
wind stress curl changes is a delayed process and
would retard the existing cyclonic circulation.
We would expect this influence to manifest itself
with large reversals in PC1 of the geostrophic
velocity like the variations in the curl PC1 or
NAO with a 3- to 5-year delay. Figure 5C shows
that there are peaks in geostrophic velocity PC1
with such a delay, but they are small relative to
the overwhelming background trend.

Property 3 of the continuous weakening of
the subpolar air-sea heat loss is consistent with
the observations that deep convective conditions
in the Labrador Sea have been absent since the
early 1990s. Although changes in advection of
heat can have as much as 50% effect on the
subpolar heat storage changes (10), the local heat
flux changes are still important, particularly in
forcing deep convection. Because deep convec-
tion maintains a cold core around which lighter
water masses circulate, cessation of deep con-
vection would lead to a decaying baroclinic gyre.
This decaying cold core of the Labrador Gyre
from 1992 to 2002 is observable in the dynamic
height increase (using WOCE section AR7/W ),
which is about 6 cm relative to 1000db (Fig. 1A)
(fig. S3) and comparable with the altimeter SSH
change. The strong height gradient associated
with boundary currents is important to inferences
of circulation; this is seen in the hydrography
(fig. S3). Evidence from the hydrographic data
together with the 1990s heat flux trend is sup-
portive of a connection between convective forc-
ing and the observed decline in the gyre strength.
It might not have been the case if wind-driven
barotropic circulation or overflow-driven circu-
lation variability were dominant causes.
Conclusions. Altimetric geostrophic cir-

culation observations and supporting deep-
sea current-meter observations suggest sig-
nificant changes over the last two decades,
with increasing SSH and weakening subpolar
gyre circulation in the 1990s. By comparing
the dynamic consequences of three mecha-
nisms, buoyancy forcing and barotropic and
baroclinic response to local wind stress curl,
we find that the gyre weakening in the 1990s
is not attributable to local wind stress changes
associated with NAO. The weakening-gyre
scenario of the 1990s parallels the warming
in the central subpolar gyre, which is the
well-observed relaxation of the water column
following the intense winter convection peri-
od of 1989–1994. The lack of deep convec-
tion is the oceanic response to the local buoy-
ancy forcing, which has mimicked low-NAO
heat fluxes even though the index itself has
reversed itself twice during the 1990s.

Because we lack SSH data before 1978,
we cannot determine whether the 1990s slow-
ing gyre is a part of a decadal cycle or the
beginning of a longer term trend. Because
Labrador Sea processes are intimately linked
to the meridional overturning circulation, in-
volving both intermediate-depth and deep
waters, these observations of rapid climatic

changes over one decade may merit some
concern for the future state of the MOC.
Continuation of the altimeter missions will
allow us to follow the evolution of this sub-
polar signal and its influence on the North
Atlantic. Field observations of the subsurface
oceanic circulation, hydrography, and ice
cover (28) will be of great importance in
establishing the origin of these climate shifts.
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19. S. Häkkinen, J. Geophys. Res. 106, 13837 (2001).
20. C. Eden, J. Willebrand, J. Clim. 14, 2266 (2001).
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Synfire Chains and Cortical
Songs: Temporal Modules of

Cortical Activity
Yuji Ikegaya,1* Gloster Aaron,1* Rosa Cossart,1

Dmitriy Aronov,1 Ilan Lampl,2 David Ferster,2 Rafael Yuste1†

How can neural activity propagate through cortical networks built with weak,
stochastic synapses? We find precise repetitions of spontaneous patterns of syn-
aptic inputs in neocortical neurons in vivo and in vitro. These patterns repeat after
minutes, maintaining millisecond accuracy. Calcium imaging of slices reveals re-
activation of sequences of cells during the occurrence of repeated intracellular
synaptic patterns. The spontaneous activity drifts with time, engaging different
cells. Sequences of active neurons have distinct spatial structures and are repeated
in the same order over tens of seconds, revealing modular temporal dynamics.
Higher order sequences are replayed with compressed timing.

The essence of cortical function is the prop-
agation and transformation of neuronal activ-
ity by the cortical circuit (1). How activity
can propagate through a network composed
of weak, stochastic, and depressing synapses
is, however, poorly understood (2–4). It has
been proposed that sequences of synchronous
activity (“synfire chains”) propagate through

the cortical circuit with high temporal fidelity
(5, 6). Synchronous summation of excitatory
postsynaptic potentials (EPSPs) could ensure
postsynaptic firing and the nonlinear gain
caused by the spike threshold could preserve
temporal fidelity, so reactivations of the same
chain would result in exact repetitions of
precise firing patterns (7). Repetitions of
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temporally precise firing sequences of spikes
have been reported (7, 8), although their ex-
istence is controversial (9).

If synfire chains, or precisely timed repe-
titions of spike sequences, exist in cortical
activity, the reactivation of the same spatio-
temporal pattern of activity should produce,
as its postsynaptic signature, repetitions of
patterns of synaptic activity in intracellular
recordings from single neurons in the net-
work. If a recorded neuron receives connec-
tions from cells located at different points in
a chain, it will receive temporally stereotyp-
ical patterns of excitatory and inhibitory
postsynaptic potentials (EPSPs and IPSPs) as
the chain repeats its pattern of spikes. We
searched systematically for repeated patterns
of spontaneous synaptic inputs in pyramidal

neurons, using intracellular recordings from
slices of mouse primary visual cortex or from
intact cat primary visual cortex in vivo (10).
Precisely repeating motifs of sponta-

neous synaptic activity in slices. To detect
repetitions of spontaneous activity, we calculated
the covariance between any two segments of an
intracellular recording (11), with low- (1 s; low
resolution index, LRI) and high- (20 ms; high
resolution index, HRI) resolution windows of
analysis (fig. S1). The low-resolution window
was used to identify regions of the traces with
potential repeats; these regions were then
scanned at high resolution. In 20 voltage-clamp
recordings of spontaneous activity from slices (8
min long), we encountered repetitions of se-
quences of spontaneous activity with high HRI
values and marked similarity in the patterns of
positive and negative deflections in the mem-
brane current (“motifs”) (Fig. 1). Because re-
cordings were taken at �70 mV, most repeated
patterns were composed of EPSCs (5 to 20 pA).
A total of 17,055 motifs passing minimum
thresholds for HRI were found in 18 out of 20
cells (Fig. 1A), and different statistical analyses
confirmed that they were not due to chance (fig.

S2, A to C). Moreover, motifs above chance
level were not found in recordings of miniature
EPSCs in slices under 1 �M tetrodotoxin (fig.
S2, D and E) [control artificial cerebrospinal
fluid (ACSF) HRI � 1.24 � 0.74, n � 16,271
motifs, 18 cells versus tetrodotoxin HRI �
0.70 � 0.39, n � 1300, 7 cells; P � 0.01]. Most
(95.4%) motifs occurred in the absence of oscil-
lations, as defined by whether or not a motif
passed the minimum threshold for HRI when it
was shifted by a putative oscillation period. The
number of motifs per cell ranged from 0 to 7803,
with a median of 143 motifs and HRIs ranging
from 0.11 to 7.10 (mean HRI � 1.24 � 0.74,
n � 16,271 motifs). The average interval be-
tween motif repetitions was 156.2 � 113.1 s,
ranging from 0.7 to 478.1 s. The average dura-
tion of a motif was 1006 � 424 ms. In 11 out of
18 cells, motifs repeated three or more times
(Fig. 1B). Although a motif could last more
than 1 s and be repeated after several minutes,
individual EPSCs repeated with an accuracy
of better than 1 ms (Fig. 1, A and B, insets). In
the 10 cells with highest HRIs, there were
4.6 � 1.5 motifs per cell that displayed at least
three postsynaptic currents (PSCs) that repeat-
ed with better than 1-ms precision. Repeating
within 2-ms precision, there were 53.7 � 22.2
motifs per cell that had at least three such
precise PSCs. Finally, in simultaneously re-
corded neurons, repeats of intracellular motifs
sometimes occurred exactly at the same time
(three out of six cell pairs; 15.4 � 3.7 simul-
taneous motifs per cell pair).
Repeating motifs of spontaneous syn-

aptic activity in vivo. We then investigated
whether repeated motifs also occurred in vivo
using 1.5- to 10-min intracellular recordings
of the spontaneous (i.e, without visual stim-
ulation) activity from neurons in primary vi-
sual cortex of anesthetized cats (11). Repeat-
ed motifs of synaptic activity were frequent
in vivo (19 out of 21 neurons) (Fig. 1C) and
occurred mostly in the absence of oscillations
(96.5%), and significantly fewer repeats were
found in shuffled traces (fig. S2Cii). Many
motifs detected in vivo consisted of very
large EPSPs (�10 mV), suggestive of syn-
chronous input from several presynaptic neu-
rons. The mean HRI (�SD) was 1.30 � 0.64
(n � 33,374 motifs, 19 neurons). The average
duration of a repeated motif was 1035 � 357
ms. Patterns of EPSPs lasting up to 2 s
repeated with millisecond precision, even
after intermotif intervals of several min-
utes. In vivo motifs also occurred more
than twice (14 out of 19 neurons) (Fig.
1Cii) and could also be found to occur
simultaneously in paired intracellular re-
cordings (6 out of 9 cell pairs; 110 � 37
simultaneous motifs per cell pair).
Repeated neuronal activation during

motif repetition. We used calcium imaging
to reconstruct, with single-cell resolution, the
activity of neuronal populations (8, 12, 13)
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Fig. 1. Repeated motifs
of spontaneous synap-
tic activity in vitro and
in vivo. (A) Repeated
motifs of intracellular
activity from layer 5 py-
ramidal neurons in slic-
es. Panels show seg-
ments (red) of the same
voltage-clamp recording
from the same cell re-
peating seconds or min-
utes after the initial oc-
currence (blue). Arrows
indicate timings of re-
peated PSCs. (i) Upper
trace: low–temporal reso-
lution display of sponta-
neous activity of a neu-
ron. Lower traces: higher
resolution display of the
repeated motif at indicat-
ed regions of the trace (a
to c). (ii) Example of a
longer motif. (B) Three
repetitions of a motif. The
top traces show the mo-
tifs superimposed on each
other (blue, green, and
red), the middle traces
show these same tra-
ces individually, and the
bottom traces show
temporally magnified re-
gions of the motifs (a to
c). (C) Repeated se-
quences of intracellular
current-clamp record-
ings in vivo. Two (i) and
three (ii) repetitions of
motifs are shown. Shuffle tests were performed on traces (i), a to c, yielding significantly fewer
repeats (fig. S2, P � 0.02). In (i), the blue trace is shifted –2.75 mV; in (ii), the blue trace is
shifted �1.58 mV, and the green �0.79 mV.
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during the simultaneous occurrence of repe-
titions of an intracellular motif (Fig. 2). We
loaded 97 brain slices from postnatal day 13
to 22 (P13 to P22) mice with calcium indica-
tors and obtained 148 movies from primary
visual and medial prefrontal cortex using
confocal or two-photon microscopy. The in-
dicator labeled virtually all superficial neu-
rons as assessed by Nissl counterstaining
(Fig. 2A). All slices displayed spontaneous
calcium transients, which involved about
10% of cells during 120 s of imaging (fig.
S3A). In intracellular recordings from im-
aged cells, spontaneous calcium transients
were always synchronous with action poten-
tials (Fig. 2B) (n � 7 cells) and were blocked
by 1 �M tetrodotoxin or 2 mM Ni2� (n � 9
slices). Most calcium transients were linked
to action potentials generated during UP
states (Fig. 2, B and C). Onset timing of
action potentials could be reliably recon-
structed by thresholding the first derivative of
the optical traces (Fig. 2, D and E).

To explore the relation between the opti-
cally recorded sequences and the intracellular
motifs, we performed intracellular recordings
during slow-resolution (1 frame/s) two-pho-
ton imaging experiments. Neurons active
during the first appearance of a motif were
also active during its repetition (Fig. 3B) (n �
10 motifs; mean HRI � 1.1 � 0.17). The
mean number of optically detected neurons
repeating during a motif was 3.6 � 1.0. The
marked correlation between intracellular mo-
tifs and repeated sequences of network activ-
ity indicates that the repeated motifs are pro-
duced by the reactivation of the same circuits.
Fast imaging of spontaneous activity

reveals repeating sequences. To investi-
gate the dynamics of spontaneous activity
with faster time resolution, we used confo-
cal imaging (25 to 100 ms/frame). We cre-
ated raster plots of the spontaneous activity
produced by 445 to 1353 neurons (average
952.6 � 31.3 imaged cells, n � 57 slices)
and searched these plots with a template-
matching algorithm for precisely repeating
sequences of activation (7, 8). Such se-
quences were common, being present in 42
out of 58 movies (Fig. 3A) (n � 3115
sequences, average � 53.7 � 10.3 sequenc-
es per movie, ranging from 0 to 341). Se-
quences involved 3 to 10 cells, lasted 2.9 �
0.1 s (fig. S4), and repeated two to four
times. To estimate the statistical signifi-
cance of the occurrence of the sequences,
we compared the incidence of sequences in
real raster plots with surrogate raster plots
obtained by three independent shuffling
methods. In all types of surrogates, se-
quences appeared much less frequently
than occurred in real data (P �� 0.001)
(Fig. 3, E to G). Similar results were ob-
tained when different frames of jitter were
allowed for template-matching (Fig. 3, E to

G). On average, 50.4 � 3.8% of transients
in single movies played a part in at least
one sequence. For comparison, in intersig-
nal intervals (ISI)–shuffled surrogates, at
most 9.9% of transients were components
of sequences. In addition, most transients
simultaneously participated in different se-
quences; on average, individual transients
were used in 1.91 � 1.41 sequences,
whereas they were used in only 0.12 � 0.09
sequences in ISI-shuffled raster plots.

Timing and topography of repeating
sequences. We further characterized the
temporal and spatial structures of these re-
peated sequences. The timing jitter of cal-
cium transients participating in sequences
was independent of the sequence length
(Fig. 3C), so the temporal precision of
these sequences is preserved during their
occurrence. To investigate whether these
sequences persisted in time, we analyzed
movies taken from the same slice for sev-

Fig. 2. Calcium imaging of spontaneous action potentials in large neuronal populations. (A)
Confocal images of fluo-4 (left) and red Nissl (middle) and positions of the 866 automatically
detected cells (right) of a slice of the medial prefrontal cortex. Layers were determined based on
cell density. M, medial; L, lateral; D, dorsal; V, ventral. (B) Correlation between calcium transients
and action potentials. Simultaneous current-clamp recording (top) and calcium imaging (middle).
Onsets of spike timings (shaded areas) are detected as suprathreshold periods (2.58 � SD of noise,
red) in the first derivative of the calcium signal. Most calcium transients are associated with UP
states. (C) Bistable membrane potentials of a pyramidal cell. The plot was well fitted to a bimodal
Gaussian distribution (red), indicative of DOWN and UP states of membrane potentials. (D)
Pseudo-colored plot of calcium signals obtained from the slice in (A). Each row represents a single
cell. (E) Raster-plot reconstruction of the onsets of spiking activity from (D). Out of the 866 cells,
137 cells (15.8%) showed spontaneous calcium transients.
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eral hours. The subset of active cells dy-
namically drifted over tens of minutes (Fig.
3D and fig. S5); on average, 30.8 � 3.1%

of cells that were activated during a movie
were reactivated in any subsequent movie,
despite there being no prominent changes

in the total number of activated cells across
movies (fig. S5A).

Sequences had specific topographic
structures, in some cases involving only a
particular layer or a vertical column of cells
or cells located in a cluster (Fig. 4, A and
B, and fig. S3B). Moreover, the spatial
trajectory of the activation also precisely
repeated and could follow the same direc-
tion with sequential steps. Therefore, re-
peating temporal patterns of activation,
themselves statistically unlikely to emerge
by chance, were associated with a struc-
tured spatial organization of the neurons
that formed them.
Neuronal synchronization associated

with the occurrence of repeated sequenc-
es. One prediction of the “synfire” hypoth-
esis is that repeating sequences should be
specifically associated with synchroniza-
tions of the network (5 ). Consistent with
this prediction, calcium transients were
overwhelmingly produced by UP states
(Fig. 2, B and C), which are reflections of
circuit synchronization (13, 14 ). Also, time
histograms of coactive cells demonstrated
intermittent synchronization of spontane-
ous activity (Fig. 4C) (13). The synchroni-
zation appeared to be aperiodic, as assessed
by Fourier analysis (fig. S6). To quantify
synchronicity, we determined the P value
of synchrony level as a function of time
(Fig. 4C, red trace), defined as a probability
that the same or higher level of coactivation
could occur by chance in 1000 ISI-shuffled
surrogates. In 52.1% of repeated sequences,
the P value during the sequences fell below
0.05 (n � 2983 sequences), far in excess of
what we found in ISI-shuffled data (13.6%
of sequences with P � 0.05; P �� 0.001,
chi2 test). Our analysis likely underesti-
mates true synchronicity because we only
image neurons in the plane of focus, which
are a minority of the neurons present in the
brain slice. Synchronization increased as a
function of sequence repetition (Fig. 4D),
suggesting that sequences were replayed
with increasing synchrony.
Cortical songs: modular assemblies of

repeated sequences. When examining the
temporal pattern of repeated sequences on
larger time scales, we noticed that series of
sequences could be repeated in the same
sequential order (Fig. 4C). These superse-
quences, referred to here as “cortical
songs,” were detected in 32 out of 54 mov-
ies. Each cortical song consisted of two to
eight sequences (average 6.2 � 0.1, n �
2636 songs in 54 movies) and was repeated
two or three times. The number of cortical
songs found ranged from 0 to 321 per
movie, averaging 48.8 � 11.4 (n � 54
movies), far in excess of the number of
songs that can emerge after shuffling of
sequences (fig. S7). A sequence could par-

Fig. 3. Repeated motifs during sequential reactivation of identical cells. Properties of the repeated
optical sequences. (A) Set of neurons with precise sequences of calcium transients (V1 slice). Ten
cells (red) reactivated with exact timings between their transients (“sequence”) (top panel). In the
same raster plot, a four-cell sequence (blue) is reactivated four times (middle panel). This four-cell
sequence also acted as a part of the 10-cell sequence. Bottom panel shows all sequences detected
in the same raster plot. (B) Simultaneous recording of intracellular motifs and repeated sequences.
Raster plot displays a group of four cells activated in the same sequence during the time at which
a motif and its repeat are detected simultaneously in the intracellular recording (gray, upper trace)
of a layer 5 pyramidal cell. (C) The precision of the repetition is constant with the duration of the
sequence. (D) Probability that cells active during a period from 0 to 2 min were reactivated in
subsequent movies (means � SEM of six movies). (E to G) Spike sequences occur more frequently
than expected by chance. Three independent methods of spike shuffling were used to examine how
frequently sequences emerge by chance, as assessed by comparing the number of sequences in real
spike trains (original raster plot) and their surrogates. Zero to five frames of jitter were allowed for
repeated sequences. Data in Fig. 4A were analyzed (means � SD). (E) The intersignal intervals (ISI)
were transposed at random within each cell in order to eliminate temporal correlation between the
events. (F) Events were shuffled across cells while keeping their timings unchanged so as to
preserve population modulation of event timings such as synchronization. (G) Spikes were
exchanged between any pair of cells while maintaining their timings. The exchange procedures
were repeated twice as many times as the number of spikes in the raster plot. In this randomization,
event frequency within each cell and population modulation are both retained.
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ticipate in more than one song; on average,
single sequences were used in 3.7 � 0.6
different songs (n � 2983 sequences). The
numbers of sequences and songs detected
in individual movies had a positive corre-
lation (Fig. 4E).

The occurrence of the repeated sequences
or songs was not correlated with the rate of
activity (Fig. 4F), which indicates that corti-
cal slices can generate repeated sequences,
independent of the degree of network activi-
ty. In four out of six slices tested, the number
of sequences and cortical songs fluctuated
spontaneously without apparent changes in
spike frequency.

Cortical songs were often repeated at
faster time scales (Fig. 5, A and B). We
quantified the temporal elasticity of the
repetition with an orthogonal regression
method, finding a biased distribution to-
ward increasing compression during the
course of a recording session (Fig. 5C)
(P � 0.01) and that the precision in relative
timing (as captured by the regression error)
was more accurate than expected by chance
(Fig. 5D). The temporal compression
agrees with the increasing synchronization
detected with increasing repetitions of a
sequence (Fig. 4D). Also, the preservation
of the precision of the songs is in accor-
dance with the preservation of the jitter of
individual sequences (Fig. 3C).
Modulation of cortical sequences and

songs by NMDA and dopamine receptors.
Finally, we explored the synaptic mecha-
nisms underlying the generation of cortical
sequences and songs. It has been proposed
that correlated network operation depends
on N-methyl-D-aspartate (NMDA) receptor
channel kinetics (15 ). In support of this
proposal, the NMDA receptor antago-
nist APV (D,L-2-amino-5-phosphonova-
leric acid) depressed the occurrence of cor-
tical sequences and songs without affecting
the activity rate (fig S8). We also compared
the spatiotemporal coordination of spiking
activity before and after application of do-
pamine, because dopamine also appears to
be involved in persistent neuronal activity
(16 ). Although we found no apparent effect
of dopamine on the incidence of spiking
activity, dopamine suppressed the occur-
rence of cortical sequences and songs (fig
S9). This effect was specifically inhibited
by SCH23390, a D1 receptor antagonist,
and mimicked by SKF38393, a D1 agonist.
Slight, but significant, increases in se-
quences and songs were induced by
SCH23390, suggesting that endogenous do-
pamine is working under resting condi-
tions. Aberrant functions of D1 receptors
and NMDA receptors, both of which have
been implicated in the pathophysiology of
schizophrenia (17 ), thus induce functional
disconnection of neuronal modules.

Discussion. Intracellular recordings and
imaging experiments reveal the widespread
existence of repeated dynamics in the spon-
taneous activity of neocortical circuits in
vitro and in vivo. The ability to reconstruct

the activity of a large (�1000) population
of neurons, and the increased statistical
power of correlating intracellular records
rather than spikes, have facilitated the de-
tection of these dynamics. These repeated

Fig. 4. Anatomical structure of the sequences. High-order sequences (cortical songs). (A) Repre-
sentative maps of six types of spatial arrangement of neurons involved in sequences. Neurons are
sequentially activated, as indicated by the arrows. (B) Frequency of each spatial pattern (n � 2983
sequences from 54 movies; medial prefrontal cortex). (C) (Left panels) Representative cortical song.
A total of 181 of 1197 cells showed spontaneous activity (left top panel). Subsets of neurons
displayed temporally precise sequences of activity (sequences: A1 to F2). The sequences were
repeated in the same order (cortical song: A�B�C�D). Bottom histogram represents the number
of cells active at each frame of the movie. The red line expresses the P value of synchronization,
defined by random ISI shuffling (13). (Right panel) Onset timings of songs (top) and locations of
cells (bottom). (D) Synchrony levels increase as a function of sequence occurrence. **P � 0.01;
Bonferroni/Dunn test (means � SEM of 2983 sequences, 54 movies). (E) Correlation between
the number of sequences and songs. Each dot represents a single movie. The line represents
best linear fit. (F) Lack of correlation between the number of sequences and rate of activity.
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patterns are robust; not only do they occur
more frequently than expected by chance,
but they can happen at the same time in two
neurons, occur simultaneously in intracel-
lular and optical recordings, are correlated
with intracellular UP state depolarization
and with network synchronizations, involve
circuits with structured topographies, form
modular patterns with compressing timing,
and are blocked by D1 activation receptors.
Our results demonstrate that the apparently
stochastic cortical synapses can work with
high reliability to produce stereotypical dy-
namics that are reduced in dimensional
space. Our data agree with the prediction
that cortical activity flows through chains
of synchronized neurons (synfire chains),
which are reactivated with high temporal
precision. Moreover, we describe a higher
order grammar (18), by which these chains
themselves can be modules of larger tem-

poral structures (cortical songs), defined by
their sequential order of activation, and
which can last for minutes. These songs
resemble spiking correlates of sequential
behavior, like bird songs (19, 20) or spatial
navigation (21), and have compressing dy-
namics, as if the circuit was replaying and
modifying previously learned sequences
(21–23). The mechanisms that generate and
propagate synfire chains and cortical songs
must be intrinsic to the cortical circuit,
because they are preserved in slices, and
might reflect the faithful reactivation of
specific circuits (24), mediated by stereo-
typical synaptic dynamics (25, 26 ) and
driven by pacemaker cells (8, 27). Because
the activity drifts with time, it is also pos-
sible that short-lived patterns, perhaps re-
flecting ongoing circuit memory, are gen-
erated de novo (6, 28). Regardless of the
mechanism, the repeated dynamics that we

observed involve UP states, and the pro-
gression of activity is therefore briefly set-
tling into preferred states of persistent ac-
tivity, so our data link synfire chains with
attractor neural networks (6, 13, 29). We
conclude that the neocortex can spontane-
ously generate precisely reverberating
temporal patterns of activation (5, 30), dy-
namic ensembles that could represent en-
dogenous building blocks of cortical func-
tion (31, 32).
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Fig. 5. Temporal compression of cortical songs. (A and B) Representative songs repeating at
faster time scales, both found in the same raster plot. Right top panel indicates the onset
timings of the sequences in each song. The right bottom scatter plots show regression analyses
for timing correlations of the first song occurrence versus the second recurrence. (C) Asym-
metric distribution of 	 (average � 29.2° � 0.6°; mean � SEM of 2636 songs, 54 movies). The
distribution of 22,824 surrogate songs obtained for shuffled sequences (fig. S7) is shown as a
chance level (blue). The values of the songs shown in the (A) and (B) are indicated by the
arrows. (D) The distribution of regression error (L) after the pseudo-rotation coordinate
transformation (10). The mean L values in the real data were significantly lower than expected
by chance (P � 0.001; Bonferroni/Dunn test).

R E S E A R C H A R T I C L E S

23 APRIL 2004 VOL 304 SCIENCE www.sciencemag.org564



 Ikegaya et al., “Synfire chains and cortical songs: elastic temporal ensembles of cortical activity”   p.1 

Supporting Online Material 
 

1. Original Data 

1.1 Text file included is the original data of Fig. 1A. Recorded from a layer 5 pyramidal 

neuron in mouse primary visual cortex in vitro. File has data sampled at 1kHz instead of the 

10 kHz in the figure. Original recording was 8 minutes long, whereas this file contains 150 

seconds of recording, centered around the motif and repeat of interest The motif starts at 

23,935 ms. The repeat starts at 148,178 ms. The length of the motif and repeat is 985 msec. 

Each point in this text file represents a pA value with a time width of 1 msec.  

 

1.2 Movie file (mov) is the confocal imaging data used as a part of Fig. 5A-C. Because the 

original movie is nearly 1 Gbytes, it was cropped in space and time, converted from a 16-

bit to 8-bit scale, and compressed by lowering the image quality 

 

1.3 Sound file (mov) is an acoustic representation of cortical activity. Every neuron was 

assigned a pitch of the sound of piano. The rasterplot used for creating this file follows. 
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2. Materials and Methods 

2.1 Electrophysiology and imaging:  

PND 13-22 C57Bl/6 mice were anaesthetized and transverse 350 µm coronal slices of 

primary visual and medial prefrontal cortices were cut on a vibratome in modified ACSF 

that included 0.5 mM CaCl2, 7 mM MgSO4, and 0.5 mM ascorbic acid, in which NaCl was 

replaced by an equimolar concentration of sucrose. Slices were transferred to warm (37°C), 

oxygenated, ACSF (1.5 mM MgSO4, 2 mM CaCl2), and allowed to equilibrate to room 

temperature. Whole-cell recordings from layer 5 pyramidal cells were performed using 6-9 

MΩ pipettes, filled with (mM): 130 K-methylsulfonate, 11 biocytin, 10 KCl, 10 HEPES, 5 

NaCl, 2.5 Mg-ATP, 0.3 Na-GTP. Recordings were made with an Axopatch 200B and a 

BVC-700 amplifier and digitized with an A/D board using Igor. Between 4 to 8 minutes of 

spontaneous activity was recorded in conventional ACSF (1 mM MgSO4, 2 mM CaCl2, 3 

mM KCl, 34°C). Recordings were obtained in voltage clamp but similar results were found 

in current clamp. 

In vivo recordings were obtained from paralyzed, barbiturate-anesthetized, adult cats 

(S1). Intracellular records were obtained with sharp glass micropipettes filled with 2M 

potassium acetate. Two electrodes were placed on the cortical surface with their tips less 

than 500 µm apart and angled approximately 10–15º to the vertical axis so that they would 

approach each other as they were advanced into the cortex. The exposed cortex was then 

covered with warm agar (3% in saline) to reduce respiratory and cardiovascular movements 

and prevent the cortex from drying. Membrane potentials were recorded with an 

Axoclamp-2A amplifier in bridge mode. Membrane potentials were low-pass filtered at 10 

kHz prior to digitization at 20 kHz.  

Confocal imaging was performed with a spinning disk confocal microscope. For Fig. 

3B data, two-photon imaging was carried out with a custom-made two-photon microscope 

(S2) with a Ti:sapphire laser providing 130 fs pulses at 75 MHz, pumped by a solid-state 

source. Frames were acquired at 25-100 msec (confocal) or 1sec/frame (two-photon). Fluo-

4 was used for confocal imaging and fura-2 for two-photon imaging.  For fluo-4 indicator 

loading, a slice was exposed to 3 µl of 0.1% Fluo-4-AM, 49.9% NeuroTraceTM 530/615 

and 50% DMSO in 2 ml ACSF in the dark at 37°C for 20 min. For Fura2-AM-loading, 
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slices were incubated in a small vial containing 2.5 ml oxygenated ACSF with 25µl of 

1mM Fura-2-AM solution (in 100% DMSO) for 20–30 min. Slices were incubated in the 

dark at 35–37°C (S3). Experiments were performed at 37°C with ACSF (in mM: 123 NaCl, 

3 KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 1.5 MgSO4 and 10 dextrose). Drugs were applied 

by bath with addition of 100 µM ascorbic acid. Images were collected on an Olympus 

BX50WI microscope equipped with an UltraView spinning disk confocal head with a 10X, 

0.3 NA objective and captured with an Orca ER camera and a Imaging Suite software. 

Time-lapse series were acquired and saved as 16-bit tiff files. To minimize photodamage 

and photobleaching, we restricted confocal imaging to a period of 120 sec 

 

2.2 Analysis of intracellular motifs: 

Repeats of intracellular spontaneous activity (see supplementary files for 

representative examples) were detected and quantified as follows (Fig. S1): Voltage or 

current recordings were decimated to 1 point per ms and, using an supercomputer (IBM 

p690 Regatta) and custom MatLab and Igor routines, all 1 second long segments were 

compared against each other at 250 ms intervals. Each comparison was made by computing 

a covariance function (S4): 

 

Here, x and y are amplitudes from the respective motif and its potential repeat, and 

2T+1 are the number of samples in each motif at 1 points per ms. As jumps of 250 ms are 

unlikely to find the regions of precise overlap, the program realigned the traces according 

to the difference between the peak value of the covariance function and the zeroth lag of 

function and then recomputed the function, provided that the peak value was initially 

within 250 ms of the zeroth lag. The value at the zeroth lag (h(0)) was then recorded. The 

highest values for each 1 second interval and those passing a set threshold (0.45) were 

collected for each recording and formed our low resolution similarity index (LRI). As the 

voltage clamp recording is composed of distinct fast signals, we further devised a method 

of analyzing these recordings that is sensitive to this (Fig. S1). Taking the results from the 



 Ikegaya et al., “Synfire chains and cortical songs: elastic temporal ensembles of cortical activity”   p.4 

LRI, a total of 2 seconds encompassing those intervals were then analyzed in a similar 

manner but with 20 ms epochs and an amplitude normalization: 

 

Here, m is the particular 20 ms epoch of a trace, normalized to zero (a vector of 20 numbers 

(pA), with a mean of 0), r is the corresponding vector in the potential repeat of the motif, 

and h20(0) is the zeroth lag of the covariance function comparing the 20 ms segments, m 

and r. The 20 ms epochs that exceeded a set threshold (0.55) were saved (T values) for each 

2 second segment. Motifs were defined by waveforms containing a cluster of 20 ms epochs. 

The total width of a motif was therefore limited to 2 seconds by this analysis and its width 

was measured from the first to the last 20 ms epoch of the cluster. We searched for repeats 

ranging from 100 ms to 2 sec. A final table of the motifs found in a recording included only 

those with a cluster containing a minimum of three 20 ms epochs and a total minimum 100 

ms total duration. The final high-resolution index (HRI) of a motif was computed by the 

sum of all T values multiplied by the mean of all T values normalized by the difference in 

amplitudes of the motif and its repeat:  

 

Here, std(motif) is the standard deviation of the motif, and n is the number of T values 

found within the motif. Both motif and repeat are normalized to zero before HRI is 

computed. The HRI was developed empirically and appeared to produce the results with 

fewest apparent false positives and false negatives by visual inspection, as compared to the 

LRI. A P-value was derived for each repeat and motif, based on a correlation coefficient 

derived from h(0) of the motif and repeat (Matlab, corrcoeff function), and any repeat with 

P>0.01 was discarded. Finally, the HRI is not considered an absolute scale of the fidelity of 

a repeat; rather, it is a useful index for ranking these repeats and quickly finding the most 

striking examples. This test may be more demanding than would be required to find all 

motifs, since there is a penalty for differences in amplitudes of the synaptic events, and the 
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amplitude of a current from a particular synapse usually varies from one activation to the 

next.  

A small subset of these motifs found with HRI appeared oscillatory, and we devised a 

method to test whether the motif was detected because of an oscillation: a covariance 

function was calculated between the motif and repeat (as shown above, but in this case for 

the full length of the motif), and the largest peak outside of -20 to +20 ms of the zeroth lag 

and within 1/2 of the width of the motif was detected. The motif and repeat were then 

shifted +/- one period of the potential oscillation, according to this detected peak location, 

and the shifted traces were analyzed with the normal HRI procedure. If the shifted traces 

passed the minimum thresholds for the HRI, then the motif was considered oscillatory and 

not considered significant.  

To test whether motif repetitions in vitro or in vivo occurred by chance, we performed 

two statistical tests (Fig. S2). First, with a shuffle test, we created fifty randomized 

waveforms from the data in which the EPSC or EPSPs shapes were exactly preserved as 

was the temporal order of these events, but the time intervals between these events were 

randomly shuffled. A shuffled trace created in this manner was therefore identical to an 

original trace in its statistical properties. For all cells, the original traces yielded more 

repeats than any shuffled trace (the best shuffled trace from each experiment had on 

average 14 ± 5.3 % fewer motifs than the original trace, 50 shuffles each, p = 0.02, 5 cells), 

indicating that chance alone was not the cause of the precise repetitions. In a second test, 

we asked whether repetitions could be found when comparing traces from one neuron to 

those from another cell from a different animal. This test therefore did not involve shuffling 

the data. In the slice data, we restricted this analysis only to cells of the same kind (large 

layer 5 pyramidal neurons) to help ensure a similar distribution of PSC kinetics. In this 

analysis we found that HRIs were significantly higher from individual cells than from 

across cells from different animals (1.12 ± 0.10 vs. 0.83 ± 0.06, mean of means from each 

cell or cell pair, p < 0.02, Wilcoxon rank sum test, n = 20 neurons). Furthermore, all HRIs 

from individual cells were significantly higher than those from across cells from different 

animals (1.24 ± 0.01 vs. 1.07 ± 0.01 , p < 0.001, Wilcoxon rank sum test, n = 16271 vs. 

5214 detected motifs, respectively). We concluded that motif repetitions did not occur by 

chance. For the shuffle test, PSP/Cs were detected by computing a covariance function of a 
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mean PSP/C risetime waveform against the entire spontaneous recording: this produced a 

waveform whose peaks marked the onset of PSP/Cs, and peaks passing a set threshold were 

taken as the start times of PSP/Cs. These onset times were also used to compute the jitter 

between PSCs in the motif-repeat pairs (see accuracy of onset detection in Fig. 1). All 

intervals less than 20 ms were cut from the array. Using this array of start times, we 

extracted 20 ms segments of the spontaneous recording and placed these extractions on a 

baseline at 0 mV to form a trace that represented the extracted PSP/Cs of the original 

recording. The distribution of intervals between these extracted PSP/Cs were randomly 

shuffled, and 50 shuffled traces were composed from these shuffled distributions for each 

unshuffled trace. A distribution of LRIs were computed for shuffled traces and compared to 

the LRIs of unshuffled traces. Due to the intensive computing time required for this 

procedure, it was only performed on a subset of the data (4 voltage-clamped cells in vitro, 

one 10 minute-long current clamp cell, in vivo and 3 voltage-clamped cells in vitro 

recorded in tetrodotoxin), and the HRI was not computed for the same reason. Procedures 

for computing the HRI and shuffle test were the same for current clamp recordings except 

that 100 ms increments instead of 20 ms increments were used in order to better match the 

longer kinetics of PSPs versus PSCs. 

 

2.3 Analysis of imaging data: 

Calcium signals of neurons were extracted from movies by using custom-written 

software in ImageJ (National Institutes of Health) and Matlab (MathWorks) (S3). 

Subsequent analyses were performed with Microsoft Visual Basic routines. Neurons were 

automatically identified in Nissl images to create cell contours, within which the 

fluorescence intensity was measured. For each cell, we defined the fluorescence change as 

∆F/F = (F1-F0) / F0, where F1 is fluorescence at any time point, and F0 is the baseline 

fluorescence averaged across the whole movie. To detect optical events, the first derivative 

of each trace was calculated by sliding a 1-sec cursor after smoothing the trace with a 300-

msec-window Hamming filter, and suprathreshold changes were detected as calcium 

transients (S5). The threshold was set to 2.58 × SD (P < 0.01) of noises, which were 

calculated from 5,892 cells in the presence of 1 µM tetrodotoxin or 2 mM Ni2+. We then 
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scrutinized all detected events by comparing original trances and manually rejected noises 

if they were erroneously detected. Noise events were easily distinguishable from spike-

relevant events by eye because spikes were followed by slower calcium decays over 

hundreds of milliseconds (S6).  

The topographic structures of sequences were identified and classified using Monte 

Carlo simulations (S3). First, we determined whether the arrangement of cells involved in a 

sequence could be classified into one of three spatial patterns (clusters, columns or layers). 

We characterized each pattern of coactive cells by three measurements: the average 

distance between cell locations and their centroid, the average length of the projections of 

these distances in the direction parallel to the pia, and the average length of the projections 

in the direction perpendicular to the pia. For each pattern, we created 1,000 surrogate 

arrangements of cells using Monte Carlo simulations, choosing the same number of cells at 

random from the slice each time. All three measurements were made for each of the 

surrogate patterns, and the significance of the spatial arrangement was determined by 

directly comparing the resulting distributions with the original measurements. If the 

distance projections were significantly small (P < 0.05) only in the direction parallel or 

perpendicular to the pia, the pattern was classified as a column or a layer, respectively. If 

the unprojected distances were significantly small, the pattern was classified as a cluster. If 

a sequence is classified into a column pattern, we next sought to determine whether the 

sequential activation of the cells in the sequence could be classified into an ascending or 

descending pattern. Similarly, if a sequence is classified into a layer pattern, we examined 

whether it could be classified into a laterofugal or mediofugal pattern. In this 

subclassification, we introduced the following formula as an index; 

 
where ai is a spatial vector from celli to celli+1 in a sequence (sequential n cells), and e is an 

unit vector perpendicular (columns) or parallel (layers) to the pia. For each pattern, we 

again created 1,000 surrogate arrangements of cells and determined the 5% significant level 

of the value C for selection of structured sequences. 

To determine the significance level of activity synchronization, we created surrogate 

rasterplots, in which ISI was reshuffled at random within cells with keeping event durations 
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constant, and collapsed it into the time histograms of coactive cells. We calculated the 

probability that any given number of cells was coactive. We repeated the reshuffling 1,000 

times to estimate the P-value of the statistic.  

We used a template-matching algorithm for global search for sequences. To speed up 

this process, we first selected cells that showed more than one calcium transient. After 

determining the reference calcium events of the reference cell (cell1), we designated a 

vector consisting of a set of cells and relative timings of their calcium events as follows: 

(cell2, …, cellN, t2, t3, … tN), where ti denotes the delay of the event of celli after the 

reference event. ti was limited to less than 5 sec of time window. This vector was 

considered as a template and slid along the successive events of cell1 throughout the 

recording session. If more than two elements were identical between any template pairs, we 

regarded the matched elements as a sequence. Each mismatch spike configuration was used 

as another template in a subsequent scan. Thus, every event was considered as a part of a 

template sequence, and each template occurred at least once. Unless otherwise specified, 

one frame jitter was allowed because the power of sequence detection (signal-to-noise) was 

maximal at this jitter (S1). As a result, the entire parallel train was exhaustively searched 

for repetition of all possible sequences. The same method was further applied to the onset 

timing of sequences to detect songs, in which case, however, we focused only on the 

sequential orders of sequences, ignoring their timings. We regarded any repeated sequence 

consisting of more than one sequence as a cortical song.  

To quantify the compression/expansion states and temporal precision of songs, we 

used an orthogonal regression method by the bivariate principal component analysis, in 

which the onset timings of the sequences comprising a song were fitted to the direct 

proportional line t’ = t tanθ in the space of the first song occurrence (t) vs. the second 

recurrence (t’) (the right-lower panels in Fig. 5A-B). Onset timings of N sequences 

comprising a song can be expressed as vectors, i.e., (t1, t2,…, tN-1) for the first occurrence 

and (t’1, t’2,…, t’N-1) for the second recurrence, where ti or t’i denotes the delay of 

sequencei+1 from the first sequence1. For pairwise comparison, the vectors were fitted to the 

direct proportional line t’ = t tanθ, where θ is defined so as to minimize the residual S: 
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In this regression analysis, therefore, the θ-value represents the compression/expansion 

state of the song; if θ is less than 45º, the song is temporally compressing, and if θ is more 

than 45º, it is expanding. The regression error reflects the precision in the relative timings 

of the sequences; the higher precision gives the lower regression error. Because the simple 

regression error was critically influenced by θ, we performed a pseudo-rotation coordinate 

transformation in the space of (ti, t’i), in which θ was transformed to 45° with keeping the 

ratio of tanθ : t’i / ti constant and maintaining the x-y axis direction. As a result, the new 

coordinate of (ti, t’i) is given as  

 
Now we defined the modified regression error L as follows. 

 
Thus, L can range from 0 to 1. 

We report the mean ± standard deviation in all measurements, unless otherwise stated. 



 Ikegaya et al., “Synfire chains and cortical songs: elastic temporal ensembles of cortical activity”   p.10 

3. References in the supporting material 
S1. J. Anderson, M. Carandini, D. Ferster, J. Neurophysiol. 84, 909-926 (2000). 
S2. V. Nikolenko, B. Nemet, R. Yuste, Methods 30, 3-5. (2003). 
S3. R. Cossart, D. Aronov, R. Yuste, Nature 423, 283-289. (2003). 
S4. I. Lampl, I. Reichova, D. Ferster, Neuron 22, 361-74. (1999). 
S5. D Smetters, A Majewska, R Yuste. Methods 18, 215-21 (1999). 
S6. B. Q. Mao, et al., Neuron 32, 883-98. (2001). 



 Ikegaya et al., “Synfire chains and cortical songs: elastic temporal ensembles of cortical activity”   p.11 

 
 

Fig. S1. Detection of repeated intracellular motifs. Approximately 19 seconds of a 
voltage clamp recording is displayed. Two 1-second regions are highlighted (blue (a) and 
red (b) trace) that have passed threshold for the LRI (i). These two regions are then 
analyzed again, using the HRI where every 20-msec region they have in common are 
compared (ii). 
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Fig. S2. Repeated motifs do not occur by chance. (A) Schematic drawing of the inter-
signal interval (ISI) shuffling of intracellular traces. PSCs (2) were extracted from an 
original trace (1), and the time intervals between these events were randomly shuffled with 
the temporal order of these events exactly preserved (3). (B) The red trace shows the 
original in vitro voltage clamp trace (same cell as Fig 1A). The superimposed black trace is 
the extracted PSPs. Note that most PSCs are detected, but some are not completely 
extracted in order to avoid overlaps of PSCs in shuffled traces. The blue trace is one of 50 
shuffled traces. Note the same order of events, and the difference in intervals. (C) (i) These 
shuffled traces were fed into the same program used to compute LRIs for real data. The 
distribution in black is composed of the rank ordered LRIs from the real data (extracted 
trace, 1A), while the blue is the rank-ordered LRIs from the shuffled traces. The real data 
produces a distribution of LRIs clearly distinguished from the shuffled traces. (ii) The same 
analysis was applied to a 10 minute current clamp recording in vivo (same recording 
yielding traces in Fig. 1C). The real data yielded more motifs than any shuffled trace (p = 
0.02). (D, E) Same analysis repeated for miniature PSCs recorded in 1 µM tetrodotoxin. 
Two examples out of three recordings are shown in E.  In all tetrodotoxin recordings, 
several shuffle traces that had more motifs than the real data.  
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Fig. S3. Laminar analysis of spontaneous activity. (A) Percentage of active cells relative 
to total cells (left), the rate of activity per min (middle), and the duration of individual 
activity (right) as a function of cortical layer. The rate of activity was normalized by 
dividing the total number of detected events by the number of cells measured and by the 
length of movie (2 min). *P < 0.05, **P < 0.01 vs. total; Bonferroni/Dunn test after one-
way ANOVA. Data are means ± sem.  (B) Locations where spatially organized spike 
sequences emerged. Data expressed as a percentage of sequences that appeared in each 
layer (n = 2,983 motifs in 54 movies obtained from the medial prefrontal cortex). 
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Fig. S4. Distribution of the duration of optical sequences. All 2,636 sequences detected 
in 54 movies are plotted. Data of 58,506 sequences in ISI-shuffled surrogates is 
superimposed as an average per movie (chance level). Window of analysis was 5 sec for 
both datasets. 
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Fig. S5. Spontaneous activity drifts with time. Two examples of long-lasting imaging 
experiments. (A) Spatial maps of cells monitored. The red circles are cells activated during 
2 min long movies taken every 10 min. Average percentages of active cells shared by any 
pair of movies were 25.9 ± 2.4 % in movie 1 (ranging from 7.8% to 39.7%) and 29.6 ± 
2.2% in movie 2 (ranging from 17.0% to 40.4%). (B) The probability that cells active 
during a period from 0 to 2 min were reactivated in subsequent movies declines with time. 
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Fig. S6. Synchronization of spontaneous activity is non-periodic. Left: Locations of 
active cells. Right top: onset timings rasterplot. The middle histogram represents the 
number of cells active at each frame of the movie. Synchronization appears intermittent, 
and its fast-Fourier transform (FFT) indicates no apparent peaks (right-bottom). 
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Fig. S7. Songs do not emerge by change. (A) Schematic diagram of sequence shuffling. 
Onset timings of sequences (A1, B1, C1, D1) and their repetitions (A2, B2, C2, D2) are 
randomized with maintaining each inter-sequence interval. (B) Representative analyses of 9 
movies. Panels B1 and B2 originate from data of Fig. 4C and Fig. 5A-C, respectively.  
Shuffling was repeated 100 times. Left: blue histograms represent the number of songs 
detected in each surrogate. The arrows (real) indicate the number of songs in original 
dataset. Right: the mean numbers of sequences forming individual songs in surrogate (blue) 
and real (black) datasets. Data are means ± SD of 100 surrogates. *p < 0.05, **p < 0.01. 
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Fig. S8. NMDA receptor activity is required for song occurrence. (A-B) Each top panel 
indicates typical rasterplots immediately before (A) and 15 min after bath application of 50 
µM D-AP5 (B). In the bottom panels, all sequences detected are depicted on the same 
rasterplot (43 and 6 sequences in A and B, respectively). (C) The number of sequences 
(blue) and songs (red), the rate of activity (black), and the percentage of active cells to the 
total (dark blue), the duration of calcium transients (dark red) and the length of spike 
sequences (green) were monitored immediately before and 15 min after bath application of 
50 µM D-AP5. *P < 0.05; Wilcoxon test (n = 7 movies). Data are means ± sem.  
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Fig. S9. Dopamine suppresses song occurrences. (A-B) Each top panel indicates typical 
rasterplots immediately before (A) and 15 min after bath application of 30 µM dopamine 
(B). In the bottom panels, all sequences detected are depicted on the same rasterplot (24 
and 4 sequences in A and B, respectively). (C-E) Effect of 30 µM dopamine, a combination 
of 30 µM dopamine (C, n = 7 movies) and 10 µM SCH23390 (D, n = 7), and 10 µM 
SKF38393 (E, n = 6) on the number of sequences (blue) and songs (red), the rate of activity 
(black), and the percentage of active cells to the total (dark blue), the duration of calcium 
transients (dark red) and the length of spike sequences (green). Data were obtained from 
the medial prefrontal cortex. The effect of dopamine in specifically blocking the temporal 
dynamics, without affecting the overall activity of the circuit, indicates that some of the 
clinical deficits present in schizophrenia can be interpreted as manifestations of an 
"attractor disease", since schizophrenia is believed to result, at least in part, from a 
pathological decline in D1-like receptor activity in the prefrontal cortex. *P < 0.05, **P < 
0.01; Wilcoxon test for the numbers of sequences and songs, paired-t test for duration. Data 
are means ± sem.  
 


