from

left to right. The dashed-dotted line denotes the minimum injected somatic current needed to sustain oscillations, and any smaller value will result in the neuron becoming

quiescent. The parameters used to produce these figures are α2 = 2, g1 = g2 = 4, γ2 = 1, γS = 12, β2 = 0, βS = 1, I1 = I2 = 0, VR = −2, Ta = 0.1, spike shape p = 0.05, and maximal

spike potential H = 80.
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he soma to the area of the first dendrite, g1, the normalized cou-

ling conductance between the soma and the first dendrite, and the

pike duration Ta, which influences the area of spike, and therefore,

he current to and from the dendrites. Since the first dendrite is al-

ays directly connected to the soma in our exploration, variation of

ts parameters will have the greatest effect on the firing dynamics of

he system. For this reason, we focus on varying the biophysical pa-

ameters of the first dendrite.

.3.1. Addition of a dendritic compartment

We first compare the firing dynamics of the two-compartment

odel, the three-compartment branch model, and the three-

ompartment chain model. In the following figures, we examine the

ffect of varying each biophysical parameter. No parameter in the

odel is adjusted to maintain a constant input conductance.

Fig. 6 presents a set of two-parameter bifurcation diagrams of the

njected somatic current IS versus α1, the ratio of the somatic sur-

ace area to that of the first dendrite. Notice that the bifurcation di-

gram for the two-compartment model (left) has a bistable region

hat ends at some finite value of α1. This is in contrast with both

hree-compartment models (middle and right), where the bistable

egion extends out further. In fact, this behavior is not possible in

he two-compartment model, since in the limit α1 → ∞, the size

nd influence of the dendritic compartment goes to zero. In fact,

n the branch model, as α1 → ∞, the system is an effective two-

ompartment model where the parameters of the dendrite are equiv-

lent to the parameters of the second dendrite in the original neu-

on. In the chain model, as α → ∞, the system becomes an effective
1
wo-compartment model with parameter gnew = g1g2
g1+g2

. In all of the

iagrams, we see that there exists a value of α1 such that the width

f the bistable region is maximal. Since the input conductance is not

eld constant in these experiments, the size of the bistable region in-

reases with the addition of a dendritic compartment. This is partic-

larly pronounced in the three-compartment branch model, where

he input conductance is highest. We show in Section A.4 that neu-

ons with flatter and more highly branched dendritic architectures

ave larger input conductances.

In Fig. 7, there are a set of two-parameter bifurcation diagrams

f the injected somatic current IS versus g1, the normalized coupling

onductance parameter of the electrical coupling between the soma

nd the first dendrite. As with varying the ratio of the somatic sur-

ace area to that of the first compartment α1, we see similar differ-

nces in behavior between the three models when we vary the cou-

ling conductance g1. The addition of a dendrite increases the size of

he bistable region, as evident in both the middle and right images

three-compartment chain and branch models), but especially so in

he branch model since input conductance is maximal with respect

o topology. Note, however, that in the chain model, the bistable re-

ion persists for much larger values of g1 than in the branch model.

n our simulations, we found points in the parameter space where

he size of the bistable region does not increase with the addition of

endrites, such as with wider spike shapes (results not shown). This

uggests that although input conductance plays a large role in the

ring dynamics of the neuron, it is not the only factor that can in-

uence bistability. “Longer” dendritic structures seem to extend the

ange of parameter values in which bistability is observed. Finally, we
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(a) Two-compartment (b) Chain model (c) Branch model

Fig. 7. Effect of g1 in two and three compartments. Two-parameter bifurcation diagrams showing differences in stability with varying g1, the normalized conductance parameter

of the coupling between the soma and first compartment, between the two-compartment model, the three-compartment chain model, and the three-compartment branch model,

respectively, from left to right. The parameters used to produce these figures are α1 = α2 = 2, g2 = 4, γ2 = 1, γS = 12, β2 = 0, βS = 1, I1 = I2 = 0, VR = −2, Ta = 0.1, spike shape

p = 0.05, and maximal spike potential H = 80.

(a) Two-compartment (b) Chain model (c) Branch model

Fig. 8. Effect of spike duration in two and three compartments. Two-parameter bifurcation diagrams showing differences in stability with varying the spike duration Ta between the

two-compartment model (a), the three-compartment chain model (b), and the three-compartment branch model (c). The parameters used to produce these figures are α1 = α2 = 2,

g1 = g2 = 4, γ2 = 1, γS = 12, β2 = 0, βS = 1, I1 = I2 = 0, VR = −2, spike shape p = 0.05, and maximal spike potential H = 80.

(a) Chain model (b) Branch model

Fig. 9. Effect of α1 with normalized input conductance. Two-parameter bifurcation

diagrams showing differences in stability with varying α1, the ratio of the somatic

area to the surface area of the first compartment, between the three-compartment

chain model and branch model, respectively, from left to right. The dashed-dotted

line denotes the minimum injected somatic current needed to sustain oscillations,

and any smaller value will result in the neuron becoming quiescent. The parame-

ters used to produce these figures are α2 = 2, g1 = g2 = 4, γ2 = 1, γS = 12, β2 = 0,

βS = 1, I1 = I2 = 0, VR = −2, Ta = 0.1, spike shape p = 0.05, and maximal spike poten-

tial H = 80.
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note that when g1 = 0 in the three-compartment branch neuron, the

system reduces to the two-compartment model where g1 = 4. Unlike

in the two-compartment model, bistability does not disappear in the

branch model when g1 = 0.

Fig. 8 presents two-parameter bifurcation diagrams of the applied

somatic current IS versus the spike duration Ta. Comparing the mid-

dle and right bifurcation diagrams, we again observe that the longer

dendritic topology exhibits a wider range of spike durations for which

the neuron can be bistable. In contrast, the bistable region of the

branchier dendritic topology is thinner and much taller. This again

supports the fact that input conductance does not fully explain the

size of the bistable region. In this case, dendritic topology has a clear

effect. We see in all of the dendritic topologies and spike shapes we

tested in our simulations, there is a value of the spike duration at

which the width of the bistable region is maximal. If the spike dura-

tion is too small, there is no value of the injected somatic current for

which the neuron is bistable, since there is not enough time for cur-

rent to flow into the dendrites and facilitate the ping-pong effect. If

the spike duration is too long, a longer period of time is required for

the somatic voltage to return to the reset voltage, which enables the

dendrites to leak current to the soma before the spiking regime ends.

This optimal spike duration varies with spike shape. Thinner spike

shapes have a smaller optimal spike duration whereas wider spike

shapes have a longer optimal duration (results not shown). As with

the previous results, we see that the size of the bistable region in the

three-compartment branch model (right) is much larger than that of

the two-compartment model (left) and the three-compartment chain

model (middle). Bistability is persistently encouraged when the spike

height is increased (results not shown).

3.3.2. Addition of dendritic compartment with input conductance held

constant

Here, we again compare the firing dynamics of the two-

compartment model, the three-compartment branch model, and the
hree-compartment chain model. However, in these diagrams, we

ontrol for differences in input conductance between the differ-

nt models using the method outlined in Section 2.5. For example,

n Fig. 9, there are two-parameter bifurcation diagrams of the in-

ut somatic current IS versus α1, the ratio of the somatic surface

rea to that of the first dendrite. For a particular value of α1 in

he two-compartment model, the input conductance G(α1) is com-

uted. To maintain the same input conductance in the corresponding

hree-compartment model, we numerically compute the value of α̃1

uch that the resulting input conductance in the three-compartment

odel G̃(α̃1) is equivalent to the input conductance of the two-

ompartment model G(α1). For brevity, we only report the results for

, since many of the results for other parameters are consistent with
1
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Fig. 10. Dendritic topologies in four compartments. A plot of the dendritic topologies

of the four-compartment neuron with labeled connections and compartments. This

is the order in which the two-parameter bifurcation diagrams are presented in Fig. 11.

The value above each topology denotes the input conductance for the parameters: αi =
2, gi = 4, Ii = 0 for all i; βi = 0, γi = 1 for all dendrites i and βS = 1, γS = 12; VR = −2,

spike shape parameter p = 0.05, spike duration Ta = 0.1, with maximal spike potential

H = 80.
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hose presented in Fig. 9. Note that the input conductance is constant

ith respect to the spike duration Ta, spike shape p, maximum spike

otential H, injected current Ii, and normalized leakage reversal po-

ential β i, for all compartments i.

In Fig. 9, there are regions in the bifurcation diagrams that are

ndefined. This is due to the fact that the equation G(α1) = G̃(α̃1)
ay not have a feasible solution, using the notation from Section 2.5.

ore specifically, the numerically computed value of α̃1 that satisfies

(α1) = G̃(α̃1) goes to infinity at some finite asymptote. This reveals

previously unseen behavior which is more evident in the right bi-

urcation diagram. For neurons with three or more compartments,

s the value of α1 is increased, the width of the bistable region first

rows and reaches a maximum width. As α1 is further increased, the

istable region shrinks to a minimum width and then begins to grow

gain. This behavior is only observed for the thinnest spike shapes

p = 0.05, and is directly a result of the spike shape. For small values

f α1, the dendrite does not play an influential role in the spiking dy-

amics of the neuron. But as the parameter value increases, the den-

rite more readily loses current due to the afterhyperpolarization in

he spike shape, depressing the ping-pong effect. For sufficiently large

alues of the parameter, the dendrite begins to more closely track the

oltage of its immediately connected neighbor compartments. Thus,

he current provided by the initial upward spike is quickly absorbed

y the dendrite, allowing the dendrite to contribute to bistability

nce again. The dendrite is closer to the soma in branchier topolo-

ies, which is why the behavior is typically more pronounced in those

endritic topologies. This suggests that input conductance does not

olely determine the quantitative bifurcation structure of the neuron.

endritic morphology plays an influential role.

.3.3. Dendrite count held constant

In this subsection, we explore the effect of dendritic topology of

he four-compartment neuron on firing dynamics. Only the topology
ig. 11. Effect of g1 in four compartments. Two-parameter bifurcation diagrams showing diff

onnection, between different dendritic topologies of the four-compartment model (from lef

urrent needed to sustain oscillations, and any smaller value will result in the neuron becom

or all i; βi = 0, γi = 1 for all dendrites i and βS = 1, γS = 12; VR = −2, spike shape paramete
f the neuron is varied, without adjusting the input conductance. The

xplored topologies are depicted in Fig. 10, with labeled compart-

ents and connections.

In Fig. 11, we present two-parameter bifurcation diagrams of

he injected somatic current versus g1. We observe in most of the

ifurcation diagrams that the neurons with greater input conduc-

ance have larger bistable regions. However, as we saw in the three-

ompartment model, this is not always the case. In the above fig-

re, there are portions of the bistable region that are clearly smaller

n the branchier topologies with higher input conductance. Interest-

ngly, we observed in our simulations that this effect is not apparent

ith wider spike shapes (results not shown). The maximum width of

he bistable region, however, does seem to correspond strongly with

he input conductance of the topology.

.4. Firing dynamics in more complex dendritic topologies

To show that our method is easily extendable to more complex

endritic topologies, we generate a number of bifurcation diagrams

esting various biophysical parameters for the dendritic topology

hown in Fig. 12(a). In Fig. 12(b), the normalized conductance of the

onnection between the soma and the first dendrite g1 is varied, and

he overall shape is very similar to those in the earlier g1 bifurcation

iagrams. For instance, note that bistability is present for any value

f g1. Fig. 12(c) was generated by varying α1, which is the ratio of

he surface area of the soma and the area of the first dendrite. The

ashed line reaches the asymptote quickly, which is similar to the

ehavior observed in the three-compartment chain model (Fig. 6).

ig. 12(d) was generated by varying the normalized leakage conduc-

ance γ S. In Fig. 12(e), we vary the spike duration. As in the earlier

xperiments where spike duration was varied, we observe that bista-

ility only occurs within a particular range of spike durations, and

here is a unique value for which bistability is maximal. Finally, we

ee in Fig. 12(f) when varying the spike shape parameter p, that it is

lso more difficult to observe bistability for small values of p, and that

wider spike shape promotes bistability.

. Discussion

In this work, we have presented a framework to study how com-

lex dendritic tree structures can affect the firing dynamics of an

IF neuron that explicitly includes spike effects. The dendritic tree is

odeled as a system of coupled passive compartments, i.e., a multi-

ompartment model, which allows for flexibility in exploring com-

lex branching topologies. We obtain the analytical solution and use

t to derive a lower dimensional return map which completely char-

cterizes the firing dynamics of the full system. As the return map is

n the form of a matrix update equation, it provides a computationally

fficient way to explore the effects of dendritic tree topology on firing

ynamics when compared to simulations of the full system of cou-

led differential equations. Using the map, we explore how biophys-

cal properties and dendritic tree architecture affect firing dynamics.
erences in stability with varying g1, the normalized conductance parameter of the first

t to right as in Fig. 10). The dashed-dotted line denotes the minimum injected somatic

ing quiescent. The parameters used to produce these figures are αi = 2, gi = 4, Ii = 0

r p = 0.05, spike duration Ta = 0.1, with maximal spike potential H = 80.
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Bifurcation analysis of a six-compartment neuron. Two-parameter bifurcation diagrams generated for a more complex dendritic topology, as shown in (a). In (b), the

bifurcation diagram of injected somatic current IS versus normalized conductance between the soma and first dendrite g1 is shown, the ratio of the somatic area to that of the first

dendrite α1 is shown in (c), the normalized leakage conductance γ S is shown in (d), the spike duration Ta is shown in (e), and the spike shape parameter p is shown in (f). Notice

the similarities between these figures and the earlier figures. The parameters used to produce these diagrams are αi = 5, gi = 3, γi = 1, γS = 12, βi = 0, βS = 0, Ii = 0.4, VR = −2,

Ta = 0.1, and a spike shape with maximal potential H = 80 and shape parameter p = 0.05.
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As was first reported in [6], we also find that the addition of the den-

dritic tree can change the LIF model from Type 1 excitability to Type

2 excitability and induce bistability between periodic firing and the

quiescent state. The mechanism responsible for the periodic behav-

ior in the bistable regime is somatodendritic ping-pong. However, we

go beyond the results of [6] by systematically examining how den-

dritic tree topology affects the appearance of this bistable behavior.

We find that the structure of the dendritic tree can have significant

quantitative effects on the bifurcation structure of the system, with

branchier topologies tending to promote bistable behavior over un-

branched chain topologies. We also show that this effect occurs even

when the input conductance at the soma is held fixed, indicating that

it is the dendritic tree topology that is mainly responsible for this

quantitative change in the bifurcation structure. Lastly, we demon-

strate how our framework can be used to explore how biophysical

properties affect the firing dynamics of a neuron with a more com-

plex dendritic tree topology.

Previous studies of multi-compartment LIF neurons have found

that the addition of the passive dendrite can have interesting effects

on firing dynamics [4,16,20]. In particular, these studies found that

the addition of the dendrite can both delay the onset of oscillations

as the input level is increased and also decrease the firing frequency

at a given input level. However, as both of these studies did not in-

clude the effect of the somatic spike on the dendritic compartment,

the bistable dynamics that we observe here (and also in [6]) were not

observed.

The mechanism for periodic firing in the bistable regime results

from a ping-pong action between the somatic and proximal den-

dritic potentials. This somatodendritic ping-pong has been observed

in multi-compartment neuron models endowed with nonlinear ionic

currents [21–25]. In this case, it was shown that somatodendritic

ping-pong is responsible for the burst of action potentials observed

during bursting activity [21]. Although we have not observed any

bursting-like activity in our model, it would be interesting to explore

whether the inclusion of a slow outward current in a proximal den-

dritic compartment might allow the model to exhibit bursting. How-

ever, this would rely mainly on simulations as the inclusion of any

nonlinear currents would preclude an analytical solution. Indeed, in

a large computational study, van Ooyen et al. [3] showed that when

nonlinear ionic currents are included, dendritic topology can change
he type of firing from regular to bursting. Nonetheless, the simplicity

f our current framework allows us to go beyond [21] to explore how

tructural and biophysical features of the dendritic tree interact with

spects of the somatic spike to either promote or inhibit somatoden-

ritic ping-pong.

Similar to [6], we find that the main requirement for the appear-

nce of somato-dendritic ping-pong is that the proximal dendritic

ompartment is sufficiently depolarized after a somatic spike so as to

ring the somatic potential back above threshold. As such, it seems

easonable to expect that similar behavior can occur in a system

here the soma is endowed with nonlinear Hodgkin–Huxley (HH)

ype ionic currents. However, our findings suggest that both the size

amplitude and duration) of the somatic spike as well as the rate

f repolarization of the soma must be sufficiently large in order for

ing-ponging to occur in a system with a passive dendritic tree. For

tandard HH-type ionic currents, it can be difficult to discern which

ombinations of parameters need to be altered in order to change

pecific features of the spike. The inclusion of active currents, such as

persistent sodium current, in the dendritic compartments (or even

he inclusion of dendritic spines which may contain high densities of

odium channels [26]) can possibly alleviate the need to tweak the

omatic spike properties and allow for a greater depolarization of the

endrite after a somatic spike, thus making it easier for the ping-pong

ffect to occur. Future work will be to explore how the type of somatic

odel one chooses changes the dendritic properties necessary for the

ing-pong effect to occur. However, this would again rely primarily

n the use numerical simulations.

Previous analytical approaches to exploring how dendritic topol-

gy affects the function of passive dendrites have relied on a Green’s

or linear response) function approach [11–13,16,27]. These ap-

roaches provide a computationally efficient way to determine how

he membrane potential of dendritic trees responds to time-varying

nputs. Furthermore, the Green’s function approach can be extended

o dendritic trees with weakly nonlinear (or resonant) membrane dy-

amics [13] and also pairs of dendritic trees coupled via gap junctions

27]. Our current framework nicely complements these approaches as

he linearity assumption of the Green’s function approach prohibits

he inclusion of any nonlinear spike-generating mechanism. Thus,

uture work will be to incorporate time-varying inputs into our ap-

roach as well as explore the effects of weakly nonlinear dendrites.
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Fig. 13. Subtrees in the dendritic tree. The input conductance of the neuron U can be

expressed as a function of the input conductance of each subtree T1,…,Tk .
Although much recent research has focused on the role of nonlin-

ar ionic currents in dendrites [28,29], it is important to note that

n some neurons such as cerebellar stellate cells and hippocampal

ast-spiking basket cells, dendrites express sodium channels at low

ensity, if at all [30,31]. Thus, the dendrites of these cells will be

ell-modeled by passive dynamics. Furthermore, exploring passive

roperties of dendritic trees is important as they provide the fun-

amental substrate for dendritic dynamics [32]. Indeed, as we have

hown here, even in neurons endowed with only passive dendritic

rees, the interaction of passive dendritic tree properties and somatic

piking dynamics can significantly alter the firing dynamics of the

ystem, leading to bistability between periodic firing and quiescence.

s this type of behavior has been observed in parts of the central ner-

ous system ranging from the spinal cord [33] to the neocortex [34]

nd is hypothesized to be closely related to short-term memory [35],

nderstanding the various neuronal properties that lead to this be-

avior is of vital importance.

cknowledgments

M.A.S. is supported in part by the Mathematical Biosciences Insti-

ute and the National Science Foundation under grant DMS 0931642.

ppendix A

.1. Generalization to arbitrary dendritic topologies

Extending our chain and branch models, we can represent any

ulti-compartment neuron with multiple passive connections using

ur matrix formulation. This generalization will show that our analy-

is of the general matrix form of our model is extendable to arbitrary

endritic topologies. The coefficient matrix ANS can be decomposed

nto a sum of matrices:

NS = L +
∑
i 	= j

1{i is connected to j} · Ci, j. (38)

he first matrix L is a diagonal matrix representing the intrinsic leak

urrent for each compartment where the mth diagonal element is

γm for all m and the matrix is zero everywhere else.

=

⎡
⎢⎢⎢⎢⎣

−1 0 0 · · · 0
0 −γ2 0 · · · 0
0 0 −γ3 · · · 0
...

...
...

. . . · · ·
0 0 0 · · · −γS

⎤
⎥⎥⎥⎥⎦. (39)

he term 1{i is connected to j} indicates whether a connection ex-

sts between compartment i and compartment j. If such a connection

xists, then 1{i is connected to j} = 1, otherwise it is zero. The term

i, j is a matrix that provides additional terms which characterize the

ransfer of charge across the connection between compartments i

nd j.

i, j =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

−αigk · · · αigk

...
. . .

...
α jgk · · · −α jgk

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (40)

he element at position (i, i) is −αigk, the element at position (j, j) is

α jgk, the element at position (i, j) is αigk, the element at position

j, i) is αjgk, and the matrix is zero everywhere else, where k repre-

ents the unique index of the connection. As a concrete example to

etter illustrate this decomposition, we show how ANS
branch

can be de-

omposed into L and Ci, j where the number of dendrites is 2:
NS
branch =

[−1 − α1g1 0 α1g1

0 −γ2 − α2g2 α2g2

g1 g2 −γS − g1 − g2

]

= L + CS,1 + CS,2, where:

=
[−1 0 0

0 −γ2 0
0 0 −γS

]
, CS,1 =

[−α1g1 0 α1g1

0 0 0
1 · g1 0 −1 · g1

]
,

S,2 =
[

0 0 0
0 −α2g2 α2g2

0 1 · g2 −1 · g2

]
. (41)

Notice that for biophysically-plausible values for the parameters,

he absolute value of the diagonal element in each row of Ci, j is

qual to the absolute value of the non-diagonal elements. Addition-

lly, since LNS has no zero elements in the diagonal, then ANS must

e strictly diagonally dominant. Therefore, ANS is nonsingular, diag-

nalizable, and Hurwitz stable (i.e. the real parts of the eigenvalues

re strictly negative) [36]. The argument can also be extended to the

piking system, as AS is also strictly diagonally-dominant.

Also note that for biophysically-plausible parameter values, the

orresponding digraph of the matrix ANS is strongly connected if and

nly if the compartments of the neuron are connected (the topol-

gy of the digraph is identical to that of the compartments in the

euron). Therefore, the matrix ANS is irreducible [37]. Although the

odel can be extended to include cycles in the dendritic structure,

e restrict our analysis to tree-like dendritic topologies. Thus, due

o the construction of the Ci, j matrices, both ANS and AS are sign-

ymmetric, and are similar to real symmetric matrices [38]. So if

here are no cycles among the compartments, then all of the eigen-

alues of ANS and AS are real. Note that even with a single cycle among

he compartments, it is possible to obtain complex eigenvalues with

iophysically-plausible parameters.

.2. Input conductance properties in our model

Note that even when comparing neurons of different topologies,

he threshold somatic current for monostability is the same across all

opologies when bi and γ SβS do not change. Thus, if all dendritic in-

ected currents Ii and all β i (including βS) are zero, then the threshold

omatic current that determines whether the neuron is monostable

s the same, regardless of the dendritic topology.

S,th = Vth +∑n
i=1 [(ANS)−1]{n+1,i}bi

[ANS]{n+1,n+1}
− γSβS. (42)

We can express the input conductance recursively, as a function

f the input conductance of subtrees. The input conductance of a tree

an be defined as the input conductance of the multi-compartment

IF neuron whose soma is the root compartment of the tree. We first

onsider a neuron whose soma is connected to k dendritic trees, each

f arbitrary topology, which we label Ti with root compartment ai,

ee Fig. 13. Let ANS
i

be the ANS matrix for Ti. Let b be the somatic

http://dx.doi.org/10.13039/100000001
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Fig. 14. Depiction of a neuron and a “flattened” neuron. Two LIF neurons are depicted.

The neuron labeled U is identical to Ũ except that m compartments are removed from

the subtree attached to compartment ak in U and re-attached directly to the soma in Ũ .
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compartment which we connect to all ai, and is the soma of the new

tree U. So αi and αb are the normalized size parameters of ai and b,

respectively, and gi is the normalized conductance of the connection

between ai and b in U.

ANS
U

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ANS
1∗ 0 0

0

.

.

.

0

α1g1

0
. . . 0

.

.

.

0 0 ANS
k∗

0

.

.

.

0

αkgk

0 . . . 0 αbg1 . . . 0 . . . 0 αbgk −γb − αb

∑k
i=1 gi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(43)

where ANS
i∗ is the portion of the ANS

U
matrix that corresponds to the

subtree Ti. Thus, ANS
i∗ is identical to ANS

i
but with an additional −αigi

term in the diagonal element corresponding to the connection be-

tween compartments b and ai (which we assume is the last diag-

onal element in ANS
i

). Let Gi be the input conductance of Ti, and so

Gi∗ = Gi + αigi. Let n + 1 be the total number of compartments of the

tree U. We use blockwise matrix inversion, dividing ANS
U

into four sub-

matrices: the top-left n × n block-diagonal matrix where each block

is ANS
i∗ , the top-right n × 1 matrix, the bottom-left 1 × n matrix, and

the 1 × 1 element containing the term −γb − αb

∑k
i=1 gi. We obtain

an expression for the input conductance of the new tree U:

G = γb + αb

k∑
i=1

gi +
k∑

i=1

[0 . . . 0 αbgi](ANS
i∗ )−1

⎡
⎢⎢⎣

0
...
0

αigi

⎤
⎥⎥⎦, (44)

= γb + αb

k∑
i=1

gi − αb

k∑
i=1

αig
2
i G−1

i∗ , (45)

= γb + αb

k∑
i=1

giGi

Gi + αigi

. (46)

Note that this expression is also valid for k = 0, in which case the

input conductance of a single compartment is γ b.

A.3. Effect of biophysical parameters on input conductance

We observe via the derivative of the expression in Eq. (46) that

the input conductance is monotonically increasing with respect to the

input conductances of the subtrees (this argument can be extended

inductively to the input conductance of any subtree in the topology):

∂G

∂Gi

= αbαig
2
i

(Gi + αigi)
2
, (47)

is strictly positive given biophysically-plausible parameter values.

Also note that the input conductance is monotonically increasing

with respect to αb, gi, and γ b: ∂G
∂αb

= ∑k
i=1

giGi
Gi+αigi

, ∂G
∂γb

= 1, and ∂G
∂gi

=
αbG2

i

(Gi+αigi)
2 > 0. This argument can be extended inductively to all bio-

physical parameters using the chain rule ∂G
∂x

= ∂G
∂Gi

∂Gi
∂x

. Additionally,

for a given set of fixed biophysical parameters, the input conductance
increases monotonically with the number of dendrites. s
.4. Input conductance and dendritic topology

Consider a dendritic tree U where the soma is connected to k den-

ritic trees, each labeled Ti. Consider another tree Ũ with the same

tructure as U except the subtree Tk has m fewer compartments,

hich are moved and directly attached to the soma (see Fig. 14). We

ill show by induction that Ũ has a strictly greater input conductance

han U. From this, it will follow that the input conductance is maxi-

ized in the branch model and minimized in the chain model.

We compute the input conductance of the first tree U:

= γb + αb

k−1∑
i=1

giGi

Gi + αigi

+ αb

gkGk

Gk + αkgk

, (48)

≤ γb + αb

k−1∑
i=1

giGi

Gi + αigi

+ αb

gk(γk + αkS)

γk + αkS + αkgk

, (49)

here S = ∑|T k|
i=1

g
(k)
i

γ (k)
i

γ (k)
i

+α(k)
i

g
(k)
i

is the contribution to the input con-

uctance of Tk from its dendritic compartments, assuming Tk has a

ranch-model architecture. Similarly, the input conductance of the

econd tree U2 is:

˜ = γb + αb

k−1∑
i=1

giGi

Gi + αigi

+ αb

gkG̃k

G̃k + αkgk

+ αbSm, (50)

here Sm = ∑m
i=1

g
(k)
i

γ (k)
i

γ (k)
i

+α(k)
i

g
(k)
i

and G̃k is the input conductance of the

ree Tk after the removal of m compartments. Note that Gk = γk +
kS ≤ G̃k + αkSm since Gk is maximal when Tk has a branch-model

rchitecture. We now compute an upper bound on the difference be-

ween the input conductances:

− G̃ ≤ αb

gk(γk + αkS)

γk + αkS + αkgk

− αb

gkG̃k

G̃k + αkgk

− αbSm, (51)

αb

αkg2
k
(γk + αkS) − αkg2

k
G̃k − Sm(G̃k + αkgk)(γk + αkS + αkgk)

(G̃k + αkgk)(γk + αkS + αkgk)
,

(52)

αb

α2
k

g2
k
Sm − Sm(G̃k + αkgk)(γk + αkS + αkgk)

(G̃k + αkgk)(γk + αkS + αkgk)
, (53)

−αb

γkG̃k + αkgkγk + αkG̃kS + α2
k

gkS + αkgkG̃k

Sm(G̃k + αkgk)(γk + αkS + αkgk)
, (54)

0. (55)

e have shown that if m > 0 compartments are moved from any

ubtree and connected to the soma, the resulting neuron will have a

trictly greater input conductance. Therefore, flatter and more highly
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Fig. 15. Topologies of the five-compartment model. The topologies are sorted by their input conductance.
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