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SUMMARY AND CONCLUSIONS 

1. In neocortical slices, the majority of neurons fire quite regu- 
larly in response to constant current injections. But neurons in the 
intact animal fire irregularly in response to constant current injec- 
tion as well as to visual stimuli. 

2. To quantify this observation, we developed a new measure 
of variability, which compares only adjacent interspike intervals 
and is therefore less sensitive to rate variations than existing mea- 
sures such as the coefficient of variation of interspike intervals. 

3. We find that the variability of firing is much higher in cells 
of primary visual cortex in the anesthetized cat than in slice. The 
response to current injected from an intracellular electrode in vivo 
is also variable, but slightly more regular and less bursty than in 
response to visual stimuli. 

4. Using a new technique for analyzing the variability of inte- 
grate-and-fire neurons, we prove that this behavior is consistent 
with a simple integrate-and-fire model receiving a large amount of 
synaptic background activity, but not with a noisy spiking mecha- 
nism. 

INTRODUCTION 

The input-output relations of single cortical cells have not 
been not well characterized because there is no method for 
measuring simultaneously the spiking output of a cell and 
the synaptic input that causes these spikes. In the absence 
of such measurements, the study of discharge variability is 
a useful tool for understanding how cortical cells process 
their synaptic input. The statistics of firing can illuminate 
some aspects of the interplay between synaptic input and 
cellular mechanisms. For example, the observed firing irreg- 
ularity of motoneurons can be understood in terms of the 
temporal integration of synaptic events (Calvin and Stevens 
1967, 1968; Fetz et al. 1991) , but such analyses fail for 
retinal ganglion cells (Barlow and Levick 1969; Croner et 
al. 1993) and cortical cells (Softky and Koch 1993). 

Firing variability is high in vivo in neocortex (Burns and 
Webb 1976; Dean 198 1; Noda and Aday 1970) but the 
source of this variability is not clear (Shadlen and Newsome 
1994; Softky 1995; Softky and Koch 1993; Usher et al. 
1994). One explanation is that the spike generation mecha- 
nism introduces a stochastic component. However, this 
seems unlikely because neocortical cells in slices are known 
to fire in a highly repeatable manner in response to repeated 
injections of the same current waveform (Mainen and Sej- 
nowski 1995). This report quantifies the low variability in 

slice preparations and provides evidence that the spiking 
mechanism is not noisy in vivo either. 

A number of investigators have examined the input-output 
relationships of single neurons in slice by the use of constant 
current injections (see Connors and Gutnick 1990). Because 
there are no fluctuations associated with the current passed 
through the electrode, a cell ought to fire more regularly 
when responding to constant current injection than to synap- 
tic stimulation of various kinds. This is what Ratliff et al. 
( 1968) found in the Limulus retina, for example. In contrast, 
some investigators (Ahmed et al. 1993; B. Ahmed and K. 
Martin, unpublished data) have found that visual cortical 
cells in vivo still fire very irregularly in response to constant 
current. 

If the variability is in fact due to synaptic activity or some 
other source of constant background noise (as opposed to a 
noisy spike trigger mechanism, for example), injecting cur- 
rent into the cell should make it fire more regularly. Current 
input through the electrode should be able to overwhelm 
whatever current is causing the fluctuations. An analytical 
way of describing exactly how this happens for integrate- 
and-fire neurons is developed (see APPENDIX). At least when 
the cell is strongly stimulated, there should be a difference 
in variability between current and visual stimulation. 

We developed a new technique for measuring variability 
that is less sensitive to changes in the mean firing rate and 
simpler to evaluate than previous methods. Using this 
method, we quantified the variability of the cells recorded 
by Ahmed et al. ( 1993) and found that for most cells there 
is indeed a small but statistically significant difference in 
variability between current and visual stimulation. 

METHODS 

We analyzed sharp electrode intracellular recordings in vivo and 
in vitro using similar methods. Electrodes in both cases were bev- 
eled to 100 MO. Slice recordings were derived from 89 cells in 
slices of adult cat visual cortex, areas 17, 18, and 19 (Berman 
1991; N. J. Berman, R. J. Douglas, and K. A. C. Martin, unpub- 
lished data). The slices were maintained at 34-36OC. Current was 
passed through the electrode for 180 or 300 ms; data were sampled 
at 10 or 5 kHz, respectively. For each train, the first 50 ms after 
current injection began were ignored. Currents normally ranged 
from 0 to 1 nA, but in a few cases currents as large as 2.5 nA 
were used. 

The in vivo sharp electrode recordings that we analyzed were 
derived from 33 cells in adult cat visual cortex areas 17 and 18 

1806 0022-3077/96 $5.00 Copyright 0 1996 The American Physiological Society 



VARIABILITY IN VITRO AND IN VIVO 1807 

(Ahmed et al. 1993). The cats were anesthetized with sodium 
barbiturate and N20. See Douglas et al. ( 1991) for details of the 
experimental preparation. Visual stimulation consisted of a high- 
contrast bar moving in the preferred direction. The stimulus lasted 
800 ms, and the response was sampled at 2.5 kHz. In some cases, 
as part of a different experimental protocol that will not be dis- 
cussed in this paper, an optic chiasm shock interrupted the train in 
the middle. In these cases, each half of the response was treated 
independently from the other. Current injection trials lasted 350 
ms (after stripping off - 10 ms to remove the electrical artifact) 
and were sampled at 5 kHz. The current was injected in the absence 
of visual stimuli. Within each block of current injection trials, three 
trials were conducted at each current level. The low number of 
trials prevented us from estimating the variability of the number 
of spikes. Currents normally ranged from 0 to 1 nA, but in a few 
cases currents of up to 2.5 nA were used. 

Fourteen of the recorded cells were labeled intracellularly with 
horseradish peroxidase, so their laminar locations and morphol- 
ogies were known accurately. One cell from lower layer III was 
probably a basket cell. All of the remaining filled cells were either 
pyramidal ( 12) or spiny stellate cells ( 1) . 
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FIG. 1. New method for measuring the intrinsic variability of a spike 
train. One traditional method for measuring spiking variability, Cv (left), 
evaluates the spread of interspike interval (ISI) values relative to the mean 
IS1 for the entire train, so that random spikes ( tup : a Poisson process) yield 
a Cv value of 1 .O and regular trains (bottom: ISIS drawn from a gamma 
distribution of order 50) yield a low Cv value; however, regular trains 
whose firing rates are slowly modulated (middZe : ISIS drawn from a gamma 
distribution of order 50, with the mean rate sinusoidally modulated) yield 
a high Cv value, masking their true spike-to-spike regularity. Our -new 
measure, Cv, (right), compares the relative difference of adjacent intervals, 
so that only truly random or intrinsically variable trains (top) will give a 
high Cv2 value. Both measures are dimensionless, reflecting the structure 
of the trains without depending on their absolute firing rates. (To obtain a 
single number for Cv, here, we averaged the Cv2 values over the whole 

RESULTS 

Measuring variability 

A standard method of measuring the variability of a spike 
train is by the coefficient of variation of the interspike inter- 
vals (ISIS), Cv. If the spikes in a train occur at times ti (0 5 
i 5 N), then the ISIS will be 

Ati = ti - ti&1 (I) 

for 1 5 i 5 N. The distribution of ISIS then has the standard 
deviation 

train. Ordinarily a spike train gives many Cv2 values; see METHODS .) 

To obtain Cv2 for spike i we compute the standard deviation 
of two adjacent ISIS (thus the subscript “2” ) , divide the 
result by their mean, and multiply by 42 (so that Cvz has a 

The irregularity of the spike train can be measured by the 
relative width Cv of the IS1 distribution 

mean of 1 for a Poisson process; see below) 

cv2 = 2l nti+l - Ati I  

nti+l + Ati 

C” = cTnt 
w> (3) 

4) 

tY 
in 

where (. . .) corresponds to an average over all ISIS in the 
train. This measure, and others such as the autocorrelation 
function, will not give an accurate estimate of the variability 
of a neuron if the mean rate changes over time (Fig. l), 
because it compares ISIS that come from different mean 
rates. A changing mean rate is quite common: the firing 
rate may adapt after a stimulus, or oscillate (Poggio and 
Viernstein 1964; Werner and Mountcastle 1963), or switch 
between fast and slow firing rates (Zipser et al. 1993). In 
our data, firing rates in response to visual stimulation varied 
by at least a factor of 2, and sometimes up to a factor of 
10, in almost all cells. For such data to be usable, these 
changes in rate must be taken into account. In a previous 
paper (Softky and Koch 1993), the mean firing rate of the 
cell was estimated from poststimulus time histograms and 
the Cv was computed separately for each firing rate. Here 
we used a simpler technique that does not require knowledge 
of the poststimulus time histogram. 

To measure the intrinsic variability of the spiking process, 
intervals of time corresponding to different firing rates 
should not be directly compared. Our new measure Cv2 
avoids this difficulty by comparing only adjacent intervals. 

An average of C v2 over i estimates the intrinsic variabil i 
of a spike train, nearly independent of slow variations 
average rate, by comparing adjacent intervals and not widely 
separated intervals (Fig. 1). The mean value of Cv2 is ap- 
proximately equal to Cv for a variety of different spike trains 
( see APPENDIX ). C v2 will be high for a train with a high 
interval-to-interval variability, but it will be lower for a train 
in which the variation takes place at time scales much longer 
than the typical ISI. 

Neurons cannot fire as variably at high rates as at low 
rates because of their refractory period and time constant. 
Therefore it is usually not possible to characterize a cell’s 
firing variability by a single number. Some previous investi- 
gators have plotted Cv versus mean IS1 (Softky and Koch 
1993; Tuckwell 1989; Werner and Mountcastle 1963). For 
the reasons presented above, we want to avoid comparing 
periods when the cell is firing slowly with periods when the 
cell is firing fast, so we do not compute the mean IS1 or the 
mean Cv2 over the whole train. Instead, Cv2 for each pair of 
adjacent ISIS is plotted against the mean of those two ISIS. 
For a Poisson process with a refractory period t,, Cv2 is 
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FIG. 2. Application of Cv2 to a Poisson process with a refractory period. 

The boundary curve [ Cv2 = 2 ( 1 - 4/(k))] is determined by the refractory 
period (here set to 4 ms ) . Note that C v2 values are uniformly distributed 
between 0 and the upper bounding curve. The lines on the plot are mean 
Cv2 values in logarithmically spaced bins (ratio between bin boundaries 
was 1.3). Logarithmic binning was chosen because the upper limit of the 
data at short ISIS changes much more rapidly than the upper limit at longer 
ISIS. Error bars: SE. Simulations lasted 5 s and the mean firing rate was 
50 Hz. 

uniformly distributed between 0 and 2 ( 1 - t,l(At)) , and 
thus has a mean of 1 - t,lT (see APPENDIX for proof); a 
sample scatter plot is shown in Fig. 2. Dealing with a cloud 
of data points is inconvenient, so we compute mean Cv2 
values for different values of the IS1 (lines with error bars 
in the figure). This 
differences in c v2- 

average makes it possible to see small 

The measure Cv2 can be generalized to Cv2,j by comparing 
interval pairs that are not adjacent, i.e., using Ati+i in place 
of Ati+ 1 in Es. 4. A plot of the modified measure C\;2, j versus 
j can show the time scale (in units of the mean ISI) at which 
irregularity appears in spike trains. Such an analysis works 
best for trains with a low intrinsic variability and slowly but 
strongly varying average rate (unlike the cortical spike trains 
explored here). 

Cv2 for data from slice and from the intact animal 

Sample traces from one cell in a cat visual cortex slice 
(~1~3.~91) and one cell from the anesthetized cat (p3c2.el6) 
are shown at the top of Fig. 3. In the slice data, it was 
possible to classify the cells with the use of the scheme of 
earlier investigators ( Agmon and Connors 1992; Connors et 
al. 1982; McCormick et al. 1985); most of the cells were 
regular spiking, 10 were regular spiking but had stronger 
adaptation ( RS2), 1 was a fast-spiking cell, and 1 was intrin- 
sically bursting (IB ) . 

Clearly the cell in Fig. 3 in the intact animal fires much 
more irregularly than the cell in vitro, even when the same 
experiment is performed (passing current through the elec- 
trode). To quantify the variability, we used the Cv2 measure. 
The bottom of Fig. 3 is a scatterplot of Cv2 against the mean 
of the two intervals compared for each of 21 cells for which 
we had both current injection and visual stimulation data. 
There is one point on the graph for each pair of adjacent 
ISIS from each cell. 

We specifically examined all the slice trains that had aver- 
age Cv2 values >0.3 and found that they fell into one of 
two categories. First, in a number of cases (the RS, cells), 
adaptation was incomplete by 50 ms, the cutoff at which we 
started to use the data; for some of these cells, the IS1 was 
lengthening significantly for a few of the intervals considered 
here. This can significantly affect Cv2 (although less than 
Cv; see above). Second, one cell (type IB ) fired clusters 
(bursts) of two or more spikes. These two sources account 
for essentially all of the high Cv2 values in Fig. 3A. Adapta- 
tion is present to some extent in almost all of the traces, so 
these Cv2 values are upper bounds on the variability of the 
data in slice. 

Obviously the variability in slice is much less than the 
variability in vivo. We were surprised at the high variability 
in response to constant current injection in vivo. However, 
there is a small but significant difference between the current 
injection and visual stimulation case, especially at ISIS <30 
ms, which is analyzed in more detail below. 

Figure 4 shows for 16 cells in vivo the variability in 
response to current and visual stimulation. We found three 
different kinds of behavior. In some cases (top 2 rows), 
there was a noticeable difference between current injection 
and visual stimulation variability. This is mostly caused by 
a difference in ‘ ‘burstiness” of the visual stimulation data. 
An example of this is shown in Fig. 5A. “Bursts” here are 
defined as an excess of isolated short ISIS. On a Cv2 plot, a 
short interval followed by a longer one (or vice versa) will 
appear as a point near the upper boundary curve. Notice 
how in Fig. 5A there is clearly a large density of points near 
the upper boundary for visual stimulation, but not for current 
injection. For a Poisson process, there will be a uniform 
distribution of points between Cv2 = 0 and the upper bound- 
ary of the curve (Fig. 2) ; in Fig. 5A, there is an excess of 
points near the boundary. These bursts are not present in the 
current injection traces. In response to visual stimulation, 
this cell is more bursty than is expected from a Poisson 
process, but behaves approximately like a Poisson process 
with a refractory period in response to current injection. We 
also observed cells for which the degree of burstiness 
changed over the course of the impalement (not shown). 

A second result of current injection is a downward shift 
of the whole cloud of Cv2 values; this shift is more prominent 
in nonbursty cells (e.g., Fig. 5B). This is intuitively sensible, 
because the sustained injected current should overwhelm the 
noise source, thereby reducing variability. In a number of 
cases (e.g., see Fig. 4, 3rd row), a difference between cur- 
rent injection and visual stimulation was apparent only for 
short ISIS. For most of these cells, there was no obvious 
difference between the burstiness of current and visual stim- 
ulation. A larger difference at short ISIS is expected on the 
basis of a simple integrate-and-fire model (see DISCUSSION). 

For some cells, there appeared to be a combination of the 
two effects. 

In a few other cases, no difference at all was perceptible 
(Fig. 4, bottom row). These cells tended to be bursty in 
response to both current and visual stimulation (not shown). 

DISCUSSION 

We measured the variability of visual cortical neurons in 
response to constant current injection in intact animals and 
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FIG. 3. Comparison of primary visual cortex cells from adult cats in slice and in vivo. Top : sample traces from 2 pyramidal 
cells, 1 from a slice (of the regular spiking type; left) and 1 from an intact animal on the boundary between layers II and 
III that was stimulated by current injection (middle) and by a bar moving across the receptive field (right). The lack of a 
large difference between spiking variability in response to current or visual stimulation is intriguing. Bottom: Cv2 values for 
each interval pair from all cells. A : Cv2 values for 89 cells recorded from slices. B : C v2 values for 21 cells in vivo in response 
to constant current passed through the electrode. C: Cv2 values for the same 21 cells in vivo responding to moving light or 
dark bars across their receptive field. The banded appearance is a discretization artifact; it was not present with current 
injection because of the higher sampling rate. Heavy lines for B and C are mean C v2 values. Standard errors on the estimate 
of the Cv2 value are roughly the width of the thick lines. The shape of the upper limit on Cv2 values is determined by the 
cells’ refractory period t,; a simple prediction of the form Cv2 = 2( 1 - tJ(At)) fits the data well (not shown). 

in slice, and the variability in response to visual stimulation. 
We used a new measure of variability, called CvZ, which is 
less sensitive to rate fluctuations than Cv (the coefficient 
of variation of ISIS). For point processes with gamma IS1 
distributions, however, Cv2 is approximately equal to Cv. 
Cv2 values are very low for spike trains from cells in slice 
but quite high for cells from anesthetized cats (Fig. 3). In 
all of the in vivo visual cortical data we have analyzed, we 
have never found a cell with an average Cv2 (or Cv) value 
<0.3, whereas essentially all nonbursting cells in slice have 
average Cv2 (and Cv) values <0.3. Furthermore, because 
Cv2 compares only adjacent ISIS, the high variability mea- 
surements in vivo cannot come from a relatively regular 
process with a mean rate that varies on the time scale longer 
than an ISI. 

One possible explanation of the high irregularity of cells 
in vivo is that the spiking mechanism is unreliable or stochas- 
tic. This seems unlikely, because other kinds of neurons, 
such as a-motoneurons, are capable of firing much more 
regularly even at much lower rates (Calvin and Stevens 
1967, 1968): Furthermore, the same kind of neurons in slice 
fire very regularly (see Fig. 3A). In fact, the timing of the 
spikes in neocortical slice is highly reproducible from trial to 
trial if the current stimulus has significant temporal structure 
(Mainen and Sejnowski 1995). 

Our favored explanation is random synaptic background 
activity in the whole animal that is absent in the slice. In 

visual cortex, even in the anesthetized animal, a large amount 
of spontaneous firing is present; our cells from cat area 17 
discharge spontaneously at rates between 0 and 15 Hz in the 
absence of any stimulus, and others have measured spontane- 
ous firing rates up to 20 Hz (Gilbert 1977). This spontaneous 
firing recirculates within the cell population as synaptic input, 
and thus should affect each cell’s membrane voltage. Al- 
though no clear excitatory postsynaptic potentials are visible 
in the intracellular voltage traces (Fig. 3, top), the large fluc- 
tuations in membrane potential are presumably caused by 
synaptic input. If, as we suggest, the background synaptic 
activity is responsible for the high firing irregularity during 
current injection, then the variability in response to current 
should diminish in the intact animal if the spontaneous activity 
is markedly reduced pharmacologically or by other means. 

If the noise is due to synaptic activity or some other source 
of constant background noise (as opposed to a stochastic 
spike trigger mechanism), injecting current into the cell 
should make it fire more regularly, because the sustained 
current input through the electrode will be larger relative to 
the amplitude of the background fluctuations. To understand 
this, consider an integrate-and-fire neuron with no refractory 
period, whose mean IS1 in response to spontaneous synaptic 
background activity is (&), (i.e., its mean spontaneous fir- 
ing rate is l@t),,). If a sustained current step is added to 
its input, decreasing the mean IS1 to (At), then the associated 
variability will be reduced to 
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FIG. 4. Visual (-) and current 
stimulation ( - - -) variability for 
16 cells from the visual cortex of anes- 
thetized cats. Error bars: SE on Cv2 val- 
ues in the bins. To distinguish the error 
bars, the visual injection curve was dis- 
placed 1 ms to the right. As in Figs. 2 
and 3, Cv2 values were calculated in 
logarithmically spaced bins. Top 2 
rows: cells in which there is a differ- 
ence between the current injection and 
visual stimulation variability, especially 
at large ISIS. Most of these cells are 
more ‘ ‘bursty’ ’ in response to visual 
stimulation than to current injection. 
Third row: cells that show a difference 
between current and visual stimulation 
only at short ISIS. A difference at short 
ISIS is what is expected on the basis of 
an integrate-and-fire model ( see DISCUS- 

SION). Bottom: cells that do not show 
a difference between current and visual 
stimulation variability. 

(5) 

where Cv,O is the variability of spontaneous firing caused by 
background activity in the absence of current input. This 
reduction occurs because the additional constant current will 
lead to an increase in the number of spikes triggered without 
any change in the variance in the number of spikes (see 
APPENDIX for details). 

On the other hand, increasing the firing rate of a cell by 
visual stimulation should not reduce the variability if visual 
stimulation simply changes the rate of synaptic input without 
changing the statistics or the correlation structure. (This ar- 
gument assumes that dynamic processes with slow time con- 
stants, such as I AHP or y-aminobutyric acid receptor type 
B, are not important in determining variability. Also, the 
refractory period of the cell will limit variability at high 
firing rates.) Even including these effects, the variability of 
the model cell driven by noisy synapses should be higher 
than when driven to the same rate by constant current. 

Because Cv CC J<at> for injection of constant current into 
an integrate-and-fire unit, neither Cv nor Cv2 should change 
rapidly with At. Particularly when there is some uncertainty 
in measuring Cv or Cv2, we would not necessarily expect 
to see a difference between visual and current stimulation 
except when the cell is firing rapidly. For example, if the 
standard error in measuring Cv2 is 0.1 and the mean Cv2 
value for spontaneous activity is 1, the firing rate will have 
to change by a factor of -2 for the difference between 
visual stimulation and current injection to be statistically 
significant. 

These calculations are based on an integrate-and-fire 
model, a severe simplification of a real neuron. One improve- 
ment to the model is for the membrane voltage to decay 
over time, causing the cell to forget its inputs. The resulting 
variability of such a cell model will be higher than of an 
integrate-and-fire model. Furthermore, the time constant of 
that decay will change with the level of synaptic input (Ber- 
nander et al. 1991) . These effects are not easily amenable 
to analysis, although much work has been done studying 
leaky integrators (see reviews in Holden 1976; Sampath and 
Srinivasan 1977; Tuckwell 1989). Nevertheless we expect 
that results from the simple model may be qualitatively cor- 
rect. 

A difference between current and visual stimulation is 
seen for the majority of neurons (Fig. 4), although in some 
cases it is visible only for short ISIS. Part of the difference 
appears to be due to the general lowering of Cv2 values (e.g., 
Fig. 5B) predicted by this simple analysis. 

There is also a second effect. Frequently cells respond in 
a more bursty fashion to visual stimulation than to current 
injection (Fig. 5A) : the band of high Cv2 values in Fig. 5A 
simply disappears (or is reduced in density). A possible 
origin of the difference in burstiness is that current injection 
stimulates the cell at or near the soma, whereas visual stimu- 
lation arrives at the dendrites. Dendritic stimulation might 
better trigger calcium spikes (e.g., Amitai et al. 1993; Ber- 
nander et al. 1994; Kim and Connors 1993; Markram and 
Sakmann 1994; Yuste et al. 1994), which may underlie burst 
generation. 

However, we do not believe that such bursting accounts 
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FIG. 5. A : Cv2 values for a cell that 
is more bursty in response to visual 
stimulation than to current injection. As 
before, each dot represents 1 pair of 
ISIS; the lines are mean Cv, values and 
the error bars are SE. Note that there is 
a higher density of points near the upper 
boundary in the visual stimulation panel 
than in the current injection panel. A 
short IS1 followed by a long one (or 
vice versa) will have a Cv2 value near 
the upper boundary. This band disap- 
pears in the Cv2 plot for current injec- 
tion. This is from cell (2,3) in Fig. 4. 
B: Cv2 values for a cell that is not 
bursty. In this case, the Cv2 values have 
simply shifted downward when current 
was applied. Cell (2,l) in Fig. 4. 

Mean of ISI pair (ms) 

for all of the high firing variability of neocortical cells (Wil- 
bur and Rinzel 1983)) because 1) some cells do not seem 
to burst very much, and they still fire irregularly; 2) when 
bursts are replaced by single spikes with the use of the 
numerical algorithm from Bair et al. ( 1994), the variability 
is still high (not shown) ; 3) during current injection trials, 
when the bursts are absent or less common, variability is 
still high. 

If the background synaptic activity were lower, presum- 
ably the cells would fire much more regularly in response 
to constant currents. Cells in visual cortex have unusually 
high unstimulated firing rates compared with some other 
cortical areas. On the basis of published figures, firing vari- 
ability in response to current injection appears to be lower 
in other cortical areas (e.g., Nunez et al. 1993 in association 
cortex, and Baranyi et al. 1993a,b in motor cortex). This 
variability difference might be due to differences in the 
amount and type of synaptic background activity across 
areas. 

Other investigators (Bernander et al. 1991; Rapp et al. 
1992) have shown that background synaptic activity can 
strongly influence the cable properties of a neuron, and thus 

how synaptic efficacy depends on time and on distance from 
the soma. Here we provide evidence that background activity 
may also influence firing irregularity. With the same current 
injection stimulus, the same cell type fires very differently in 
vivo and in slice. For this reason, data from slices, although 
essential to our understanding of neuronal function, must be 
interpreted with caution. 

This study raises a number of further questions. What is 
the correlation structure of the background synaptic activity 
that gives rise to the firing variability? Are dendritic nonlin- 
earities important in amplifying fluctuations ( Softky 1995 ) , 
or does inhibition approximately balance excitation (Shadlen 
and Newsome 1994)? Most importantly, why is it useful or 
necessary for these neurons to fire irregularly (Knight 1972; 
Softky and Koch 1993) ? That is, what is the computational 
function (if any) of this high variability? 

APPENDIX 

Probability distribution of Cv2 for a Poisson process 

I f  two ISIS are drawn independently from a known probability 
distribution, then one can compute the distribution of the random 
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FIG. Al. Cv2 and Cv give similar values for simple stationary (ISI) 
distributions. Cv and the mean value of Cv2 were calculated for spike trains 
with gamma-distributed ISIS of orders l-20, to which various refractory 
periods (O-3 ms) were added (the fact that all trains had mean rate of 50 
Hz is irrelevant to the calculation, because both measures are dimen- 
sionless). Points exactly on the diagonal would correspond to Cv2 = Cv. 
The 2 measures differ by up to 10% of the Cv value; the largest fractional 
differences are for high-order gamma distributions (low Cv values), which 
are not found for cortical cells. 

variable Cv2. In the case of a Poisson process with no refractory 
period, the ISIS are distributed as 

p(At)dAt = X exp(-XQt)dAt 

(Note that CvZ of At, and At2 is just 1 X 
can be computed as follows 

process. We define the 

.) The distribution of X 

1 p(At, = r)dr 

= 1 [ 1 - exp( ---AT%)] Xexp(-h7)dT 

s 
cc 

= X exp( -Xr)dr - 
0 

=1-2+xo 
4 

2 - x0 
=- 

4 

The probability density of X is just the derivative of this, or l/4. 
Therefore X is uniformly distributed between -2 and 2. Thus CvZ = 
1 X 1 is uniformly distributed between 0 and 2. 

For a Poisson process with a refractory period t,, the maximum 
CvZ value for a given mean IS1 At would occur when one of the 
ISIS At2 = t, 

nt = At, + tr 
2 

At, = 2f-- t, 

C 
2(At, - t, 

V2,max = - At 

= 2(2f- t, - t,) 
t1 + tr 

= 2(1 - t,lr) 

Cv2 will now be uniformly distributed between 0 and this maxi- 
mum, because adding a refractory period to a Poisson process is 
equivalent to discarding ISIS shorter than the refractory period. 

Numerical relationship to Cv 

The traditional variability measure Cv is similar to Cv2 in some 
respects. A perfectly regular train has mean CvZ and Cv values of 
0, and a Poisson process has mean Cv2 and Cv values of 1. We 
have found by simulations that the mean value of CvZ is very close 
to Cv for stationary gamma distributions of various orders and 
refractory periods (Fig. A 1). 

Effect of constant current on Cv 

Understanding variability requires knowing how input fluctua- 
tions are transformed into output fluctuations. A number of studies 
have attempted to address this question in different systems with 
the use of a variety of mathematical techniques or simulations 
(e.g., Gerstein and Mandelbrot 1964; Segundo et al. 1968; Shapley 
1971a,b; Stein 1965, 1967; Tuckwell et al. 1984; see reviews in 
Holden 1976, 1983; Moore et al. 1966; Sampath and Srinivasan 
1977; Tuckwell 1989). The evolution of a neuron’s membrane 
potential is typically regarded as a bounded random walk, and the 
probability distribution of the time to the first threshold crossing 
( 1st passage time) can be computed if the input form is simple 
enough. There is, however, an analytical technique that can predict 
an integrate-and-fire neuron’s variability for a wide variety of in- 
puts. 

Cv is related to another measure of variability that is easier in 
some cases to analyze but not as easy to estimate from real data. 
This measure is the ratio of the variance of the number of spikes 
in time T to the mean number of spikes in the same time period 

Var N s=- 
09 

This measure has been used by other experimenters (e.g., Barlow 
and Levick 1969; Dean 1981) . We have found that it is difficult 
to estimate S directly from our data because it requires a large 
number of trials with the same stimulus, whereas C, or Cv2 can 
be estimated from a single sufficiently long train. However, if the 
firing is a renewal process, the expected value of S is simply related 
to the expected value of Cv (for details, see Cox 1962, p. 45-60) 

s = c”, (A2) 

in the limit as the length of the train T + 00. This is not a new 
result but a property that seems not to be widely appreciated in 
the study of neuronal variability. Cortical cell firing is not exactly 
a renewal process (unpublished data; see also Holden 1976) but 
the serial correlations are usually weak unless the cell has well- 
defined bursts. 

It is simple to predict the variability, in terms of the S measure, 
of an integrate-and-fire neuron with no refractory period and no 
leak conductance. Such a neuron sums up its input until the sum 
exceeds a threshold, when it generates a spike and resets the mem- 
brane potential. The number of spikes it fires in some time T will 
be proportional to the total charge 
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tuations, even if there is more inhibition than excitation, the cell 
will still fire occasionally, although the IS1 will be very large 
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(Gerstein and Mandelbrot 1964; Stein 1965). 
The variance and mean of N are given by 

w = arT(I) 

Var N = a2Var 
W) 

We can predict the S value if we can evaluate the above expres- 
sions. 

A constant current IdC superimposed onto the synaptic back- 
ground activity isyn( t) will change the mean number of spikes 
without changing the variance 

N=CY [L + &dt)ldt 

W) = QT& + (isyn)) 

Var N = cu2Var [[Id + ~i,,,odt] 

= cu2Var [ [ i,,&Mt] 

because for any independent random variables X and Y, Var X + 
Y = Var X + Var Y, and Var s,’ &,dt = 0 

S=cU 
Var 8: isyn ( t)dt 

wit + Gsyn)) 

Var s,’ i,,,(t)dt 
= a! 

T( isyn > 

T( isyn > wck + (isyn)) 

Z so 
b&l) 

Gc + (isytl)) 

where SO is the firing variability due to the synaptic background 
activity. The same result can be expressed in terms of the change 
in firing frequency caused by the current injection 

f s=s,p 

wheref o = 1 /(At,> is the original firing rate without current injec- 
tion and f  = 1 /(At) is the new firing rate. This analysis was used 
by Barlow and Levick (1969) to study the effects of surround 
inhibition (modeled as a constant current) on retinal ganglion cell 
variability, but it is also applicable to depolarizing currents. 
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