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Neurons in the inferior temporal (IT) cortex of monkeys respond
selectively to complex visual stimuli, such as faces. Single neurons in
the IT cortex encode different kinds of information about visual
stimuli in their temporal firing patterns. To understand the temporal
aspects of the information encoded at a population level in the IT
cortex, we applied principal component analysis (PCA) to the
responses of a population of neurons. The responses of each neuron
were recorded while visual stimuli that consisted of geometric
shapes and faces of humans andmonkeyswere presented.We found
that global categorization, i.e. human faces versus monkey faces
versus shapes, occurred in the earlier part of the population response,
and that fine categorization occurred within each member of the
global category in the later part of the population response. A cluster
analysis, a mixture of Gaussians analysis, confirmed that the clusters
in the earlier part of the responses represented the global category.
Moreover, the clusters in the earlier part separated into sub-clusters
corresponding to either human identity or monkey expression in the
later part of the responses, and the global categorization was
maintained even after the appearance of the sub-clusters. The results
suggest that a hierarchical relationship of the test stimuli is
represented temporally by the population response of IT neurons.

Keywords: hierarchical relationship, mixture of Gaussians analysis,
principal component analysis, variational Bayes algorithm

Introduction

A substantial number of neurons in the inferior temporal (IT)

cortex respond to faces or complex objects (Bruce et al., 1981;

Fujita et al., 1992). The responses of a population of neurons in

the IT cortex encode individual faces based on their physical

features (Hasselmo et al., 1989; Young and Yamane, 1992).

Young and Yamane recorded single-unit activity during the

presentation of 32 human-face images and calculated popula-

tion activity vectors consisting of the mean firing rates of

individual neurons for each stimulus. The population activity

vectors were of high dimensions, and it was necessary to reduce

the dimensions to visualize the behavior of the vectors. They

applied multi-dimensional scaling (MDS), and found that the

population activity vectors for facial stimuli with similar

physical features were closely arranged in two-dimensional

space. They calculated the population activity vectors from the

mean firing rates and their temporal property remained un-

known. Recently, it was reported that the responses of single

neurons to complex visual stimuli convey different kinds of

information along the time axis (Sugase et al., 1999; Tamura and

Tanaka, 2001). For example, information about global categor-

ization, i.e. human faces versus monkey faces versus shapes, was

conveyed in the earliest part of the responses. Information

about fine categorization within each member of the global

category, i.e. either the identity or expression of faces, was

represented later, beginning on average 51 ms after information

about the global categorization was conveyed (Sugase et al.,

1999). Therefore, the dynamics of neuronal responses in the IT

cortex are important for representing visual information at

different categorical levels at different times. Another study

(Tamura and Tanaka, 2001) reported that the responses to

visual stimuli became more selective later in the responses than

in the initial transient part of the responses. In these reports,

however, the authors were interested in the information en-

coded temporally by individual neurons and did not study the

temporal aspects of information coding at the population level.

Here, to understand the temporal aspects of information

coding at a population level in the IT cortex, we analyzed the

population activity across a number of individually recorded

neurons using principal component analysis (PCA) (Jollife,

1986), which is similar to MDS. Earlier observations of Sugase

et al. (1999) suggested that global categorization occurs before

fine categorization. In this study, we investigated how complex

visual stimuli are represented along the time axis with respect

to the responses of the neuronal population.

We addressed three points that remained unsolved in our

previous study (Sugase et al., 1999). Previously, we described

one type of neuron that encoded information about both global

and fine categorizations in its responses. To examine informa-

tion coding at a population level, the present study analyzed the

responses of several types of neurons, including neurons that

encoded both global and fine information, and also neurons that

encoded only global information or only fine information.

Second, to evaluate whether our a priori classification of the

stimuli, i.e. global and fine categorization (Sugase et al., 1999),

was appropriate, we used a cluster analysis, a mixture of

Gaussians analysis. Using the cluster analysis, we were able to

classify the population activity vectors for individual stimuli

without an arbitrary categorization of the stimulus. We assessed

our a priori classification by comparing the clusters produced in

the cluster analysis. Third, we were especially interested in

whether global categorization was retained after the occur-

rence of fine categorization within each member of the global

category, i.e. whether the test stimuli were represented

hierarchically along the time axis. Preliminary results have

been presented in abstract form (Matsumoto et al., 2001).

Methods

Neuronal data were collected from two macaque monkeys (Macaca

fuscata). All the details of the experimental procedures are described in

Sugase et al. (1999). The procedures were approved by the Animal Care

and Use Committee of the Neuroscience Research Institute/Electro-

technical Laboratory and were in accordance with the Guide for the

Care and Use of Laboratory Animals as adopted by the NRI/ETL. In brief,
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single-unit activities of 1885 neurons were recorded in the IT cortex.

The neuronal responses of each unit were studied while the monkey

performed a fixation task. Thirty-eight visual stimuli were used in the

task. The stimuli consisted of 16 monkey faces (four models with four

expressions, i.e. neutral, pout-lipped, mid-open-mouthed and full open-

mouthed faces), 12 human faces (three models with four expressions,

i.e. neutral, happy, surprised and angry faces) and 10 geometric shapes

(rectangles and circles, each in one of five colors, i.e. red, blue, green,

pink and brown) as shown in figure 1 in Sugase et al. (1999). During the

fixation task, the monkey started each trial by pressing a button. A

fixation spot (a small red spot of 0.3�) appeared in the center of a color

monitor screen that was located 48 cm in front of the eyes, and was

displayed for 600 ms. The fixation spot was replaced by a blank gray

background for 250 ms, and then one of the test stimuli was presented

for 350 ms. An error was registered if the monkeymoved its eyes beyond

a fixation limit (within ±1� of the fixation spot). The neuronal activities

were recorded with 1 ms time resolution. Of the 1885 neurons

recorded, 169 neurons responded to at least one of the face stimuli

[threshold criterion, the mean + 2SD of the responses within a 140 ms

period before the stimulus onset (P < 0.05)]. Of the 169 neurons, we

tested 97 using all stimuli from at least two of the three stimulus sets (i.e.

two sets from the human face, monkey face or shape sets), and tested

45/97 neurons using all 38 test stimuli (i.e. all stimulus sets). To analyze

how the responses of a population of IT neurons represented all test

stimuli quantitatively, we used the data for the 45 neurons that we

tested using all 38 test stimuli. Some of the neuronal data given here

were taken from Sugase et al. (1999).

For the information-theoretic analysis, we used the method described

in (Sugase et al., 1999). Briefly, information about the test stimuli was

divided into one global (human faces versus monkey faces versus

shapes) category and six fine (identity of the human faces, expression

on human faces, identity of the monkey faces, expression on the

monkey faces, color of the shapes, and form of shapes) categories. Each

predictable piece of information associated with the occurrence of

a neuronal response (I (S; R)) was quantified as the decrease in entropy

of the stimulus occurrence (H (S)):

I ðS;RÞ = H ðSÞ –H ðS jRÞ

= – +
s

pðsÞ logpðsÞ – – +
s

pðs j r Þ logpðs j r Þ
� �

r

ð1Þ

where S is the set of stimuli s, R is the set of signals r (the neuronal

response, i.e. the spike count), p(sjr) is the conditional probability of

stimulus s given an observed spike count r, and p(s) is the a priori

probability of stimulus s. The brackets indicate an average of the signal

distribution p(r). To examine the time course of the information, the

response was evaluated using 50 ms sliding windows. The middle of the

window was moved in 8 ms steps, beginning 5 ms after the stimulus

onset and lasting until 509 ms (for details, see Sugase et al., 1999).

Principal Component Analysis
For the population analysis, we calculated a population activity vector

for each stimulus. The procedure used to calculate the population

activity vectors is summarized in Figure 1. A spike density function was

obtained by averaging the spike counts between time t (ms) and t + 1

over the number of trials, and it was smoothed using a Gaussian filter

with a variance of 10 ms. The population activity vector vi for test

stimulus i consisted of the mean firing rates of 45 neurons that were

recorded individually. The mean firing rates were obtained by averaging

the spike density function within a 50 ms time window. Each population

activity vector had 45 dimensions. Within the 50 ms time window, there

were 38 population activity vectors for the 38 test stimuli. The start time

of the time window was incremented by 1 ms from 0 ms (at the

beginning of the presentation of the test stimuli) to 300 ms. This shift

enabled observation of the temporal aspects of the neuronal population.

Principal component analysis (PCA) is a dimension-reduction method

that rearranges data in a high-dimensional space into a lower-dimen-

sional space while preserving as much of the information in the high-

dimensional data as possible. PCA was applied to the 38 population

activity vectors in each time window. The greatest variance of the

population responses was represented in the first principal component

and the second greatest variance was represented in the second

principal component.

Mixture of Gaussians Analysis
Weused amixture of Gaussians analysis to cluster the population activity

vectors. We assumed that the 38 population activity vectors v = f v1,
v2,. . ., v38g were generated from 45-dimensional Gaussian distributions,

i.e. amixture of Gaussians. Variational Bayes (VB) algorithm (Attias, 1999;

Ghahramani and Beal, 2000) was used to estimate the parameters of the

mixture of Gaussians, i.e. the means, variances, mixing ratios and number

of the 45-dimensional Gaussian distributions. We estimated the number

of Gaussians corresponding to the number of clusters from the free

energy, which indicates the distance between the estimated mixture of

Gaussians and the most appropriate mixture of Gaussians (Attias, 1999;

Ghahramani and Beal, 2000). As the free energy increases, the estimated

mixture of Gaussians approaches themost appropriate one (Attias, 1999;

Ghahramani and Beal, 2000). We set the number of Gaussians from 1 to

10 and calculated the free energy 20 times for each number of Gaussians.

Then, we examined the parameters and the number of Gaussians at

which the free energy was the maximum. When the free energy is

maximal, the members of each cluster are also determined. For example,

Figure 1. The procedure used to calculate the population activity vectors. The population activity vector vi for the visual stimulus i consists of the mean firing rates of 45 neurons
within a 50 ms time window. The start time of the window is incremented by 1 ms from 0 ms (at the beginning of the presentation of the stimuli) to 300 ms.
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let us assume that there are vectors and two clusters (A and B). The free

energy is calculated for two cases: when one of the vectors belongs to

cluster A and when the same vector belongs to cluster B. If the value of

the free energy is larger when the vector belongs to cluster A than to

cluster B, the vector is assigned as a member of cluster A. Similarly, the

members of each cluster are determined.

Results

Results of PCA

We analyzed the responses of 45 neurons at the population level

(see Methods). The responses of the 45 neurons were recorded

individually. First, we classified the 45 neurons using the

information-theoretic analysis that was used in Sugase et al.

(1999). For the responses of each neuron, we calculated the

information transmission rate for one global (human faces

versus monkey faces versus shapes) category and six fine

(human identity, human expression, monkey identity, monkey

expression, shape color, and shape form) categories. We found

that 36/45 neurons encoded both global and fine information,

7/45 neurons encoded only global information and the remain-

ing 2/45 encoded only fine information.

As we reported previously, information on the global category

was transmitted before information on the fine category, with

an average difference in latency of 51 ms, although there was

substantial variation across the neurons (SD = 39 ms, n = 32;

Sugase et al., 1999). The time of the peak information trans-

mission rate for both the global and fine categories also varied

cell-by-cell, and was 152 ± 57 ms (mean ± SD) for global

information and 179 ± 49 ms for fine information. One reason

for the variation among the neurons was that each neuron had

a different temporal firing pattern. In the example shown in

Figure 2a, some neurons had both initial transient and later

sustained responses, whereas others showed only an initial

transient response (Fig. 2b) or a later sustained response (Fig.

2c). The peak times for global information were 117, 109 and

213 ms after the stimulus onset for the neurons in Figure 2a,b,c,

respectively (Fig. 2, arrows in the left panels). The peak times

for fine information also varied among the neurons, and were

Figure 2. Examples of the responses of three neurons that encoded both global and fine information. For each cell, the left panel shows the summed response for members of
a global category, i.e. human faces (red dashed line), monkey faces (blue dashed line) and shape forms (green dashed line). The right panel shows the summed response for
members of a fine category. For the neurons in (a) and (b), the responses are summed for three different human identities (red solid lines). For the neuron in (c), the responses are
summed for four different monkey expressions (blue solid lines). All three neurons encode global information. For fine information, the neurons in (a) and (b) encode information
about human identity, and the neuron in (c) encodes information about monkey expression. The arrow under the abscissa in each plot shows the time of the peak information
transmission rate for each category. The thick black bar on the abscissa indicates the 350 ms period of stimulus presentation.
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205, 149 and 245 for the respective neurons (Fig. 2, arrows in

the right panels). The peak time for the global information

preceded the peak time for the fine information. The intervals

between these two peak times varied among the neurons, and

were 88, 40 and 32 ms for the respective neurons.

Having the cell-by-cell variation for the intervals between the

peak times of these two information measures, we decided to

perform a population analysis to see how the IT neurons

represented the test stimuli along the time axis. For the

population analysis, we calculated 38 population activity vectors

consisting of the mean firing rates of the 45 neurons for the 38

test stimuli within a 50 ms time window, moving in 1 ms steps.

Weapplied PCA to the38population activity vectors in each time

window. Consequently, the 38 population activity vectors in the

45-dimensional space projected onto 38 vectors in the two-

dimensional space. To determine the time windows in which

global or fine categorization occurred, we calculated the

distances between the population activity vectors. The center

coordinates for vectors that belonged to either global or fine

categorieswere determined by averaging the coordinates for the

vectors. For the global category, three distances were measured,

i.e. the distance between the center of the human face vectors

and the center of themonkey face vectors, the distance between

the center of the monkey face vectors and the center of the

shape vectors, and the distance between the center of the human

face vectors and the center of the shape vectors. The sum of the

three distances was the maximum in the [90 ms, 140 ms] time

window. For the fine category, the distances between the

centers of the vectors were measured and summed within

eachmember of the global category, i.e. human identity, monkey

expression and shape form. The sum of the distances for human

identity, monkey expression, and shape form was the maximum

in the [140 ms, 190 ms] window. Therefore, the [90 ms, 140 ms]

window was regarded as the time window when global categor-

ization occurred, and the [140ms, 190ms]windowwas regarded

as the time window for fine categorization.

To examine whether only a few neurons determine the

distribution of the population activity vectors, we calculated the

eigenvectors that determined both the first and second princi-

pal components. The first principal component was determined

by the eigenvector shown in Figure 3a. The second principal

component was determined by the eigenvector shown in Figure

3b. A neuron with a higher value of the element contributes

more to setting a principal component. From Figure 3a,b, it is

clear that the distribution of the values is not biased toward

a small number of neurons, indicating that more than a small

number of neurons contribute to setting both the first and

second principal components. We also checked the eigenvalues

to see how each principal component contributed to the PCA

space (Fig. 3c). The eigenvalue indicates how much of the

variance in the data is represented along each axis. The

eigenvalue of the first principal component was largest, in-

dicating that the first principal component represented most of

the variance in the population response.

Figure 4 shows the distributions of the 38 population activity

vectors in the two-dimensional space in the [90 ms, 140 ms] and

[140 ms, 190 ms] time windows together with the [0 ms, 50 ms]

window, which was the initial condition of the population

vectors. The contribution ratio was 34.2% in the [0 ms, 50 ms]

time window, 67.7% in the [90 ms, 140 ms] window and 67.1%

in the [140 ms, 190 ms] window. The ratios in the [90 ms,

140 ms] and [140 ms, 190 ms] time windows were high, given

the reduction from 45 dimensions to only two dimensions,

suggesting that the information encoded in the [90 ms, 140 ms]

and [140 ms, 190 ms] windows in the two-dimensional space

preserved the information in the 45-dimensional space well. In

the [0 ms, 50 ms] time window, all the distributions overlapped.

In the [90 ms, 140 ms] window, the distribution pattern

suggested that global categorization, i.e. human faces versus

monkey faces versus shapes, occurred during this time period

(Fig. 4a). In the [140 ms, 190 ms] window, the distances

between the distributions of each member of the global

category were maintained (Fig. 4a). In addition, the human

identity distributions (Fig. 4b) and the monkey expression

distributions (Fig. 4c) were separated. But, the human expres-

sion distribution (Fig. 4c) and monkey identity distribution (Fig.

4b) still overlapped. The distribution pattern suggested that fine

categorization, i.e. human identity or monkey expression,

occurs during the [140 ms, 190 ms] window, while global

categorization was maintained. These results suggest that the

hierarchical relationship of the test stimuli is represented by the

dynamics of neuronal responses at the population level.

Results from the Mixture of Gaussians Analysis

PCA separated the distributions of human, monkey, and shape in

the [90 ms, 140 ms] time window. Therefore, global categor-

ization, i.e. human versus monkey versus shape, occurred during

this period. In the [140 ms, 190 ms] window, the individual

distributions of human identity and monkey expression were

separated. Therefore, fine categorization, i.e. human identity or

monkey expression, occurred during this period. We re-plotted

the PCA space in which the ellipses now represent the

distributions of human identity, monkey expression, or shape

form in Figure 5a. To investigate whether both the global and

fine categorizations approximated what the neuronal responses

represented, we applied a cluster analysis, a mixture of

Gaussians analysis, to the 45-dimensional population activity

vectors in each time window (see Methods).

The clusters obtained using the mixture of Gaussians analysis

in the [0 ms, 50 ms], [90 ms, 140 ms], and [140 ms, 190 ms]

windows are shown as circles in Figure 5b. Therewere 3, 6 and 7

clusters in the [0ms, 50ms], [90ms, 140ms] and [140ms, 190ms]

windows, respectively. The members of each cluster in the

[90 ms, 140 ms] and [140 ms, 190 ms] windows are shown in

Figure 6a,b. The [90ms, 140ms] window contained clusters cor-

responding to human faces,monkey faces and shapes (Fig. 6a). In

addition, six monkey faces with a open mouth were separated

from the other monkey faces. In the [140 ms, 190 ms] window,

some clusters that were found in the [90 ms, 140 ms] window

were separated into sub-clusters (Fig. 6b). The human face

cluster in the [90 ms, 140 ms] window was separated into two

sub-clusters. The twomonkey face clusters in the [90ms, 140ms]

window were separated into three sub-clusters (Fig. 6b).

We evaluated the clusters obtained in the mixture of

Gaussians analysis to investigate how precisely the clusters

categorized the test stimuli. The mutual information I(A; B)

between the categories (A) of the test stimuli and the clusters

(B) was calculated as

I ðA;BÞ = – +
n

i=1

pðaiÞ log pðaiÞ

– – +
n

i=1

+
m

j=1

pðai ;bjÞ log pðai jbjÞ
( )

ð2Þ
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where ai represents the a priori categorization of the test

stimulus and bj represents the label of the cluster. For example,

a1 represents the first person and b1 represents the first cluster.

Probability p(ai) is the prior probability of the occurrence of ai,

probability p(ai,bj) is the joint probability of the occurrence of

both ai and bj, and probability p(aijbj) is the conditional

Figure 3. Eigenvectors and eigenvalues for the PCA analysis. (a) The eigenvector of the first principal component for the [90 ms, 140 ms] and [140 ms, 190 ms] time windows. (b)
The eigenvector of the second principal component for the [90 ms, 140 ms] and [140 ms, 190 ms] windows. The horizontal axis indicates neurons (from 1 to 45), while the vertical
axis indicates the value of each element that constitutes the eigenvector. (c) The eigenvalues for the [90 ms, 140 ms] and [140 ms, 190 ms] windows. The horizontal axis indicates
the dimension (from 1 to 45), while the vertical axis indicates the eigenvalues. For the [90ms, 140ms] window, eigenvalues of first, second and third principal components are
0.0038 (contribution ratio: 53.4%), 0.0010 (14.3%) and 0.0008 (11.7%), respectively. For the [140ms, 190ms] window, eigenvalues of first, second and third principal components
are 0.0056 (55.2%), 0.0012 (11.9%) and 0.0008 (8.5%), respectively.
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probability of the occurrence of ai given bj. The values of the

mutual information (bits) for the global category and individual

fine categories in each time window are shown in Table 1.

The global category was human faces versus monkey faces

versus shapes. The mutual information between each cluster

and the global category approached its maximum value in the

[90 ms, 140 ms] time window, and remained the same in the

[140 ms, 190 ms] window. This suggests that the global category

was represented in the [90 ms, 140 ms] time window and was

maintained until the [140 ms, 190 ms] window. Regarding the

information common to each cluster and the fine categories, the

mutual information concerning both human identity and

monkey expression was maximal in the [140 ms, 190 ms] time

window, suggesting that this window represented the fine

Figure 4. Population activity vectors in two-dimensional space rearranged using PCA in the [0 ms, 50 ms], [90 ms, 140 ms] and [140 ms, 190 ms] windows. The horizontal axis
represents the first principal component, while the vertical axis represents the second principal component. The points indicate the population activity vectors for the individual
stimuli. The colors of the points represent the global category: the vectors for human faces, monkey faces and shapes are shown in red, blue and green, respectively. The ellipses
indicate the distributions of the population activity vectors for the global (a) and fine (b and c) categories. (a) The distributions for human faces, monkey faces, and shape are shown
as red, blue and green ellipses, respectively (dashed line). (b) The distributions for human identity, monkey identity, and shape form are shown as red, blue and green ellipses,
respectively (solid line). (c) The distributions for human expression, monkey expression and shape color are shown as red, blue and green ellipses, respectively (solid line). The
ellipses were drawn by calculating the averages and co-variances of the coordinates of the points. The center of each ellipse is plotted so that it is located at the average point. The
direction of the ellipse and the length of the major and minor axes were calculated from the covariance.
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categories. There was little mutual information for both human

expression and monkey identity. Therefore, when fine categor-

ization occurred, human faces were classified mainly according

to identity, and monkey faces were classified mainly according

to expression. Mutual information between each cluster and the

shape-form category was maximal in both the [90 ms, 140 ms]

and [140 ms, 190 ms] windows, suggesting that the categoriza-

tion of shapes according to their form occurred before the fine

categorization of faces. Therefore, categorization occurred

from the global category to the fine categories along the time

axis, in which the fine categories corresponded to human

identity and monkey expression. This implies that the popula-

tion response of IT neurons represented a hierarchical relation-

ship of the test stimuli temporally.

Discussion

To understand the temporal aspects of information encoding at

the population level in the IT cortex, we analyzed the

population response across 45 individually recorded neurons

using PCA and a mixture of Gaussians analysis. Analysis of the

individual neurons has showed that the information on global

categorization increased ~51 ms before the information on fine

categorization (Sugase et al., 1999). The results of PCA in-

dicated that global categorization occurred in the [90 ms,

140 ms] window and that fine categorization occurred in the

[140 ms, 190 ms] window. In other words, the global categor-

ization occurred ~50 ms before the fine categorization.

Using the mixture of Gaussians analysis, we investigated

whether both the global and fine categorizations were close

approximations of what the neuronal responses represented.

The [90 ms, 140 ms] window contained clusters corresponding

to global categorization, i.e. human faces versus monkey faces

versus shapes. In the [140 ms, 190 ms] window, human faces

and monkey faces were separated into sub-clusters correspond-

ing to either the human identity or monkey expression. We also

found that the global categorization was maintained even after

the sub-clusters appeared. Therefore, a hierarchical relationship

of the test stimuli was represented.

For fine categorization, we found that human faces were

classifiedmainly according to identity, rather than to expression,

whereas monkey faces were classifiedmainly by expression. The

monkey subjects might have difficulty in discriminating be-

tween either different human expressions or different monkey

models using our test stimuli. It would be interesting to see

behavioral data for monkeys that perform a discrimination task,

such as the face identification task used by Eifuku et al. (2004),

using the same test stimuli, to see whether the monkeys have

difficulty in discriminating these two things.

How many faces can be represented in the monkey temporal

cortex using this type of coding? For example, in this study,

a population of 45 neurons encoded 0.71 bits for human

Figure 5. Comparison of the distributions of the population activity vectors for the fine categories and the distributions in the cluster analysis. These figures are the same as Figure
4, except what the ellipses indicate. (a) The red, blue and green ellipses indicate the distributions of the population activity vectors for the fine categories human identity, monkey
expression and shape-form, respectively. (b) The clusters obtained from the mixture of Gaussians analysis are shown as circles. The center of each circle is plotted so that it is
located at the average value of the coordinates of the points. The radius of the circle was calculated from the standard deviation of the coordinates of the points.
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Figure 6. Members of individual clusters obtained through the mixture of Gaussians analysis. The results in the (a) [90 ms, 140 ms] and (b) [140 ms, 190 ms] windows. The
ellipses indicate the clusters corresponding to the circles in Figure 5b. Each image shows a test stimulus of each population activity vector. For monkey faces, the [90 ms, 140 ms]
window (a) contains two clusters: one (on the right) contains all four full open-mouthed and two mid-open-mouthed faces. In the full open-mouthed faces, the monkeys have their
mouths wide open, showing their teeth. The other cluster (on the left) contains the remaining faces, i.e. all four neutral, four pout-lipped and two mid-open-mouthed faces. In the
[140 ms, 190 ms] window (b), the right monkey cluster in (a) is maintained and the left monkey cluster is further separated into two sub-clusters: one (on the left) containing three
pout-lipped and one neutral face, and the other (in the middle) containing three neutral faces, two mid-open-mouthed faces and one pout-lipped face.
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identity. To represent as many as 100 human identities (6.6 bits)

might need a population of neurons about nine times larger, i.e.

~400 neurons, assuming that each population encodes infor-

mation about human identity independently. As there are more

than 400 neurons in the IT cortex, we believe that the IT

neurons have the capacity to represent a much larger number of

faces, using hierarchical coding.

We also found that in the [140 ms, 190 ms] window, fine

categorization occurred within each member of the global

category, while global categorization was maintained. This

implies that the population of neurons extracts a hierarchical

relationship from among the test stimuli and represents each

stage of the hierarchy at a different time. This temporal

hierarchical encoding might be useful for memory in the IT

cortex. As the number of neurons in the IT cortex is limited, the

neurons have to store information efficiently. Storing the in-

formation hierarchically along the time axis is one way of

ensuring such efficient encoding. For example, when a human

face is stored, it would be classified into a human group. The

neurons that represent information regarding the human group

would have to store only the differences between this face and

other people’s faces; they do not have to store all the possible

relationships between this face and a wide variety of objects

throughout the world. This reduces the effort needed to

remember a face. Hierarchical encoding might have another

benefit. As the amount of information stored in the IT cortex

increases, more time is needed to search for a target. If the

information is stored hierarchically, less time is needed to search

for an object because global information can be used as a tag. For

example, whenwe recognize a person by looking at his/her face,

initially there is a search for the human faces category and then

there is a search for the face among the human faces in memory.

This would take less time than searching for the face directly

among the large number of information items that humans

habitually store. Therefore, hierarchical encoding would also be

important because it enables a rapid search.

The next question is how the dynamics of information

representation in the IT cortex are produced. The visual areas

earlier than the IT cortex are thought to play a role in

processing the more detailed features of a visual stimulus, so

global and fine categorization of the test stimuli might not take

place in these areas, whereas the global and fine relationship

might be detected in the IT cortex. There are several neural

network models that can reproduce our IT neuronal responses.

As an example, Matsumoto and Okada (2004) examined

whether a neural network within the IT cortex served an

important role in forming the dynamics of the neurons. They

used an attractor network (Amit, 1989), and found that the

dynamics of their attractor network were qualitatively similar to

the responses of the IT neurons recorded by Sugase et al.

(1999). Another attractor model has been proposed for the

hierarchical classification of odors (Ambros-Ingerson et al.,

1990). This model includes feed-forward and feedback con-

nections between two different areas (olfactory bulb and

olfactory cortex), and might be applicable to our hierarchical

processing of visual stimuli. Some neurons in the IT cortex have

prolonged sustained activity that continues after the disappear-

ance of a visual stimulus (Miyashita, 1988; Miyashita and Chang,

1988). Experimental evidence has shown that this type of

mnemonic signal is triggered by a top-down signal from the

prefrontal cortex (Tomita et al., 1999). Interactions between

the IT cortex and prefrontal cortex might also be important in

hierarchical representation. Yet another model is a feedforward

model that includes both slow and fast pathways, in which

global information is processed on a fast pathway and fine

information is processed on a slow pathway. Therefore, either

an intra- or inter-areal contribution might be important for the

hierarchical representation of visual stimuli, or a hierarchical

representation might already be observed in the visual cortex

that sends its major output to the IT cortex. Interesting further

studies into the neural mechanisms underlying the hierarchical

representation might involve experimental manipulations such

as the disruption of neuronal processing either within the IT

cortex or between the IT cortex and other areas, or recording

from the cortex that participates in an earlier processing stage

along the ventral visual stream.
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