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We are now prepared to assemble models that are capable of reproducing the great variety of responses, seen in
the laboratory, to synaptic input distributed in space and time. This requires only that we add ion channels to our
passive dendrite. A combination of the numerical methods of Chapters 4 and 8 will permit us to generate the action
potential launched by supra-threshold current injection and to study its propagation down the cell’s axon and back
up into the dendritic tree, in agreement with the recordings in Figure 9.1.

We then build a model for determining the extracellular current induced by such traveling action potentials and
study its effect on neighboring cables like axons or dendrites. We next move on to synaptic initiation of somatic spikes
and investigate the role of a specialized glutamate receptor, called the NMDA receptor, in acknowledging action po-
tential back propagation into the dendrites. We next develop and study the quasi-active cable and demonstrate its
ability to capture the cell’s subthreshold response and resonant frequency. We then investigate synaptic attenua-
tion and integration on our active fork prior to introducing and demonstrating Matlab tools for the simulation of
arbitrarily branched cells. Finally, we move on to the fully branched case, where we study synaptic integration.

FIGURE 9.1 Action potential initiation and propagation in a pyramidal cell from layer 5 of the rat neocortex. A. Cell tracing and electrode
locations in dendrite, soma and axon. B. Current injection at the soma generates a somatic action potential that propagates, with attenuation, back
into the dendrites ≈ 270 µm in ≈ 1 ms. C. The somatic action potential also propagates, with amplification, down the axon ≈ 17 µm in ≈ 0.1 ms.
From Stuart et al. (1997).
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126 9. THE ACTIVE DENDRITIC TREE

9.1 THE ACTIVE UNIFORM CABLE

If we add the sodium and potassium currents of Chapter 4 to the passive cable of Chapter 6 we arrive at the active
cable system

Cm

∂V

∂t
= Ga

∂2V

∂x2
− gNam

3h(V − VNa) − gKn4(V − VK) − gCl(V − VCl) + Istim/(2πa)

∂m

∂t
= αm(V )(1 − m) − βm(V )m

∂h

∂t
= αh(V )(1 − h) − βh(V )h

∂n

∂t
= αn(V )(1 − n) − βn(V )n

(9.1)

where Ga = a/(2Ra) is the axial conductance. We assume that the cable is sealed

∂V

∂x
(0, t) = ∂V

∂x
(�, t) = 0,

and that it begins at rest

V (x,0) = Vr, m(x,0) = m∞(Vr), h(x,0) = h∞(Vr), n(x,0) = n∞(Vr).

If the ionic conductances are uniformly distributed, i.e., their conductance densities do not vary with position, then
the rest potential is in fact the same Vr as that in Eq. (4.16).

As Eq. (9.1) does not yield to elementary mathematical analysis we pursue its approximate solution. In particular,
we choose a space-step, dx, and so study a cable with Nx = �/dx compartments, and then choose a time-step, dt , and
final time T and so march through Nt = T/dt units of time. We evaluate our stimulus and approximate the response
on the associated space–time grid

Vj
i ≈ V ((i − 1/2)dx, (j − 1)dt)

mj
i ≈ m((i − 1/2)dx, (j − 3/2)dt)

Ij
i = Istim((i − 1/2)dx, (j − 3/2)dt)/(2πa), i = 1, . . . ,Nx, j = 1, . . . ,Nt

(9.2)

where (i − 1/2)dx is the midpoint of the ith compartment, as in Eq. (6.54), and the staggering of voltage and gating
time grids conforms to our original choice, Eq. (4.17).

Arguing precisely as in Chapter 4 we may advance the gating variables via

mj
i = (1/dt − (αm(vj−1

i ) + βm(vj−1
i ))/2)mj−1

i + αm(vj−1
i )

1/dt + (αm(vj−1
i ) + βm(vj−1

i ))/2
i = 1, . . . ,Nx. (9.3)

We now collect the compartmental terms into columns

Vj = (Vj

1 V
j

2 · · · Vj
Nx

)T , mj = (mj

1 m
j

2 · · · mj
Nx

)T , etc.,

and advance Vj−1 voltage by the half-step Backward Euler rule (per Eq. (4.20))

Cm

Vj−1/2 − Vj−1

dt/2
= GaSVj−1/2 − gNa(m

j )3hj (Vj−1/2 − VNa) − gK(nj )4(Vj−1/2 − VK) − gCl(Vj−1/2 − VCl) + Ij

where S is our standard second difference matrix, Eq. (6.9). We write this as a linear system for Vj−1/2,

(diag(dj + 2Cm/dt) + GaS)Vj−1/2 = (2Cm/dt)Vj−1 + fj (9.4)
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FIGURE 9.2 Response of the active cable described by Eqs. (6.17), (4.8)–(4.9) and (4.13)–(4.14) to a current pulse described by Eq. (9.6) with
xs = 0.05 cm. A. Full space–time response to supra-threshold input, I0 = 400 pA. This stimulus has initiated an action potential that propagates
at constant velocity in each direction. B. A plot of the maximum depolarization at xs , and the time at which it occurred, as a function of stimulus
amplitude, I0. (stEcab.m)

FIGURE 9.3 A plot of stimulus threshold, Iθ , as a function of stimulus location, xs , for the cable described by Eqs. (6.17), (4.8)–(4.9) and
(4.13)–(4.14) and a current pulse of the form Eq. (9.6). (stEcabthreshloc.m)

where the elements of d and f are

dj
i = gNa(m

j
i )

3hj
i + gK(nj

i )
4 + gCl and fj

i = gNa(m
j
i )

3hj
i VNa + gK(nj

i )
4VK + gClVCl + Ij

i

respectively. We conclude, as in Eq. (4.21), with the final additional half-step update

Vj = 2Vj−1/2 − Vj−1. (9.5)

We have coded this and illustrated its use in Figure 9.2 on the cable with size and passive parameters as in Eq. (6.17),
active parameters and functionals as detailed in §§4.1 and 4.2, and a 1 ms stimulus

Istim(x, t) = I01(1,2)(t)δ(x − xs) (9.6)

of amplitude I0 delivered at x = xs .
We see that a 1 ms current pulse at mid-cable ignites an action potential when I0 exceeds the threshold, Iθ , of

approximately 150 pA and we note that the Vmax/I0 curve differs very little from the isopotential case, Figure 4.7B.
In the case of a cable, however, stimulus location can also play a major role. For current delivered near a sealed end
sees a greater resistance and hence yields a greater depolarization. We make this precise in Figure 9.3.

The speed of the action potential wave illustrated in Figure 9.2A depends on both the geometry of the cable and
the mix of currents crossing its lateral surface. We will investigate these dependencies in the exercises.
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FIGURE 9.4 A. A schematic of two parallel cables. B. The electrical stimulation of fiber 1 and its effect on the threshold of fiber 2. Action
potentials in fibers 1 and 2 are elicited by short electric pulses. An illustration of an action potential recorded from fiber 1 is on top. The threshold
change is expressed as a percentage of the baseline value (100) observed in fiber 2 without stimulation of fiber 1 and is measured as a function
of the stimulation interval between fiber 1 and 2. Initially the threshold is raised by the traveling action potential in fiber 1, but then the second
fiber becomes more excitable followed by a period of slightly reduced excitability. In vitro preparation of a limb nerve of the crab. From Katz and
Schmitt (1940).

9.2 ON THE INTERACTION OF ACTIVE UNIFORM CABLES∗

There is ample evidence, see Figure 9.4, to support the investigation of the non-synaptic influence that an action
potential traveling down a cable may have on its neighbors. These interactions are often deemed “ephaptic” and
arise, for example, from extracellular currents and excess extracellular potassium associated with traveling action
potentials.

In Exercise 4.5 we demonstrated that increased extracellular potassium depolarizes nearby cells. We here build
and analyze a model, see Figure 9.5, of two parallel cables of radii a1 and a−1, separated by a distance 2a0, in which
extracellular current may flow.

If the radii of the upper and lower cables are a±1 and dx is the length of a compartment then current balance at
the nodes marked φ2,1 and φ2,−1 yields

2πa1dx{Cm(φ2,1 − φ2,0)
′ + Iion(φ2,1 − φ2,0)} = πa2

1

Radx
(φ1,1 − 2φ2,1 + φ3,1)

2πa−1dx{Cm(φ2,−1 − φ2,0)
′ + Iion(φ2,−1 − φ2,0)} = πa2−1

Radx
(φ1,−1 − 2φ2,−1 + φ3,−1).

Next, as the fibers are separated by a distance of 2a0, current balance at the node marked φ2,0 yields

2πa1dx{Cm(φ2,1 − φ2,0)
′ + Iion(φ2,1 − φ2,0)} + 2πa−1dx{Cm(φ2,0 − φ2,−1)

′ + Iion(φ2,0 − φ2,−1)} =

− πa2
0

Redx
(φ1,0 − 2φ2,0 + φ3,0).
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FIGURE 9.5 A circuit diagram, corresponding to Figure 9.4A, of two cables and the extracellular fluid that separates them. Here Re is the
effective axial resistance of the extracellular fluid, φj,±1 denote the intracellular potentials of the respective cables, φ0,±1 denote the associated
extracellular potentials, and the membrane currents, at each compartment, have been lumped into the Iion boxes.

If we now define the transmembrane potentials

Vn ≡ φn,1 − φn,0 and Wn ≡ φn,−1 − φn,0

the above become

CmV ′
2 + Iion(V2) = a1

2Ra

V1 − 2V2 + V3

dx2
+ a1

2Ra

φ1,0 − 2φ2,0 + φ3,0

dx2

CmW ′
2 + Iion(W2) = a−1

2Ra

W1 − 2W2 + W3

dx2
+ a−1

2Ra

φ1,0 − 2φ2,0 + φ3,0

dx2

and

a1{CmV ′
2 + Iion(V2)} + a−1{CmW ′

2 + Iion(W2)} = − a2
0

2Re

φ1,0 − 2φ2,0 + φ3,0

dx2
.

On substituting the latter into the former we have

a2
0Ra + a2

1Re

a2
0Ra

{CmV ′
2 + Iion(V2)} + a1a−1Re

a2
0Ra

{CmW ′
2 + Iion(W2)} = a1

2Ra

V1 − 2V2 + V3

dx2
(9.7)

a2
0Ra + a2−1Re

a2
0Ra

{CmW ′
2 + Iion(W2)} + a−1a1Re

a2
0Ra

{CmV ′
2 + Iion(V2)} = a−1

2Ra

W1 − 2W2 + W3

dx2
. (9.8)

Now (a2
0Ra + a2−1Re)/(a1a−1Re) times Eq. (9.7) minus Eq. (9.8) brings

CmV ′
2 + Iion(V2) = c1

a1

2Ra

V1 − 2V2 + V3

dx2
− c2

a−1

2Ra

W1 − 2W2 + W3

dx2
, (9.9)

where the coupling parameters are

c1 = a2
0Ra + a2−1Re

a2
0Ra + (a2

1 + a2−1)Re

and c2 = a1a−1Re

a2
0Ra + (a2

1 + a2−1)Re

. (9.10)
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Similarly, (a2
0Ra + a2

1Re)/(a1a−1Re) times Eq. (9.8) minus Eq. (9.7) brings

CmW ′
2 + Iion(W2) = c−1

a−1

2Ra

W1 − 2W2 + W3

dx2
− c2

a1

2Ra

V1 − 2V2 + V3

dx2
, (9.11)

where

c−1 = a2
0Ra + a2

1Re

a2
0Ra + (a2

1 + a2−1)Re

.

Current balance at the remaining nodes proceeds exactly as above. As such we may express the full coupled system
as

Cmu′(t) + gCl(u(t) − VCl) + gKn4(u − VK) + g3
Nah(u − VNa) = Bu(t) + f(t), (9.12)

where

u(t) =
(

v(t)

w(t)

)

with v(t) = (V1(t), . . . , Vn(t))
T and w(t) = (W1(t), . . . ,Wn(t))

T . The matrix B is defined by

B =
(

c1G1S −c2G−1S
−c2G1S c−1G−1S

)
,

with G±1 = a±1/(2Ra) and S is our familiar second difference matrix. The gating variables continue to obey equations
of the form

m′(t) = m∞(u(t)) − m(t)

τm(u(t))
.

We recognize that the off-diagonal elements of B capture the interaction of the two cables. In particular, each cable
“stimulates” the other through a current that is proportional to the spatial second difference of its membrane poten-
tial. In addition, as c±1 < 1, we note that the effective individual axial conductances, c±1G±1, are each smaller than
their original values.

We may proceed, as in the case of a single cable, to apply the staggered Euler scheme to Eq. (9.12). We have
implemented this in stE2cab.m and demonstrate its findings in Figure 9.6.

In reality both cables would be receiving independent input and rather than the first cable fully exciting the
second, it is more likely that activity in the first serves to lower the second’s threshold for excitation. This is the
scenario illustrated in Figure 9.4 and we will investigate it further in the exercises.

It may perhaps be easier to visualize the interaction terms by passing to the limit, dx → 0, in Eq. (9.12) and so
arriving at the coupled active cable equations

Cm

∂V

∂t
+ gCl(V − VCl) + gKn4

1(V − VK) + gNam
3
1h1(V − VNa) = c1G1

∂2V

∂x2
− c2G−1

∂2W

∂x2
+ Istim/(2πa1)

Cm

∂W

∂t
+ gCl(W − VCl) + gKn4

2(W − VK) + gNam
3
2h2(W − VNa) = c−1G−1

∂2W

∂x2
− c2G1

∂2V

∂x2

where
∂m1

∂t
= m∞(V ) − m1

τm(V )
and

∂m2

∂t
= m∞(W) − m2

τm(W)
,

and similarly for the remaining gating equations. The two potential equations now make it clear that it is the axial
current in a cable that stimulates its neighboring cables. In particular, with regard to Figure 9.6E, we see that as the
top cable fires, its membrane potential, V , at fixed time t , progresses from a single concave bump to two concave
bumps traveling away from the site of initiation. Where V is concave we know that ∂2V/∂x2 ≤ 0 and so the stimulus
to the lower cable is positive. Hence, as the V wave travels in the upper cable it reinforces, and is likewise reinforced
by, the W wave in the lower cable.
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FIGURE 9.6 The full space–time potentials of the two cables (top at left and bottom at right) separated by 2a0 . Each cable is identical to that
examined above in Figure 9.2 and the resistivity of the extracellular medium is Re = 0.1 k� cm. We stimulate the top cable with a supra-threshold
pulse as in Eq. (9.6) with I0 = 400 pA. This causes an action potential traveling wave in the cable. A. With a0 = 1.5 µm the wave in the top
cable delivers a complex, but ultimately subthreshold stimulus to the lower cable, as illustrated in B. The influence of this upon the top cable
appears negligible. C. With a0 = 1 µm the wave in the top cable produces a small disturbance in the bottom cable that eventually brings its two
ends to threshold. These two end waves travel inward and annihilate each other at the midpoint, see D. This latter wave causes a notable, but
subthreshold, disturbance in the top cable. E. With a = 0.5 µm the wave in the top cable quickly ignites a wave in the bottom cable, see F. The
bottom wave likely lies in the refractory wake of the top wave and therefore provides negligible feedback. (stE2cab.m)

9.3 THE ACTIVE NONUNIFORM CABLE

Neurons are not simply nonuniform in their geometry and branching patterns they are also highly nonuniform
with regard to their distribution of channels. One simple non-uniformity stems from the observation that many cells
partition their “input end” from their “output end” for the obvious reasons that action potentials have a metabolic
cost and several inputs ought to arrive in a small window if the subsequent output spike is to mean anything. This
partition is often achieved by distributing channels in such a way as to create a weakly excitable dendrite and a
strongly excitable cell body. For example, see Figure 9.7, Purkinje and CA3 cells achieve this by decreasing gNa with
distance from the soma, while CA1 and mitral cells achieve this by increasing gK with distance from the soma.

Before opening the door to wildly branched cells with exotic channel distributions we focus on the straight cable
and mimic a weakly excitable dendrite and a highly excitable cell body by assuming that both sodium and potassium
peak conductances are constant, except for an excitable “hot spot”:

gK(x) = 40 − 201siz(x) and gNa(x) = 44 + 5601siz(x) where siz = (0.005,0.01) (9.13)
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FIGURE 9.7 Channel densities, as a function of distance from the soma, for a variety of cell types and channel types. Here Purkinje denotes
the large inhibitory cells of the cerebellum (see Figure 8.1E), the mitral cell is a cell type found in the olfactory bulb, CA1 and CA3 refer to
pyramidal cells found in two distinct regions of the hippocampus. A. Distribution of sodium channels. In B, IKA and KA refer to the A-type
potassium conductance of §4.4, while KDR signifies the delayed rectifier current of §4.1. C. Distribution of Ih , the inward rectifier investigated
in §5.5. D. Distribution of three types of calcium conductances (T, N and L). We will construct models of each of these calcium currents in §14.1.
From Migliore and Shepherd (2002).

denotes the spike initiation zone and the cable has length � = 0.1 cm. We first compute the associated nonuniform
rest potential by solving GaV

′′
r (x) = I ss(x) where

I ss(x,Vr) ≡ gNa(x)m3∞(Vr)h∞(Vr)(Vr − VNa) + gK(x)n4∞(Vr)(Vr − VK) + gCl(Vr − VCl), (9.14)

subject to V ′
r (0) = V ′

r (�) = 0. We solve this, as before, via Newton’s method with fsolve in Matlab, although here,
with perhaps thousands of compartments, this is a much more difficult task. The Jacobian, ∇Iss ∈R

Nx×Nx ,

(∇Iss)ij = ∂Iss
i (V)

∂Vj

(9.15)

that springs from the quasi-active counterpart (see §9.4) greatly eases the burden. In particular, writing the dis-
cretized rest equation as GaSV− Iss(V) = 0 we note that Newton’s method converges to the (discrete) rest potential
via the update rule

Vk+1 = Vk − (GaS − ∇Iss(Vk))\(GaSVk − Iss(Vk)).

We have coded this in stEcabnon.m and illustrate its use in Figure 9.8.
We see in both panels of Figure 9.8 a direct reflection of the cable’s nonuniform channel distribution. To better

appreciate the impact of Figure 9.8B we show in Figure 9.9 the full spatio-temporal response to a stimulus that is
subthreshold when delivered distally but supra-threshold when delivered proximally.

Although the stimulus in Figure 9.9B was delivered to a weak segment of the cable, we see that the entire cable is
excitable enough to support a traveling action potential. In addition, as in Figure 9.1, we note that the action potential
in the distal region is smaller than that at the siz.

We now focus on the synaptic machinery that detects the presence of such a back-propagating action potential
in the postsynaptic cell shortly following presynaptic activity. In particular, we place a spine (recall §6.5) at xs and
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FIGURE 9.8 Rest potential (A) and Threshold Current (B) for the cable with the nonuniform channel distribution specified in Eq. (9.13).
(stEcabnon.m)

FIGURE 9.9 Response to injection of 200 pA for 1 ms at x = 0.06, (A), and x = 0.04 cm, (B). This is not merely a three dimensional view of
Figure 9.8B, for here we see that the proximal stimulus did not elicit an action potential at the stimulation site (where the cable is only weakly
excitable), but rather was sufficiently strong that it eventually reached the highly excitable zone. (stEcabnon.m)

endow its head with two types, AMPA and NMDA, of glutamate receptors. The abbreviation NMDA stands for
N-methyl-D-aspartic acid, which is a selective activator (or agonist) of the NMDA receptor (NMDAR), just as AMPA
is for the AMPA receptor.

We built a model for AMPA receptors in §2.5. The methodology for NMDARs is similar to a point, for the associ-
ated conductance has a strong voltage dependence. If W denotes the spine head transmembrane potential our cable
equation takes the form

Cm

∂V

∂t
= Ga

∂2V

∂x2
− gNam

3h(V − VNa) − gKn4(V − VK) − gCl(V − VCl) + γ2(W(t) − V (x, t))δ(x − xs)

while the spine potential, W , obeys

CmW ′(t) + gCl(W(t) − VCl) + (gA(t) + gN(t)M(W(t)))(W(t) − Vsyn) = γ1(V (xs, t) − W(t)). (9.16)

The coupling parameters, as in §6.5, are

γ1 = 1/(RsnAsh) and γ2 = 1/(Rsn2πa)

while the AMPA and NMDA conductances obey

gA(t) = gARA(t) and gN(t) = gNRN(t) (9.17)

where RA and RN are the respective fractions of activated AMPA and NMDA receptors. We suppose, as in Eq. (2.21),
that they obey the first order equations

R′
A(t) = k+

AT (t)(1 − RA(t)) − k−
ARA(t) and R′

N(t) = k+
NT (t)(1 − RN(t)) − k−

NRN(t)
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FIGURE 9.10 A. Schematic illustration of the block of the NMDA receptor channel by magnesium. At potentials near rest, magnesium enters
the pore and blocks the channel (bottom). At depolarized potentials the magnesium is ejected and the channel is free to pass Na+, K+ and, most
importantly, Ca2+. B. Dependence of gNM on W . C. Dependence of gNM(W)(W − Vsyn) on W .

where T (t) is the dosage of glutamate received at the spine head. We encode the voltage dependence of the NMDA
receptor in

M(W) = 1

1 + exp(−aW)[Mg2+]e/b , (9.18)

where a = 0.062 mV−1, b = 3.57 mM, and [Mg2+]e (in units of mM) denotes the extracellular concentration of mag-
nesium ions, which is normally equal to 2 mM. These ions block the channel pore associated with the NMDAR from
the outside at resting levels of W (Figure 9.10A). This magnesium block is relieved upon sufficient spine depolariza-
tion in a manner that is well captured by Eq. (9.18) (Figure 9.10B). As a result, the current flow across the NMDAR
channel is a highly non-linear function of W (Figure 9.10C).

Regarding initial conditions, it follows from Eq. (9.16) that the resting spine potential obeys

gCl(Wr − VCl) = γ1(Vr(xs) − Wr), that is, Wr = gClVCl + γ1Vr(xs)

gCl + γ1

and so the cable rest potential obeys

GaV
′′
r = gNam

3∞(Vr)h∞(Vr)(Vr − VNa) + gKn4∞(Vr)(Vr − VK) + gCl(Vr − VCl) − γ2gCl

gCl + γ1
(VCl − Vr)δ(x − xs).

We solve this for Vr precisely as in Eq. (9.15).
If T is simply a pulse we may invoke the exact solution for RA and RN in Eq. (3.35). Let us however proceed more

generally and define

T j = T ((j − 1)dt), and Rj
A ≈ RA((j − 1)dt),
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and update RA via the Backward Euler scheme

Rj
A = Rj−1

A + dtk+
AT j

1 + (k+
AT j + k−

A)dt
.

Given the explicit nonlinearity, M in Eq. (9.18), we update W by the hybrid Backward Euler scheme

Cm(Wj − Wj−1)/dt + gCl(Wj − VCl) + (g
j
A + g

j
NM(Wj−1))(Wj − Vsyn) = γ1(V

j−1
k − Wj )

or

Wj = (Cm/dt)Wj−1 + gClVCl + (g
j
A + g

j
NM(Wj−1))Vsyn + γ1V

j−1
k

(Cm/dt) + gCl + g
j
A + g

j
NM(Wj−1) + γ1

.

We apply the same scheme to the gating variables, e.g.,

mj
i = mj−1

i + dtαm(Vj−1
i )

1 + dt (αm(Vj−1
i ) + βm(Vj−1

i ))
,

and finally update the cable potential via an honest backward Euler scheme

Cm(Vj − Vj−1)/dt = (GaS − diag (dj ))Vj + fj

where the elements of dj and fj are

dj
i = gNa(m

j
i )

3hj + gK(nj
i )

4 + gCl + γ2δik and

fj
i = gNa(m

j
i )

3hjVNa + gK(nj
i )

4VK + gClVCl + γ2Wj δik

and k is the number of the compartment at which the spine is attached. We now consider a concrete example. We
place a spine at xs = 0.04 cm, with the geometric parameters as in Eq. (6.58), and receptor and conductance parame-
ters

k+
A = 1.1 (mM ms)−1, k−

A = 0.19 ms−1, and gA = 200 mS/cm2,

k+
N = 0.072 (mM ms)−1, k−

N = 0.0066 ms−1, and gN = 100 mS/cm2,

and synaptic reversal potential Vsyn = 20 mV. On stimulating the spine with a 1 ms pulse of 1 mM glutamate we
find, as in Figure 9.9B, slow progression of subthreshold depolarization toward the hot zone followed by a rapid
back propagating action potential (BPAP). We plot the salient features in Figure 9.11.

9.4 THE QUASI-ACTIVE CABLE∗

If the injected current is small, say εIstim, we may develop V and its gating variables in power series, as in Eq. (5.1),
in ε. For example, V (x, t) = Vr(x)+ εṼ (x, t)+O(ε2), where Vr(x) is the rest potential. As in Eq. (5.2), the linear terms
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FIGURE 9.11 Potentials (A), and currents (B), at the spine, on the nonuniform active cable. We see the strong late (from the BPAP) depolar-
ization of the spine head free the magnesium block at the NMDAR and so permit a sizable, inward, NMDA current. This current is the signature
of near coincident pre- and postsynaptic activity, and as such forms a natural substrate for the Hebbian learning algorithm of §13.6. To lend it
even greater specificity, this current is rich in calcium ions. We will take a careful look at the complex role of Ca2+ in spine heads in Chapter 14.
(stEcabspine.m)

in this expansion obey what we call the quasi-active system

∂m̃

∂t
= (m′∞Ṽ − m̃)/τm

∂h̃

∂t
= (h

′
∞Ṽ − h̃)/τh

∂ñ

∂t
= (n′∞Ṽ − ñ)/τn

Cm

∂Ṽ

∂t
= λ2 ∂2Ṽ

∂x2
− gNa{m3hṼ + (3m̃m2h + m3h̃)vNa} − gK {n4Ṽ + 4ñn3vK}

− gClṼ + Istim(x, t)/(2πa),

(9.19)

where m(x) ≡ m∞(Vr(x)), τm ≡ τm(Vr(x)) and m′∞ ≡ m′∞(Vr(x)). We gather the unknowns in y ≡ (m̃ h̃ ñ Ṽ )T and
represent Eq. (9.19) as

∂y
∂t

= By + f (9.20)

where f = Istim(x, t)/(2πaCm)(0 0 0 1)T and B is the matrix differential operator

B =

⎛
⎜⎜⎜⎝

−1/τm 0 0 m′∞/τm

0 −1/τh 0 h
′
∞/τh

0 0 −1/τn n′∞/τn

−3m2hvNa/τNa −m3vNa/τNa −4n3vK/τK (λ2/τ)∂xx − γ

⎞
⎟⎟⎟⎠ (9.21)

where γ = m3h/τNa + n4/τK + 1/τCl . We have discretized (precisely as in the past three sections) and coded this
system in stEQcab.m. We contrast the quasi-active and active responses of the uniform cable to random current
stimuli in stEcabQandA.m and illustrate our findings in Figure 9.12.

Figure 9.12 indicates that the quasi-active model is an accurate predictor of the cumulative response to subthresh-
old spatio-temporal input. We next investigate its ability to predict the cell’s resonant frequency.

Resonance. We expect the resonant frequencies of the active cable to be reflected in the imaginary parts of the eigen-
values of B. As in §5.3 we write

Bw(x) = ζw(x) with w ≡ (μ(x) η(x) ν(x) q(x))T
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FIGURE 9.12 The voltage response at x = 0, for both the active and quasi-active uniform cable, to 10 current stimuli, each 1 ms in duration
and 20 pA in amplitude, with random start times and locations. Compare with Figure 5.1. (stEcabQandA.m)

and deduce that

m′∞q − μ = ζ τmμ so μ = m′∞
1 + ζ τm

q.

The other gating variables follow suit, namely

η = h
′
∞

1 + ζ τh

q and ν = n′∞
1 + ζ τn

q

and so the equation for the quasi-potential, q , reads

(λ2/τ)q ′′ −
(

γ + 3m2hvNam
′∞

τNa(1 + ζ τm)
+ m3vNah

′
∞

τNa(1 + ζ τh)
+ 4n3vKn′∞

τK(1 + ζ τn)

)
q = ζq. (9.22)

If the cable is uniform then the large bracketed term is independent of x and we may choose q to be the nth eigen-
function, Eq. (6.39), of the passive uniform cable. As q ′′

n = ϑnqn Eq. (9.22) becomes

(λ2/τ)ϑnqn −
(

γ + 3m2hvNam
′∞

τNa(1 + ζ τm)
+ m3vNah

′
∞

τNa(1 + ζ τh)
+ 4n3vKn′∞

τK(1 + ζ τn)

)
qn = ζqn.

On canceling the common qn we find that the eigenvalue, ζ , must be a root of the quartic

Pn(ζ ) = (ζ + γ − (λ2/τ)ϑn)(1 + ζ τm)(1 + ζ τh)(1 + ζ τn) + 3m2hvNam
′∞(1 + ζ τh)(1 + ζ τn)/τNa

+ m3vNah
′
∞(1 + ζ τm)(1 + ζ τn)/τNa + 4n3vKn′∞(1 + ζ τm)(1 + ζ τh)/τK. (9.23)

We label these roots

ζn,j , n = 0,1,2, . . . , j = 1,2,3,4

and illustrate them in Figure 9.13 for uniform cables of differing lengths. As ϑ0 = 0 it follows that the roots of P0 are
precisely those of the space-clamped isopotential cable (recall Eq. (5.24)).

As in §5.3, the associated eigenfunctions of B for the uniform cable are

wn,j (x) =
(

m′∞
1 + ζn,j τm

qn(x)
h

′
∞

1 + ζn,j τh

qn(x)
n′∞

1 + ζn,j τn

qn(x) qn(x)

)T

(9.24)

and so if

Istim(x, t) =
∞∑

n=0

Istim,n(t)qn(x), i.e., Istim,n(t) =
∫ �

0
Istim(x, t)qn(x) dx,



138 9. THE ACTIVE DENDRITIC TREE

FIGURE 9.13 The roots of the quartic Pn , Eq. (9.23), for n = 0,1,2,3,4,5. The radius of the enclosing circle doubles with n. A. � = 1 mm.
B. � = 2 mm. Regarding resonance our interest is in nonreal eigenvalues with large real part (arrows on plot). We observe that these occur for
n = 0 and so correspond to the constant eigenvector, q0. We also observe that although the longer cable possesses more nonreal eigenvalues, the
nonreal eigenvalue with the largest real part is the same in the two cases. Note that the cable length, �, enters Pn via ϑn = −(nπ/�)2 and so is not
seen by P0 . (quasicabspec.m)

then the full stimulus vector enjoys the expansion

f =
∞∑

n=0

4∑
j=1

cn,j (t)wn,j (x)

where, recalling Eq. (5.26),

cn,j (t) = Istim,n(t)

2πaCm

(1 + ζn,j τm)(1 + ζn,j τh)(1 + ζn,j τn)

τmτhτn

∏
k �=j (ζn,j − ζn,k)

. (9.25)

It follows that

Ṽ (x, t) =
∞∑

n=0

qn(x)

3∑
j=0

∫ t

0
cn,j (s) exp((s − t)ζn,j )ds (9.26)

is the response, with respect to rest, of the quasi-active uniform cable.
We next investigate, in Figure 9.14, the impact of nonuniform channel distribution on the eigenvalues and eigen-

vectors of the quasi-active system. In this case, although the eigenvectors retain the functional form in Eq. (9.24), the
nonuniformity of the coefficients in Eq. (9.22) prohibit its exact solution. We therefore turn to numerical means. We
have coded the discretized nonuniform eigenvalue problem in Qcabnon.m.

We now investigate the correspondence between the spectra of the uniform and nonuniform quasi-active cables
and the associated resonance, or input resistance, curves of the corresponding active cables. In particular, we drive
the uniform and nonuniform active cables with the distributed current

Istim(x, t) = I0 sin(2πωt)Re(q0(x)) (9.27)

where Re(q0) is the real part of the eigenvector of B associated with the nonreal eigenvalue of greatest real part for the
uniform, and nonuniform quasi-active cables, respectively. These two spatial distributions of current will maximize
the respective resonances. We drive the cable until time T , where T is large enough to get past the initial transient,
then compute

Vmax,∞ ≡ max
0≤x≤�
t>T/2

V (x, t) (9.28)

and examine, in Figure 9.15 the dependence of the associated input resistance on input frequency.
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FIGURE 9.14 Eigenvalues (A), and Eigenvectors (B), of the quasi-active operator B when the active conductances are distributed per Eq. (9.13).
Regarding panel A: since the nonreal eigenvalue with the greatest real part has moved right in comparison to Figure 9.13 (see arrows on plot),
we expect the associated input resistance to have a sharper peak. The eigenvectors in B, labeled q0 and q1 , correspond to the two pair of nonreal
eigenvalues in A, with q0 associated with the nonreal eigenvalue of greatest real part. Compare to Figure 6.2. (Qcabnon.m)

FIGURE 9.15 Input resistance, Rin(ω) = Vmax,∞/I0, of the active cable where I0 = 10 pA and ω are prescribed in Eq. (9.27) and Vmax,∞ in
Eq. (9.28). As predicted by the two quasi-active spectra, the nonuniformity has yielded a sharper resonant peak. (stEcabResdrive.m)

FIGURE 9.16 Action potential propagation in the active uniform fork. A 1 ms supra-threshold current pulse was delivered near the distal end
of the black daughter at 0.5 ms. We see her depolarize and initiate a wave that travels in both directions. As it reaches the branch point the wave
splits and travels down the mother and up the other daughter. (stEfork.m)

9.5 THE ACTIVE DENDRITIC TREE

We return to the forked cell with geometric and passive parameters as in Eq. (8.7) and Eq. (8.8). To this we add
the standard Hodgkin–Huxley channels and investigate action potential wave propagation (Figure 9.16), threshold,
attenuation and synaptic integration (Figure 9.17 and Figure 9.18).
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FIGURE 9.17 The active uniform fork. A. Threshold at which a 1 ms current pulse will generate an action potential, as a function of stimulation
site. B. Peak somatic and synaptic potentials (in units of mV). (stEforksyngain.m)

FIGURE 9.18 The response at the cell body of the active uniform fork to a pair of synaptic inputs. A. Comparison of response to simultaneous
dual excitation (red) to the sum of the responses to individual excitations (black). In these two cases we report the relative soma potential,
V (�3, t) − Vr (�3). B. Comparison of response of distal (red) and proximal (black) inhibition of a fixed excitatory input. C. Comparison of distal
before proximal excitatory input to proximal before distal excitatory input. (stEforksyndrive.m)

The minimum current required to elicit such a wave is revealed in Figure 9.17A. We next repeat the experiment
of Figure 8.7. That is, we compute the maximal somatic and synaptic potentials arising from a single alpha-synaptic
input, as the synapse is placed at successively more distal locations. We illustrate our findings in Figure 9.17B.

We next investigate the active tree’s integration of two synaptic inputs. For simplicity we will illustrate our find-
ings for the uniform active tree. In each case, each synapse will be described by an alpha function with gsyn = 0.5 nS
and τα = 1 ms, though typically inhibitory GABA synapses have longer time constants (≈ 5 ms) than excitatory
AMPA synapses. For excitatory synapses we use Vsyn = 0 and for inhibitory Vsyn = −70 mV.

In our first simulation we contrast the response at the soma to simultaneous excitatory input into the two daugh-
ters with the sum of the responses to individual input. The placement of the synapses is illustrated in the inset to
Figure 9.18A. The corresponding curves demonstrate the cell’s strong nonlinear amplification of the two inputs.

In our second simulation we contrast distal and proximal inhibition of a fixed excitatory input. The placement is
illustrated in the inset to Figure 9.18B. The red diamond marks the excitatory synapse while the inhibitory synapse
is placed at either, but not both, the proximal or distal black x. The corresponding curves demonstrate that proximal
inhibition offers significantly more attenuation.

In our two previous examples our two synapses were presumed to fire simultaneously. For our third simulation
we contrast the timing of distal and proximal excitatory input. The placement of the synapses is illustrated in the
inset to Figure 9.18C. The two inputs were separated in time by 2 ms. The corresponding curves demonstrate that
distal before proximal offers a greater boost than proximal before distal.

Upon the active fork we have been able to illustrate the basic notions of action potential propagation and synaptic
integration. Most cells, recall Figure 8.1, however possess tens and often hundreds of tapered branches. The modeling
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FIGURE 9.19 The response at the cell body to 12 synaptic inputs. The cell model is weakly excitable, gK = 40, gNa = 40 mS/cm2 , with a highly
excitable cell body gK = 20 and gNa = 600 mS/cm2. A. Alpha synapses, gsyn = 0.75 nS and τα = 1 ms, are placed at the locations shown. Red for
excitatory, Vsyn = 0, and black for inhibitory, Vsyn = −70 mV. The number indicates the activation time. B. The resulting response at the cell body.
(stEtreesyn.m)

of such structures proceeds as above, i.e., we compartmentalize, balance currents, and construct the associated Hines
matrix. The compartmentalization is however preceded by a manual or automatic “tracing” of the cell’s morphology.
There are now two standard formats, asc and swc, for files that represent these tracings, see Cannon et al. (1998).
We have included converters for both types, ascconverter.m and swcconverter.m, as well as routines that
make the common morphology data structure and Hines matrix, makemd.m and makeH.m, and finally a routine for
viewing the tree, treeplot.m. With these we may extend stEforksyn.m to stEtreesyn.m and so permit the
Matlab simulation of practically all traced cells. For example, we examine in Figure 9.19 a pyramidal cell from the
CA1 region of the rodent hippocampus.

9.6 SUMMARY AND SOURCES

We have constructed a mathematical model of a uniform active cable and combined our computational ap-
proaches to the active isopotential cell and passive cable to produce an efficient mean for investigating (a) the
threshold at which current injection ignites a traveling action potential and (b) the impact of this traveling wave
upon neighboring cables. As in the isopotential case the quasi-active approximation performs well in the subthresh-
old regime. We examine this system more closely in §16.4. We extended our model to active, branched, nonuniform,
spiny cables and demonstrated how distal subthreshold synaptic input may be transferred by the cable to a region
where it suffices to ignite an action potential that travels both down the cell’s axon and up into its dendritic tree.
As the action potential reaches the spine(s) that spawned its ignition it opens synaptic NMDA channels that permit
calcium into those spines whose presynaptic activity lead the cell to fire. We will see that spinal calcium may in turn
result in synaptic plasticity.

The active cable equation was posed and studied by Hodgkin and Huxley (1952). Through a mix of analytical and
computational methods they demonstrated that the equation was consistent with action potentials that traveled at
speeds very close to those observed in the giant axon of the squid. The section on ephaptic interaction of two cables
was suggested by Scott (2002). For further background see Jefferys (1995). The kinetic schemes and parameters of
the AMPA and NMDA receptors in §9.3 are drawn from Destexhe et al. (1998). Although we have adopted Matlab
as a platform for modeling, simulation and analysis, there are excellent software tools that are tailored for both
modeling and simulation of single neurons as well as circuits. The two most commonly used are GENESIS, see
Bower and Beeman (1998), and NEURON, see Carnevale and Hines (2006). We examine the impact of myelin on
axonal wave propagation in Exercises 3–5. FitzHugh (1962) is one of the first models of the myelinated axon. For a
recent historical review of myelin, see Hartline and Colman (2007). Exercise 6 considers large scale synaptic input
into a finely branched cell in a manner motivated by Destexhe et al. (2001).



142 9. THE ACTIVE DENDRITIC TREE

FIGURE 9.20 A. Traveling action potential wave speed of the active uniform cable of Figure 9.2 as a function of cable radius. B. Rest potential
and action potential wave speed of the active uniform cable of Figure 9.2 as a function of maximal sodium conductance, gNa . (stEcabsdriver.m
and stEcabgNadriver.m)

FIGURE 9.21 The maximum midcable depolarization, and the time at which it occurs, in an active uniform cable of radius 1 µm that is 2 µm
away from a second cable of radius 1 µm. This second cable receives a midcable, 1 ms, 400 pA current stimulus, while the first cable receives a
midcable, 1 ms current injection of amplitude I0. On comparing with Figure 9.2B we find that the active neighbor lowers the threshold from 150
to 120 pA. (stE2cabthresh.m)

9.7 EXERCISES

1. Investigate the impact of cable radius and gNa on the velocity of the action potential that propagates down the
active uniform cable. In particular, modify stEcab.m to produce Figure 9.20.

2. †Investigate the extent to which an excited cable lowers the threshold of its neighbors. In particular, modify
stE2cab.m to produce Figure 9.21.

3. We have seen that wave speed along cables can be increased by increasing either the cable radius or the density of
sodium channels. As each of these comes with high metabolic costs a third way, based on insulation, has evolved.
Many long axons in the nervous system of vertebrates (and invertebrates as well) are wrapped with layers of fat,
known as myelin.
These layers are outgrowths of neighboring glial cells. As myelin is only a passive conductor, in order for the
wrapped axon to support a traveling action potential the myelin is periodically perforated, exposing the under-
lying cable at what are known as Nodes of Ranvier, see Figure 9.22A. The distribution of Na+ and K+ channels
at nodes of Ranvier is highly specific, as illustrated in Figure 9.22B. We will build and investigate, in a series
of exercises, a simple model of a myelinated cable. In particular, we will assume that the roughly 100 layers of
myelin serve to decrease both the membrane capacitance and conductance by a factor of 100 and that the cable
expresses active conductances only at the nodes of Ranvier. Modify stEcab.m to accept two new parameters, id,
the internodal distance, and nnor, the number of nodes of Ranvier and so reproduce Figure 9.23.
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FIGURE 9.22 A. Schematic cross-section of a segment of myelinated cable. B. Double-labeled micrograph of myelinated axons in the optic
nerve illustrating the distribution of channels at nodes of Ranvier. The staining is for Na+ channels in red, and Kv1.2 K+ channels in gray. The
Na+ channels are localized at the nodes which typically measure 1 µm in length along the nerve fiber. The K+ channels are localized in the
paranodal region. Micrograph courtesy of Dr. M.N. Rasband, Dept. of Neuroscience, Baylor College of Medicine, Houston, TX.

FIGURE 9.23 The rest potential, (A), and traveling action potential, (B), in a myelinated cable of radius 1 µm with 10 nodes, an internodal
distance id = 2 mm, a node length of 2 µm, and a step size dx = 1 µm. Two of the ten nodes appear at the cable’s two ends. The cable was driven
with a 1 ms, 50 pA current pulse at the first node. The membrane capacitance was 1 µF/cm2 in each nodal compartment and 0.01 in each internodal
compartment. The membrane conductance was 0.3 mS/cm2 in each nodal compartment and 0.003 in each internodal compartment. The sodium
conductance density was 120 mS/cm2 in each nodal compartment and 0 in each internodal compartment. The potassium conductance density
was 36 mS/cm2 in each nodal compartment and 0 in each internodal compartment. (myelins.m)

4. †We note in Figure 9.23B that the potential dips between nodes. Please modify your code from the previous
exercise in order to ascertain, as in Figure 9.24, the dependence of action potential wave speed on internodal
distance and cable radius.
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FIGURE 9.24 Action potential wave speed of the myelinated cable. The wave slows as the internodal distance grows. (myelinsdriver.m)

FIGURE 9.25 Conduction block in a partial demyelinated cable. This is the cable used in Figure 9.23 except that Cm = 1 µF/cm2 and gCl =
0.3 mS/cm2 in the sixth internodal segment. A. With an internodal distance id = 300 µm we see conduction slow in the demyelinated segment
and then recover. B. With an internodal distance of id = 400 µm the wave stagnates in the demyelinated segment. (demyelin.m)

5. Diseases such as multiple sclerosis are characterized by the systematic, and typically irreversible, loss of myelin.
To understand how this can lead to loss of function please modify your code from Exercise 3 to reflect the loss of
the sixth segment of myelin and so reproduce the findings of Figure 9.25.

6. We now consider the impact of large scale synaptic input onto a realistic cell. The cell’s asc file is called
sep12a.asc and has been plotted using treeplot.m in Figure 9.26A. Please modify stEtreesyn.m to re-
produce the remaining panels in Figure 9.26 and Figure 9.27.
With a compartment size of 2 µm the cell is subdivided in 945 compartments. We assume the branches to
be weakly excitable, gK = gNa = 40 mS/cm2, and the cell body to be strongly excitable, gK = 20 and gNa =
600 mS/cm2. The leakage conductance is everywhere 1/15 mS/cm2. We place an α-synapse at every compart-
ment. Eighty percent are presumed excitatory, Ve = 0 mV and τe = 0.5 ms, and the remainder are inhibitory,
Vi = −80 mV and τi = 1 ms. Their locations and start times are randomly chosen from the uniform distribution.
The maximal excitatory conductance, ge, is normally distributed with mean 1 nS and variance 0.01 nS, while the
maximal inhibitory conductance, gi , is normally distributed with mean 2 nS and variance 0.01 nS. We illustrate
the cell and the mean conductance waveforms and their activation in space and time in Figure 9.26.
In order to discern the “effective” synaptic impact we clamp the soma, as in Exercise 8.4, at Vc,1 and record the
ensuing clamp current, Ic,1(t), and then repeat this at a second clamp potential, Vc,2, and record the ensuing clamp
current, Ic,2(t). These currents are plotted in Figure 9.27A. With this data we may reverse engineer the effective
conductances by solving

ge(t)(Vc,1 − Ve) + gi(t)(Vc,1 − Vi) = Ic,1(t)

ge(t)(Vc,2 − Ve) + gi(t)(Vc,2 − Vi) = Ic,2(t)
(9.29)

for ge and gi . The results are presented in Figure 9.27B, C and D.
As a preview of §19.4 we also record the associated power spectra in Figure 9.28.
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FIGURE 9.26 A. Pyramidal cell from the rat entorhinal cortex. B. Unitary excitatory and inhibitory conductance time-courses. C and D. Two
instances of random synaptic input into the cell of A. Each black + corresponds to an excitatory input, ge as in B, at the associated compart-
ment at the designated time. Each red x corresponds to an inhibitory input, gi as in B, at the associated compartment at the designated time.
(drfsenoper.m)

FIGURE 9.27 A. The current required to clamp the soma at V = Vc throughout synaptic bombardment. When clamped at −65 mV we used
the synaptic schedule of Figure 9.26C while when clamping at −55 mV we used the synaptic schedule of Figure 9.26D. B. Effective excitatory
and inhibitory conductances derived from A and Eq. (9.29). C and D. Histograms of the solution to Eq. (9.29) associated with the data in A.
(drfsenoper.m)
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FIGURE 9.28 Power spectra of the excitatory and inhibitory conductances plotted in black and red, respectively. The peak value has been
normalized to one. (drfsenoper.m)

7. †Modify stEcab to compute

[Na+]i,AP = −2πa

πa2�F

∫ T

0

∫ �

0
INa(x, t) dx dt mM, (9.30)

the change, per action potential, in intracellular concentration of Na+ in an active uniform cable of length � and
radius a. Here F = 96485 C/mol is Faraday’s constant. Using the model parameters that generated the action po-
tential in Figure 9.2A, including T = 0.008 s, should yield [Na+]i,AP ≈ 0.376 mM. How does this answer compare
to the isopotential calculation made in (4.22)? How do their cell volumes compare?
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