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Abstract

Spike-frequency adaptation is a common feature of neural dynamics. Here we present
a low-dimensional phenomenological model whose parameters can be easily determined from
experimental data. We test the model on intracellular recordings from auditory receptor
neurons of locusts and demonstrate that the temporal variation of discharge rate is predicted
with high accuracy. We relate the model to biophysical descriptions of adaptation in conduc-
tance-based models and analyze its implications for neural computation. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Neural activity results from a large number of interacting ionic currents across the
cell membrane. Biophysically motivated neuron models such as the Hodgkin-Huxley
model may reproduce the membrane potential with high precision. For theoretical
investigations, however, abstract models, like integrate-and-fire neurons, have the
advantage that they do not depend on a large number of parameters. Here we present
a low-dimensional neuron model which can be related directly to experimental data.
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At the same time, it is amenable to theoretical analysis. To apply the model to
a particular neuron one only has to measure its transient and steady state f-I-curves.

2. The model

In systems with spiking neurons, the timing of action potentials constitutes the
elementary neural signal. The underlying intrinsic dynamics of a single neuron can be
described as the time evolution of a non-linear oscillator.

For sufficiently strong constant stimuli, neurons exhibit oscillations with period
T = 1/f. The dependence of f on the input current I is given by the neuron’s f~I-curve,
which can be easily determined in experiments (Fig. 1B). The oscillations correspond
to stable limit cycles. On these trajectories the phase-velocity d®/dt in general is
a function of the phase @ and the input I:

do

— = (P, I(1)). 1

= h(@.10) (1)
For the upper part of the neuron’s f~I-curve this function can approximately be
factorized: W(®,I) = g(®)f(I). Introducing another phase variable ¢e€[0,1) via
dp/d® = 1/g(®) Eq. (1) can be transformed into the evolution equation of a non-leaky
integrator

{%‘f =fU@). ¢ <1,
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The condition that f depends exclusively on I(t) is, however, not fulfilled for real
neurons. In particular, spike-frequency adaptation is exhibited by many types of
neurons [3-5] and leads to large transients as can be seen in the response to a step
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Fig. 1. Response properties of a locust auditory receptor neuron. A. Step responses (dashed lines) to
constant stimuli (bottom bar) with different intensities as indicated by the labels. Note that the observed
time constant 7.;; depends on input intensity. B. The initial f~I-curve (f,, open circles) and the steady-state
f-I-curve (f,,(I), filled circles) determined from the measurements shown in A. The triangles display the
f-I-curve for a fixed adaptation state (4 = constant) corresponding to I = 78 dB.
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current (Fig. 1A). To account for this effect, we introduce an adaptation variable A so
that the f~I-curve now reads f(I, A). A mathematical analysis of conductance-based
models reveals the following dependence of fupon I: (1) The current of a potassium
adaptation channel acts subtractive on the input current I, which shifts the f~I-curve
to higher input intensities. (2) The dependence of the adaptation current on the
membrane potential leads to a scaling of the f~I-curve by a factor a(A). (3) The
adaptation state A4 is governed by a first-order relaxation to a maximum value A,,,.
This kind of dynamics can be directly derived from the underlying slow mechanism,
which may either be the gating process of a voltage-gated potassium current or
calcium dynamics [7]. These results suggest the following low-dimensional model:

J(©) =1, A) = ac(A) fo(I — A),

d
T&A = Amax(.f(ls A)a I) - A, (3)
where fy(I) is the initial f~I-curve (Fig. 1B) and 7 denotes the adaptation time constant.
The current approach is intended to be as independent from a specific microscopic
model as possible. We therefore use the steady-state f,, (I)-curve (Fig. 1B) to determine
Amay instead of deriving it from channel properties. Neglecting the scaling factor o(A)
we obtain:
F0) =foll — A),
d —I—1o'(f(D)
—A=—"—""""Aft) — A. 4
e 0 A1) (4)

It follows that the time constant of the exponential decay of the firing rate observed
for constant stimuli 7. is related to the adaptation time constant 7 by

£

(5)

3. Results
3.1. Experiments

In order to test the model (Eq. (2) together with Eq. (4)), intracellular recordings in
auditory receptor neurons of the Locust (Locusta migratoria) were performed. Since
the input of these receptors can be reliably controlled without any interfering influen-
ces from dendritic processes, synaptic dynamics, or inputs from other neurons, these
receptors are ideally suited for this type of investigation. The parameters were
determined from two f-I-curves derived from step inputs. Subsequently, the model
behavior was tested on a strongly time-dependent stimulus. As Fig. 2 demonstrates,
the model predicts the measured instantaneous rates very well.
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Fig. 2. Asan example for the performance of the model, the neuron’s response (middle panel, dashed line) to
an amplitude-modulated stimulus (carrier frequency: 5 kHz, modulation: broad-band noise with cut-off
frequency 50 Hz) is shown (upper panel). The f~I-curves shown in Fig. 1 and an adaptation time constant
T = 150 ms resulting from Eq. (5) are used to calculate spike trains with the model. The instantaneous
rate of these spike trains (middle panel, solid line) closely follows the experimental data (dashed line). In the
middle panel the instantaneous rate f'is the reciprocal value of the inter-spike interval at any time bin.
The lower panel shows the value of the adaptation state A. Note, that a 5 dB shift of the f,(I)-curve may
alter the output of the model by 150 Hz.

3.2. Theory

Selective filtering of input signals is a key component of neural computation at the
single-cell level. The characterization of filter properties is therefore an important
issue in theoretical neuroscience. To obtain an analytical expression we focused on
linear f~I-curves fo(I) = mo(I —Iy) and f,.(I)=m, (I —1,). Eq. (4) implies that
I, equals I, so that both these values can be set to zero. In this case Eq. (4) leads to
the differential equation

[1 + ‘C——:|f(t) w[l + r%}](t). (6)

The neural filter properties are then completely characterized by the complex-valued
transfer function:

1 + (tw)’m, /my + ito((m,, /mg) — 1)

Hiw) =m., 1 + (twm,, /mgy)?

(7)
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Fig. 3. The amplitude |H| and the phase arg(H) of the transfer function H(w) Eq. (7) plotted for different
ratios of mg/m,, as indicated by the labels.

As can be seen from the amplitude frequency relation |H(w)| in Fig. 3, increasing
adaptation (high mg/m, -ratios) turns the neuron into a high-pass filter. The phase
frequency relation is given by arg(H(w)) and reflects the neuron’s tendency to respond
with a phase advance (Fig. 3). Note that the transfer function describes the output
signal f(t) before Eq. (2) is used to calculate the model spike trains.

If one compares the above filter properties with those of depressing synapses [1,6]
the frequency dependence of both systems is strikingly similar. Brief interruptions of
an input signal [2] are transmitted very reliably in both systems. This property
strongly enhances the capability to detect behaviorally relevant signals such as brief
gaps in acoustic communication signals.

4. Conclusion

The phenomenological model presented here combines three aspects: (1) The model
contains few parameters that can be easily measured in experiments. (2) The model
can be derived from detailed conductance-based approaches. (3) The simplicity of the
model allows detailed theoretical analysis and quantitative predictions. To test the
model, intracellular recordings in auditory receptor neurons of the Locust were
performed. The time-resolved rates of the predicted spike trains agree well with
experimental measurements.
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