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A Spin Glass Model of Path Integration in Rat Medial
Entorhinal Cortex

Mark C. Fuhs and David S. Touretzky
Computer Science Department and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Electrophysiological recording studies in the dorsocaudal region of medial entorhinal cortex (dMEC) of the rat reveal cells whose spatial
firing fields show a remarkably regular hexagonal grid pattern (Fyhn et al., 2004; Hafting et al., 2005). We describe a symmetric, locally
connected neural network, or spin glass model, that spontaneously produces a hexagonal grid of activity bumps on a two-dimensional
sheet of units. The spatial firing fields of the simulated cells closely resemble those of dMEC cells. A collection of grids with different scales
and/or orientations forms a basis set for encoding position. Simulations show that the animal’s location can easily be determined from the
population activity pattern. Introducing an asymmetry in the model allows the activity bumps to be shifted in any direction, at a rate
proportional to velocity, to achieve path integration. Furthermore, information about the structure of the environment can be superim-
posed on the spatial position signal by modulation of the bump activity levels without significantly interfering with the hexagonal
periodicity of firing fields. Our results support the conjecture of Hafting et al. (2005) that an attractor network in dMEC may be the source
of path integration information afferent to hippocampus.
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Introduction
The ability of rodents to navigate based on path integration (Mit-
telstaedt and Mittelstaedt, 1980; Etienne et al., 1986; Etienne,
1987; Alyan and McNaughton, 1999) and the persistence of hip-
pocampal place fields in the dark have motivated the inclusion of
a neural path integrator (PI) in theories of rodent navigation
(McNaughton, 1989; O’Keefe, 1989; Touretzky and Redish, 1996;
Redish and Touretzky, 1997; Samsonovich and McNaughton,
1997) (see also Etienne and Jeffery, 2004; O’Keefe and Burgess,
2005). In a “locale navigation” system (O’Keefe and Nadel, 1978),
path integration helps solve the “simultaneous localization and
mapping” problem (Smith et al., 1990; Montemerlo et al., 2002):
to map an environment, sensory features must be associated with
a motion-derived representation of the animal’s location in some
coordinate system. In a “praxic navigation” system, path integra-
tion can construct trajectories to previously visited locations.

Recent electrophysiological recording experiments in the dor-
socaudal region of rat medial entorhinal cortex (dMEC) strongly
suggest that the path integrator resides there (Fyhn et al., 2004;
Hafting et al., 2005). Cells in this region exhibit multiple spatial
firing fields arranged in a hexagonal grid. The scale of the grid
increases, moving from the dorsal edge of dMEC to more ventral
locations, but locally, cells recorded on the same tetrode tend to
share both scale and grid orientation, suggesting that they are part
of a local microcircuit (Hafting et al., 2005).

We show via a neural network model that the data are consis-

tent with dMEC serving as the path integrator within a locale
navigation system. Our model provides both a cogent explana-
tion of the firing properties of grid cells and a mechanism by
which such cells could satisfy the computational requirements for
path integration. Redish and Touretzky (1997) posited these to
include the following: (1) spatially localized firing fields that are
universal across environments; (2) activity patterns updated
based on self-motion information; (3) activity patterns reset dur-
ing reentry into a familiar environment; and (4) population ac-
tivity patterns coding for position over a large area. We do not
address here what role the dMEC might play in praxic navigation.

We first show that hexagonally spaced activity bumps can
arise spontaneously on a sheet of neurons in a spin glass-type
neural network model (Hopfield, 1982, 1984). Introducing an
asymmetric form of the connection matrix and assigning a pre-
ferred direction of motion to each cell, with a corresponding
velocity-dependent input such as might be provided by the head
direction system (Sharp et al., 2001; Wiener and Taube, 2005),
allows the bumps to shift in any direction and gives individual
units hexagonally repeating firing fields. We then show that a
collection of grids with different scales and orientations allows an
efferent structure such as the hippocampus to construct place-
specific representations covering a substantially larger area than
the period of the largest grid. Finally we show that “sensory”
patterns can be superimposed onto the network, modulating the
strengths of the firing fields of the cells without disrupting their
hexagonal structure.

Parts of this work have been published previously in abstract
form (Touretzky and Fuhs, 2005).

Spin glass model
To model the formation of a grid of bumps, we use a network of
nonlinear neurons arranged on a two-dimensional sheet. The
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weight matrix governing their mutual interactions is symmetric,
and neuron interactions are constrained to be local: a neuron
interacts only with those within a neighborhood around it on the
sheet. This type of network is known as a spin glass model, by
analogy with statistical mechanics models of frustration in mag-
netic systems (Hopfield, 1982, 1984). Spin glass models exhibit
stable states (attractors) that correspond to local minima of an
energy function. They will settle into one of these minima from
any nearby starting state. Adding noise helps the system escape
from shallow energy minima (frustrated states) and settle into a
global minimum energy state. Attractor networks have been
widely used to model the hippocampus (Samsonovich and Mc-
Naughton, 1997; Redish, 1999; Kali and Dayan, 2000; Touretzky
et al., 2005) (see also Zhang 1996).

The construction of the weight matrix was inspired by the
observation, originally proven by Thue (1892, 1910), that the
optimal packing of equally sized circles in a plane is a hexagonal
lattice. Similarly, hexagonal activity patterns on a sheet can be
explained as the result of competition between each neuron and
those neighbors that are within a certain radius around it. We
created such competition by composing weights based on two
properties. First, weights are proportional to a periodic function
of the distance between units on the sheet; this creates coopera-
tion between units of similar “phases” and competition between
units out-of-phase. Second, unit interactions are constrained to
be local. The result yields a symmetric weight matrix that pro-
duces multiple activity bumps that arrange themselves in a hex-
agonally periodic lattice attributable to the locality and radial
symmetry of the recurrent connections.

Let �i be the membrane voltage of neuron i, and let fi be its
firing rate. We use square root as the nonlinear transfer func-
tion that converts membrane voltage to firing rate, with a
threshold of 0:

fi � � ��i �i � 0
0 �i � 0

. (1)

Ermentrout (1994) showed that this transfer function was con-
sistent with that of a conductance-based model with class I mem-
branes, i.e., neurons whose firing rate can vary continuously from 0.

The evolution of the membrane voltage �i over time is gov-
erned by a differential equation that includes an integration time
constant �, recurrent connections with weights Wij, a velocity
input �i, and a Gaussian noise term �:

�
d�i

dt
� ��i � �

j

Wij fj � vi � �. (2)

To allow for translation of the hexagonal activity patterns across
the sheet, the full weight matrix Wij is composed of symmetric
and asymmetric components. The symmetric matrix establishes
hexagonal periodicity, whereas the asymmetric matrix provides
directional biases to translate the pattern.

To calculate Wij, we first define a distance function dij between
pairs of units on this sheet. Each unit is assigned an integer coor-
dinate pair (xi, yi) whose xi and yi values range from 1 to Ndiam; the
circular sheet of neurons used in these simulations is 61 units in
diameter, 2861 units total. The Euclidean distance between units
i and j is then dij � ��xi 	 xj�

2 � �yi 	 yj�
2 . The symmetric

matrix for connections between neurons i and j has connection
strengths:

Wij
sym � 
sym�j���dij�. (3)

The structure of the connection strengths is principally deter-
mined by �(�dij), a local, periodic function of the distance be-
tween units. This function is shown in Figure 1E and derived in
the Appendix. The spatial frequency � rescales the function, thus
determining the number of bumps that form along one axis of the
grid. The term �i decreases the projection strengths of neurons
near the edge of the sheet, limiting the boundary effects. Figure
1A shows the symmetric weight matrix for the central unit in the
sheet.

The asymmetric weight matrix W asym, which is purely inhib-
itory, has a similar form but is offset from the center, as shown in
Figure 1B:

Wij
asym � � 
asym�j���
ij� �
ij � �1

0 �
ij � �1
. (4)

Because the asymmetric weights serve only to translate the activ-
ity pattern across the sheet, a small region of inhibition is suffi-
cient. We therefore restricted the weights to include only the
portion of � up to its first 0 crossing, �1.

The offset distance function 
ij is biased in a direction oppo-
site the preferred movement direction of the cell �i, offset by
approximately one-eighth wavelength:


ij � �� x1 	 
i
x 	 xj�

2 � � yi 	 
i
y 	 yj�

2 . (5)

The offsets are 
i
x � �/�cos�i and 
i

y � �/�sin�i. In theory, the
�i values can be random and uniformly distributed around the
circle. However, because of the relatively small number of units in
our simulation, we found it advantageous to use just four pre-
ferred directions, 90° apart, assigned in an alternating manner
across the grid so that, at every point at which four pixels meet, all
four preferred directions are represented. This approach ensures
a smooth distribution of preferred directions so that the local
bump representation is not biased toward motion in any partic-
ular direction.

Figure 1C shows the sum of the symmetric and asymmetric
projection weights of the central unit, Wij � Wij

sym � Wij
asym.

Although the efferent weight matrix for each unit is asymmetric,
the afferent connections of the unit are approximately symmet-
ric, because it receives projections from units with all possible
preferred directions. Figure 1D shows the input weights for the
central unit of the sheet; the apparent graininess in this plot is
attributable to the variation in preferred directions across units.

The projection strengths of units near the edge of the sheet
were faded to 0 by the �i term in Equations 3 and 4 to ameliorate
edge effects. These edge effects were caused by units on the edge
receiving unbalanced input: unlike units closer to the center
whose inputs were from units in all directions, units near the edge
received no input from beyond the edge of the sheet. This imbal-
ance resulted in bumps of activity preferentially forming at the
edges of the sheet, constraining the formation thereafter of
bumps in the interior. For sheets with noncircular boundaries,
this caused the lattice of bumps to form only at orientations that
would maximize the number of bumps aligned along the edges of
the sheet. For example, a square sheet elicits grid bump lattices
with orientations of 0 or 90°. Also, the interbump distance along
one axis is distorted by a factor of �3 relative to the other, re-
flecting the stretching of the lattice necessary for bumps to be
located along all four edges. The existence of these minimum
energy states prevents the network from exhibiting the variety of
grid orientations observed by Hafting et al. (2005). Moreover,
when the bumps are moved across the sheet, they tend to bunch
up along the edge rather than smoothly sliding off, which de-
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stroys the hexagonal symmetry. Switching to a toroidal topology
would resolve this latter problem but would not eliminate the
tendency toward axis alignment.

The �i term solves both problems. It eliminates distortion
caused by edge effects because the progressively weaker weights
fail to reinforce the bumps as they move toward the edge, so that
they smoothly “fade away” rather than abruptly “fall off.” Also,
the annular shape eliminates the bias in favor of axis-aligned
grids. The �j term is defined as follows:

� j � exp��� 1

��
��xj 	 �Ndiam

2 ��2

� �yj 	 �Ndiam

2 ��2�4� .

(6)

The top three panels of Figure 2A show the formation of a hex-
agonal lattice of bumps across the neural sheet. The noise term �
in Equation 2 serves to break the initial symmetry, and the phase
and orientation of the bumps is established within the first few dozen
time steps. After 200 time steps, the result is a robust lattice of bumps.
Parameter values for this simulation are given in Table 1.

Path integration
The central hypothesis explored by our model is that path inte-
gration can be achieved by moving the bump array around on the
sheet. A variety of schemes have been proposed for shifting an
attractor bump around a ring (Skaggs et al., 1995; Redish et al.,
1996; Zhang, 1996; Goodridge and Touretzky, 2000; Sharp et al.,
2001; Hahnloser, 2003) or over a sheet (Samsonovich and Mc-
Naughton, 1997; Eliasmith, 2005). The model presented here
differs from these previous models in that, rather than moving a
single bump, it is designed to move multiple bumps simulta-
neously while enforcing a particular spatial relationship between
them.

To move the bumps in direction �, the velocity input vi to
units with preferred direction �i close to � is increased, whereas
the input to units with preferred direction nearly opposite � is
decreased. The asymmetric inhibitory projections, because they
are offset from the center of each unit, inhibit one flank of the
bumps more than the opposite flank, causing the bumps to shift.

Let s be the animal’s current speed, normalized to lie between
0 and 1, and let � be its current direction of motion. Then the
velocity input to each unit is calculated as follows:

vi �
1

2
� 2s� exp��sin2�� 	 �i

2 �/�hd
2 � 	

1

4� . (7)

The value of vi ranges between 0 and 2; it is 0.5 when the animal’s
speed is 0. A plot of vi as a function of �i resembles the head
direction cell tuning curves seen in postsubiculum (Taube et al.,
1990a,b) or anterior dorsal thalamus (Blair and Sharp, 1995;
Taube, 1995), which have a width of 90 –100°. However, the
model also functions properly with broader tuning functions;
previous tests used a �hd value of 0.633, which produced a much
wider curve.

The bottom three panels of Figure 2A show the bump array
being shifted to the right. The hexagonal periodicity of the bumps
is preserved during translation. Interestingly, except at the edges
of the sheet, the velocity modulation causes little change in the
firing rates of the cells, suggesting that the dMEC could perform
path integration even if firing rates were only weakly velocity
dependent.

Figure 2B shows the place fields of three units in a square

Figure 1. Recurrent weight matrix Wij contains symmetric and asymmetric components.
Shown here are the weights for the central unit in the sheet. A, Symmetric component contains
angular rings of excitation. B, Asymmetric component contains a ring of inhibition, offset
slightly from the center, opposite the preferred direction �i of the unit. C, The output weights of
a unit (a column of Wij) are the sum of the weights in A and B. D, The input weights for the unit
(a row of Wij) are approximately symmetrical; the “noise” reflects the variation in preferred
directions of the afferent cells. All weights have been raised to the 0.5 power in these plots to
better reveal the structure in both components, which differ in magnitude by a factor of 3. E, The
structure of the symmetric component is determined by the wave function �, which depends
solely on the distance between units on the sheet. The magenta points indicated values that
were learned in a neural network simulation, and the green line indicates the function based on
numerical integration that was used to construct the symmetric weight matrix Wij

sym. F, G, These
diagrams illustrate how the temporal phase of unit j changes as a function of the direction of
propagation of the wave packet, �wave, for a given phase of unit i (see Appendix).
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arena. To generate these fields in an efficient and systematic man-
ner, the lattice of bumps was shifted to the right to correspond to
leftward travel along the top edge of the arena. Then, at each of 75
positions along the top edge, the network was reset to its previous

state at that position, and the activity pat-
tern was shifted upward to correspond to
downward travel. As the activity pattern
shifted across the neural sheet, individual
cells showed a corresponding pattern of
activity across space. The firing fields dif-
fer only as to phase; the grid spacing and
orientation is constant.

In vivo development of the
weight matrix
Although a developmental model of
dMEC is beyond the scope of this work,
albeit an intriguing avenue for future re-
search, we want to provide some insight
into the developmental processes poten-
tially underlying the construction of such
a matrix.

Patches of cells within dMEC must first
be organized into two-dimensional sheets.
One way to achieve this is by innervation
by an afferent cortical sheet in a localized
manner: each dMEC cell receives projec-
tions from a small region within the sheet.
Such projections would need to be only
approximately topographic, i.e., the “log-
ical” position of the dMEC cell in the
sheet, as dictated by the source of its affer-
ent projections, does not bear a strict cor-
respondence with its physical location
within the brain. Early in development
within the visual system, a similar impre-
cision appears to exist: the chemical mark-
ers underlying axonal wiring yield an ap-
proximately retinotopic projection that is
then improved based on the spatiotempo-
ral coactivity of the neurons (Miller et al.,
1989; Wong, 1999). This assumption is
important, because anatomically proxi-

mate dMEC cells (recorded on the same tetrode) show firing
fields at different phases. However, only a small amount of jitter
in the relationship between logical and physical position is suffi-
cient to account for the observed heterogeneity of field phase in
neighboring neurons. To illustrate this point, consider the sec-
ond and third cells in Figure 2B. Although close to each other on
the sheet, they have completely different firing field phases.

To construct the symmetric portion of the weight matrix via
Hebbian learning, dMEC cells would require coincident activity
between units that varied as a radially symmetric, locally
weighted periodic function of their distance. It is important to
note that, in the context of Hebbian learning, coincident activity
is a statistical construct. On average, the correlation between
units at distance d should be proportional to �(�dij). However,
many possible sets of activity patterns could give rise to such a
correlation structure, and individual activity patterns need not
look anything like the weight matrix itself. For example, the
weight function � used in these simulations was derived from
multi-wave packets of activity propagating across the sheet of
dMEC neurons (see Appendix).

Furthermore, the specific quantitative formulation of � used
in these simulations is not critical to capturing the activity pat-
terns of the grid cells. Although the � used shows two “rings” of
excitatory connections, we also tried � functions composed of

Figure 2. Formation and translation of the bump grid. A, Starting from an all-zero state, at T�30, the bump array is somewhat
disordered; there is a heptagon in the top left quadrant. By T � 200, a regular hexagonal pattern has been established. The next
three panels show translation of the grid to the left. B, Spatial firing fields of three grid cells in a simulated square arena.

Table 1. Parameter values

Spin glass model
Ndiam 61
Wave function frequency � 0.67
Weight parameters

Symmetric amplitude 
sym 0.5
Asymmetric amplitude 
asym �1.5
First cycle cutoff �1 2.55
Weight fadeout annulus�� 13.375
Asymmetric offset � 1.5

Head direction sharpness �hd 0.245
Gaussian noise � 0 	 0.2, mean 	 SD
Integration time constant � 10

Weight function �
Training wave frequency � 9� / 31
Number of waves per packet Nw 3
Tonic firing rate ftonic 1.0

Multiple grids
Global inhibition coefficients b2, b1, b0 �0.062, 2.103, 1.946

Fuhs and Touretzky • Spin Glass Model of dMEC J. Neurosci., April 19, 2006 • 26(16):4266 – 4276 • 4269



one and three rings (two- and four-wave packets; see Appendix),
both of which produced hexagonal activity patterns. The choice
of two rings was based only on our subjective impression that it
produced the most accurate path integration. We also tried a
cropped version of the 0th-order Bessel function of the first kind
in which values beyond the fourth 0 crossing were set to 0; this
also produced hexagonal activity patterns. In fact, in early ver-
sions of our model, a completely different function was success-
fully used, one based on the product of a sinusoid with a Gauss-
ian. Thus, any function approximately of the form that we have
described should suffice.

The asymmetric portion of the weight matrix is simpler in
form and serves only to translate the bumps across the sheet.
Models of the head direction system have used various weight
matrices to achieve translating of an activity bump around a ring,
and our asymmetric weight function is unlikely to be unique.
Hahnloser (2003) showed that integration of an activity bump on
a ring can be learned by a form of anti-Hebbian learning. A sim-
ilar form of learning could likely be generalized to a two-
dimensional space. Because the asymmetric connectivity used
here only creates interactions between neighboring neurons
within the same activity bump, the asymmetric connections
translate bumps independently of each other, whereas the sym-
metric connections enforce the hexagonal lattice structure. Thus,
teaching a network to translate a single bump across a sheet
would be sufficient for it to later translate a lattice of bumps.

Resetting the path integrator
The coupling of path integration and place systems facilitates
both the correction of inaccurate path integration information by
sensory cues and the representation of place in cue-deprived con-
ditions. The ability of stable cues to reset the place code (Knierim
et al., 1995, Jeffery and O’Keefe, 1999) and to influence praxic
navigation (Etienne et al., 2004) is well established. The integra-
tion of these two systems suggests that recall of a hippocampal
map when, for example, the rat returns to a familiar environ-
ment, should lead to reset of the path integrator to agree with the
previously constructed place code (Touretzky and Redish, 1996;
Redish et al., 1998). We assume that the projection from CA1 and
subiculum to the deep layers of entorhinal cortex can influence
the attractor bumps, and that these connections are established
through Hebbian learning when the environment is novel.

To simulate recall of a specific activity pattern, we supplied
additional external input to each of the cells equal to the value of
the firing rate fi of that cell in that pattern. The input was supplied
continuously for 200 time steps via an additional term to Equa-
tion 2, and it was always successful in resetting the state of the
network. However, weaker inputs, typically those below 0.25 fi,
did not always succeed, and, because of the nonlinear properties
of the attractor network, the effect of this input was state depen-
dent. If the input pattern was close to the current state, the net-
work settled into a new minimum energy state that mirrored the
input. However, if the input was nearly orthogonal to the current
state, it had little effect, and the bumps did not move. This sug-
gests that, after brief exposure to an environment or under con-
ditions in which long-term potentiation (LTP) is impaired, a grid
is more likely to be reset during the rat’s reentry into the environ-
ment if the phase to which it is being reset is similar to its phase
just before entry.

Multiple grids
As Hafting et al. (2005) point out, a single hexagonal grid of the
scale observed in dMEC is insufficient for path integration be-

cause the bump pattern soon repeats itself, leading to ambiguities
in the rat’s location. However, multiple grids, with different
scales and/or orientations, can encode a much larger space with-
out repetition. More ventrally located cells in dMEC have larger
firing fields and proportionately greater spacing between them;
the distance between field peaks varies by at least a factor of 2, and
cells in different regions of the dMEC show different grid
orientations.

To determine to what extent a conjunctive encoding of mul-
tiple grids could produce unique positional encodings over a
large space, we generated a set of grids of varying spatial frequen-
cies and orientations and computed their activity patterns at all
possible positions in environments of varying sizes. We used
these patterns to drive a population of 2000 simulated “place
cells.” The place cell population activity vectors were then corre-
lated across positions to quantify how well the population encod-
ing could distinguish positions over a large space when driven by
a set of grid patterns that repeated over smaller spaces.

For computational efficiency, simulated grid cell activities
were calculated in closed form. We first defined three basis vec-
tors bk, 60° apart:

bk � � cos k�/3
sin k�/3 � for 0 � k � 2. (8)

Each grid g was assigned a random orientation �g, defining a
rotation matrix Rg that was used to rotate the basis vectors:

Rg � � cos �g �sin �g

sin �g cos �g
� . (9)

Each grid was also assigned a unique random spatial frequency �g

between 1 and 2. The grid was represented by an 8 
 8 array of
units. Each unit i had a phase offset vector pi that represented its
position within the grid; values ranged from (0, 0) to (4�/�3,
4�/�3). Three amplitude functions zg,i,k were calculated for each
grid unit as a function of the environment location, x:

zg,i,k�x� � Rgbk � ��gx � pi� . (10)

The variable x ranged over a square space with side length L times
the period of the lowest frequency grid, i.e., its values ranged from
(0, 0) to (4�/�3 L, 4�/�3 L); values of L up to 10 were simu-
lated. The firing rates of the grid cells, which were hexagonally
periodic functions, were calculated based on the sum of the three
amplitude functions:

fg,i�x� � �cos�zg,i,0�x�� � cos�zg,i,1�x�� � cos�zg,i,2�x���� ,

(11)

where [. . .]� is the semi-linear threshold function that maps neg-
ative values to 0.

To construct a place cell representation based on the conjunc-
tive activities of the grids, each of the n � 2000 place cells received
connections from these grid cells, at most one grid cell per fre-
quency. The weights were all of unit strength, and the phases of
grid cells selected to project to each place cell were chosen at
random. The activity of each place cell was calculated as fj �
[�j � �98%]�, where

� j � �
g,i

Wj,g,i fg,i,

and �98% is a global inhibition term.
For the place representation to be sparsely coded, as seen in
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the hippocampus, a simple feedforward inhibition mechanism
was used to reduce the number of active place cells at any one
position to 
2% of the population. The global inhibition term,
�98%, was calculated as a function of the average weighted input to
the place cell population:

�� �
1

n�j
� j.

The 98th percentile of �j values was then well approximated by a
quadratic function of ��: �98% � b2��

2 � b1�� � b0, with coefficients
as shown in Table 1. �98% is monotonically increasing and slightly
sublinear over the range of �� values in these simulations.

Similarity of population codes within an arena
Grid and place cell activities were calculated over square spaces
whose side length, L, was up to 10 times the period of the lowest
spatial frequency grid. At each position in the space, the place cell
population vector was compared with the vectors at every other
position, calculating a correlation coefficient between each pair
of vectors. To measure how well the place cells uniquely repre-
sented each of the positions in the space, each position was asso-
ciated with a second position (at least one highest-frequency pe-
riod away) whose population vector was the most similar to the
first. Correlation coefficients between pairs of “most similar po-
sitions,” rmax, indicated how well the population represented the
space. Values of rmax above 0.5 were considered to indicate inad-
equate distinction between positions. Although this threshold is
somewhat arbitrary, other thresholds yielded the same pattern of
results.

Figure 3A shows how the percentage of positions for which
rmax � 0.5 varies with the size of the space and the numbers of
grids. For this experiment, the orientations of the grids were the
same. With only two grids, repetition within even smaller spaces
was inevitable; population vectors at each position quickly began
to reoccur as the size of the space increased. However, as more grids
were used, progressively larger spaces could be represented without
similar population vectors occurring at multiple positions.

When grid orientations were allowed to vary, additional deco-
rrelation between population vectors was observed. Figure 3B
shows the distribution of rmax when grid orientations were ran-
domized. Clearly, using grids at varying orientations provides a
substantial benefit in representing a large number of locations.

In the simulations above, each place cell received a projection
from a grid cell in every grid. To explore the effects of a sparser
connection structure, the projection density was reduced to two
randomly chosen grids per place cell. Figure 3C shows the effect
of this sparsity on the efficacy of the place code. The results are
nearly indistinguishable from the dense connectivity results in
Figure 3B.

Place cells tended to have multiple firing fields in the larger
environments, and, when many grids were sampled, the firing
fields were randomly distributed. This would be expected in any
sparse code in which individual units are reused as part of a larger
set of patterns, and this has been observed experimentally (Ger-
rard et al., 2001). When only a few grids were sampled, the place
cells displayed a somewhat hexagonal arrangement of firing pat-
terns, but this regularity was still limited to localized portions of
the space. In no case did the place fields show the hexagonal
regularity of the grid cells across the entire space.

Partial remapping
With multiple independent grids, resetting the path integrator
would require resetting all of the grids. If only some grids were

reset, the result should be what Muller et al. (1991) called “partial
remapping.” To quantify this effect, we calculated place cell pop-
ulation vectors for each position in a space four times the period
of the lowest-frequency grid. The population vectors were calcu-
lated twice: during the second run, the phases of Nreset of the grids
were reset to their previous value, whereas the remaining grids
were set to random phase values unrelated to their values during
the first run. The simulations used eight grids of varying spatial
frequencies and orientations, and place cells received either
sparse (three grids) or dense (all eight grids) projections from the
grid cell population. The population vector correlations between
the first and second runs are shown in Figure 4A. As the number
of reset grids increased, the similarity of the place code represen-
tation also increased. The number of grids sampled (three vs all
eight) had a negligible effect.

Discordant remapping
Several labs have reported that place cells show discordant
remapping during “double rotations,” when two sets of cues are
rotated in equal and opposite directions (Tanila et al., 1997;
Brown and Skaggs, 2002; Lee et al., 2004a). Specifically, some
place fields rotated with the local track cues, other fields rotated

Figure 3. Multiple grids yield unique place codes. A, Correlations between place cell popu-
lation vectors decrease as the number of grids increases. Each line shows how the percentage of
positions for which rmax exceeds 0.5 varies as the size of the space is increased. The number
superimposed on each line indicates the number of grids used as input to the place cells. B,
Correlations are further reduced when the grid orientations vary. C, When grid cells project
sparsely to the place fields (2 grids per cell), place coding does not deteriorate.
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with distal room cues, and others remapped. Moreover, the ac-
tivity patterns in CA3 and CA1 differed. Lee et al. (2004a) found
that, whereas CA3 fields rotated predominantly with one set of
cues, CA1 fields rotated in approximately equal numbers with
each set of cues, suggesting that the CA3 and CA1 representations
may be formed independently.

The discordant remapping must initially be driven by sensory
information. However, early experiments in darkness suggest
that, once formed, some hippocampal place fields in CA1 persist
without the support of visual sensory information (Quirk et al.,
1990). Is it possible that discordant remapping could persist in
darkness as well?

With multiple independent grids, some grid orientations
could align with respect to the local cues, whereas others could
align with respect to the distal cues. To understand the effects of
such grid discordance on a place cell population, we simulated
the activity of place cells under two conditions. In the “standard
condition,” grid cell networks were initialized to random orien-
tations. In the “rotated condition,” the grid networks were di-
vided into two sets, and the orientations in one set were rotated by
90° with respect to those of the other set. Place field correlations
were calculated to determine whether the fields in the rotated
condition were similar to those in the standard condition (mod-
ulo rotation) or whether they bore little resemblance to the stan-

dard configuration field at either rotation angle, i.e., they
remapped.

Figure 4B shows the results. When the number of grids in each
set is equal (four grids each) and place cells are sparsely con-
nected, the distribution of place cell responses to the double ro-
tation is consistent with those found by Lee et al. (2004a) in CA1.
As one set grows larger than the other, place cells tend to show
fields consistent with the orientation of that set. In this figure,
place field correlations �0.5 were taken to indicate remapping.
Other values would change the percentages somewhat; however,
values around 0.5 are typical in physiology studies.

Sensory modulation of activity patterns
Hafting et al. (2005) found that dMEC cells exhibited different
peak firing rates in their various spatial firing fields, and these
variations were reproducible during a second session in the same
environment. We interpret this in the following way: dMEC re-
ceives sensory or hippocampal input that varies depending on the
animal’s location, and this secondary input exerts a modulatory
influence on the activity levels of dMEC cells without disrupting
the hexagonal activity pattern.

To test this interpretation, we explored whether such a sec-
ondary input could modulate the rates of different neurons in our
model in a reproducible way. A set of 100 random external input
patterns was generated, abstractly representing the input from
sensory cortex or hippocampus. A pattern of hexagonal firing
fields was allowed to form in the network. After the firing fields
stabilized, input patterns were applied to the network in the fol-
lowing way: (1) apply random noise for 10 time steps, (2) apply
one of the input patterns for 10 time steps, (3) take a snapshot of
the vector of firing rates, and repeat. Thus, every 20 time steps, a
new pattern was presented for 10 time steps. The purpose of the
intervening noise was to eliminate temporal correlations between
successive patterns attributable to hysteresis in the network. The
entire sequence of 100 patterns was presented twice.

The mean of the firing rates across patterns was subtracted
from each snapshot, so that the snapshots reflect input-
modulated changes from the average hexagonal grid pattern. The
snapshots from the first and second presentations were then
cross-correlated (Pearson’s r).

Figure 5A shows the correlation coefficients across patterns,
comparing the first presentation with the second. The dark diag-
onal suggests that the second presentation evokes very similar
network activity to the first presentation and is unrelated to that
of the other patterns. Figure 5B (top) is a histogram of the corre-
lation coefficients between the first and second presentations of
the same pattern (i.e., the diagonal elements in Fig. 5A); all cor-
relations are tightly clustered above 0.8. The middle histogram
shows correlation coefficients between the first presentation of
pattern i and the second presentation of another pattern, that
which evoked the closest network activity to that of pattern i. In
all cases, the next closest matching pattern has a dramatically
lower correlation coefficient. The bottom histogram shows all
off-diagonal correlation values from the correlation coefficient
matrix shown in Figure 5A.

To assess the ability of individual hippocampal cells with lim-
ited fan-in to discriminate between these sensory patterns im-
posed on the same array of activity bumps, we recalculated the cor-
relations using a randomly selected subset of 20 units with nonzero
activity instead of the full population. Pattern discrimination is still
feasible, and the results are shown in Figure 5, C and D.

Figure 4. Resetting only a subset of the grids during recall of an environment results in
partial remapping. A, Similarity to the original place code increases with the number of grids
that are reset. The joint distribution over 20 runs, each with different grid spacings and orien-
tations, is shown for each value of Nreset. Box plot tails indicate the central 95% of the joint
distribution. B, Double-rotation experiments can produce a range of remapping effects depend-
ing on the number of grids aligned with each set of cues. Distributions were based on the
average over 20 runs, each with different grid spacings and orientations.
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Discussion
Summary of properties of dMEC cells
The following points summarize the account of our model of the
extant data on grid cells in dMEC and present predictions from
the model for future studies.

(1) Dorsal MEC cells exhibit multiple spatial firing fields ar-
ranged in a hexagonal lattice. These are expressed immediately in
a novel environment, show a constant phase relationship be-
tween cells across environments, and do not change scale with the
size of the arena. Explanation: Local, radially symmetric on-
center/off-surround connections produce an attractor net-
work whose stable states are a two-dimensional toroidal man-
ifold of hexagonally periodic activity patterns. (Note that,
whereas the state space manifold is toroidal, the network con-
nectivity is a simple sheet.) Different neurons in the same
network are most active at different phases of the periodic
pattern, but the firing fields of all units will show the same
orientation and spacing.

The model occasionally settles into stable states with local
irregularities in the network activity pattern, e.g., a pentagonal or
heptagonal bump cluster. Such irregularities are caused by frus-
tration among the arrangement of bumps as they form, not prop-
erties of specific neurons in the system. From this, an important
prediction follows: when such irregularities are observed, they
should be environment specific. Although not explicitly ad-
dressed by Hafting et al. (2005), the cell shown in their Figure 6
appears to bear this out: the field of the cell looks hexagonal in the
familiar environment and heptagonal in the novel environment.
If such irregularities occur consistently in dMEC fields, it would

support a model such as this in which the hexagonal periodicity
of fields is not hardwired. In contrast, a model based on a single
attractor bump moving around on a sheet with hexagonally pe-
riodic toroidal connectivity would always yield hexagonal fields.

(2) The size and spacing of fields is similar among neighboring
neurons but varies systematically along the dorsoventral axis.
Explanation: As Hafting et al. (2005) point out, neighboring neu-
rons in dMEC are likely coupled together as part of one of many
local neural networks. We show computationally that multiple
independent networks provide a basis for constructing a repre-
sentation of space over a substantially larger domain than the
periodicity of any one network.

The size and spacing of fields is determined by two factors in
our model. The first is the � parameter, which determines the
spatial frequency of bumps on the neural sheet. The second is the
strength of velocity, which determines how far the bumps are
translated across the sheet per unit of travel in the environment.
Increasing the rate of bump shift relative to physical movement
shrinks the size and spacing of nodes in the field of a cell. Decreas-
ing this ratio expands the node size and spacing. One should be
able to determine whether velocity modulation differences ac-
count for field size variations: cells with tightly packed fields
should show stronger changes in firing rate as a function of the
animal’s velocity than cells with larger, more dispersed fields.
Evidence of this has been observed downstream in the hippocam-
pus (Maurer et al., 2005).

Amaral et al. (1990) estimated that there were 
200,000 layer
II entorhinal cortical cells that projected to the dentate gyrus
(DG). If the number of cells in dMEC is approximately one-
quarter of that, then 
17 networks of the size simulated here
could be embedded within layer II. However, grid cells have also
been found in layers III, V, and VI of dMEC (Moser et al., 2005),
so the number of grid networks, or the number of cells per net-
work, could be substantially higher than our model assumes.

(3) The orientation of fields is similar among neighboring
neurons but varies over the dorsoventral axis and is not preserved
across environments. Explanation: Radially symmetric connec-
tions allow each network to settle into a bump array with any
orientation. We show that this heterogeneity of orientations pro-
vides a superior representation for constructing a place represen-
tation over a large space.

(4) Across multiple sessions in the same environment, phase
and orientation of a firing field of a cell, and firing rate differences
between its peaks, are all reproducible, whereas in different envi-
ronments, they are different. Explanation: The ability to restore
the state of a grid cell network to an earlier state is similar to the
previously studied recall problem in single-bump attractor net-
works. Without such coherent input, the network settles into a
random stable state. Failing to reset some of the networks or
resetting them discordantly may reinforce partial or discordant
remapping in the hippocampus.

Variations in peak firing rates among individual nodes of ac-
tivity can be caused by afferent input without disrupting the hex-
agonal firing patterns in the network, and these inputs can be
distinguished from one another based on the firing rates of the
network.

(5) In darkness, spacing, mean firing rate, and spatial infor-
mation did not change, but the fields shifted somewhat relative to
the lighted condition. Explanation: Relative phases and orienta-
tions of different grid fields should persist in the dark because
they are a product of attractor dynamics, not sensory input. How-
ever, field drift attributable to path integration error will accu-

Figure 5. Sensory modulation of grid cell activity. A, One hundred random input patterns
produce population activity vectors that are clearly distinguishable from each other. B, Histo-
gram of correlation coefficients between pattern i and the second presentation of the same
pattern (top), the second presentation of the next closest matching pattern (middle), and all
patterns other than i (bottom). C, D, Same as A and B except results were recalculated using a 20
unit subset of the place cell population.
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mulate in the absence of sensory information that can maintain
alignment of the fields with external landmarks.

(6) Grid cells show weak velocity modulation? Sargolini et al.
(2005) found the firing of some grid cells to be modulated by
head direction, which is one of the two components of a velocity
signal, the other being speed. Our model predicts that true veloc-
ity modulation will be found in at least some dMEC cells. The
attractor dynamics of a network tend to dampen the impact of the
velocity input on the firing rate of a cell, predicting that grid cells
will show some velocity modulation, but it will be small relative to
the range of firing rates of the cell.

Neural architecture for path integration
In the idealized architecture presented here, all units use the same
weight pattern, rotated to reflect their preferred direction, and all
cells show velocity tuning. There are asymmetric connections
between cells of similar directional bias, with progressively more
symmetric connections between cells of differing directional bi-
ases. An alternative architecture might divide the roles of the two
connection types. In this scenario, two populations of dMEC cells
would interact. The symmetrically weighted cells would enforce
the hexagonal periodicity of firing patterns, whereas the asym-
metric cells would shift these patterns during movement. Only
the latter population should show velocity modulation.

dMEC impact on hippocampal remapping
Redish and Touretzky (1997) argued that navigation was likely
accomplished using a set of interdependent representations, two
of which were the hippocampal “place” representation, which
provided an environment-specific place code, and a universal
coordinate map to support path integration based on vestibular
and motor information. In their theory, these two representa-
tions were tightly coupled: in cue-deficient conditions, the hip-
pocampal place representation could be updated based on idio-
thetic movement information, whereas in cue-rich conditions,
cumulative error in the PI could be corrected by efferent projec-
tions from the place code, whose representation is strongly driven
by sensory information. Thus, in a novel environment, a bidirec-
tional mapping is learned between PI coordinates and hippocam-
pal representations of place. When returning to a familiar envi-
ronment, it follows that the PI system would have to be reset to
realign it with the animal’s present location. Failure to reset the
system would result in complete hippocampal remapping (Re-
dish et al., 1998).

Recent data has shed light on the possibility that the hip-
pocampal remapping phenomenon may be mediated by a set of
distinct (if interdependent) processes. Specifically, there appears
to be evidence that, in novel environments, CA1 and CA3 repre-
sentations form independently (Leutgeb et al., 2004; Lee et al.,
2004b; Wilson et al. 2005). Place fields in CA1 are observed even
when the Schaffer collateral projection from CA3 is severed
(Brun et al., 2002). This suggests that immediate CA1 remapping
is mediated by an extrahippocampal process such as the failure to
reset the grid cell networks in dMEC.

In contrast, the gradual remapping in CA1 that manifests over
many days of exposure is likely to be intrahippocampally medi-
ated. When visual cues were reshaped (Lever et al., 2002) or re-
positioned either with respect to each other (Shapiro et al., 1997;
Jeffery, 2000) or in conflict with vestibular information (Sharp et
al., 1995), the number of CA1 cells that remapped during each
successive experimental manipulation progressively increased.
Preliminary evidence from recordings in DG shows heightened
sensitivity to arena shape changes in DG relative to CA3 (Leutgeb

et al., 2005), suggesting that, with experience, this remapping is
propagated along the trisynaptic pathway from DG to CA1. Such
DG sensitivity is consistent with behavioral data showing that DG
lesions impair the rats’ ability to distinguish two locations only if
they are nearby (Gilbert et al., 2001).

Together, these data suggest that hippocampal remapping at-
tributable to gross environmental changes (or deficient LTP) may
be caused by a failure to reset the dMEC grid cells, whereas subtle
changes to spatial relationships between landmarks may be de-
tected within the hippocampus and gradually propagated into
CA1 in an experience-dependent manner.

Appendix: derivation of the weight function �
During the development of the visual system, it has been known
for some time that spontaneous waves of activity propagate
across the surface of the retina (for review, see Shatz, 1996; Wong,
1999). These waves have been observed in several mammals, in-
cluding rodents. They occur one at a time (one wave fully prop-
agates across the retina before another is formed), and the direc-
tion of propagation of each wave varies randomly from one to the
next. The waves are believed to serve several roles, including the
refinement of topographical specificity of axonal projections to
the LGN and beyond, as well as ocular specificity by layer in the
LGN and by column in visual cortex.

For the purpose of learning the symmetric weight matrix, we
consider a variation on this theme: a “wave packet,” composed of
multiple contiguous waves, propagating across a dMEC sheet,
each wave packet traveling in a different random direction. By
passing a wave packet across the sheet, connections are learned
both between units coactivated by the same wave and between
units activated by other waves in the packet. Because the direction
of propagation varies from packet to packet, units develop radi-
ally symmetric weights: one annulus of excitation and inhibition
for each wave in the packet.

We simulated a square sheet of 31 
 31 dMEC units. Each unit
i was assigned integral (x, y) positions on the grid from (�15,
�15) to (15, 15), which were converted to polar coordinates (ri,
�i). The temporal phase of each unit was defined as follows:

�i�t� � t 	 � ri sin��i 	 �wave�, (A1)

where � determines the width of each wave in the packet, and
�wave specifies the direction of travel of the wave packet; a differ-
ent random value of �wave was picked for each packet. As time t
increased, the temporal phase of each unit advanced. Each wave
packet was propagated across the sheet by clamping the firing rate
fi of each unit to a sinusoidal function of its temporal phase:

fi�t� � � ftonic � sin��i�t�� 0 � �i�t� � 2�NW

ftonic otherwise , (A2)

where Nw is the number of waves in the packet. For values of
�i(t) � 0, the wave packet had yet to reach the unit; for values
between 0 and 2�Nw, the unit was somewhere within the packet,
and, for values greater than 2�Nw, the entire packet had already
passed over the unit. Outside the packet, the firing rates of the
units were set to a baseline tonic activity, ftonic, of 1. Within the
packet, the firing rate of each unit varied from 0 to 2 as a
sinusoidal function of its temporal phase. After each packet
finished propagating across the network, t was reset, a new
random value for �wave was chosen, and propagation of the
next packet began.

A form of Hebbian learning was used to shape connections
between dMEC units in the network:
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�W

dWij
learn

dt
� � fi 	 f�i� fj 	 Wij

learn . (A3)

This learning rule is similar to the Bienenstock–Cooper–Mu-
nro (BCM) learning rule (Bienenstock et al., 1982) in that the
average postsynaptic activity f�i determines the threshold be-
tween weight increase and decrease. However, the nonlinear-
ity of the BCM rule was removed, making analytic analysis of
the asymptotic weight values tractable. In these simulations, f�i

was set to ftonic, the true mean activity of each unit. The learn-
ing rate �w was slowed exponentially from 2000 to 100,000
during the course of training to increase accuracy by averaging
over many packets once the weights were close to their asymp-
totic values.

One thousand wave packets, each containing three waves,
were successively driven across the network. A one-dimensional
projection of the learned weights of the center unit is shown in
Figure 1E (magenta points); weights of other units were similar.
The magnitude of the weight is plotted as a function of the distance
between the center unit and the others in the network. The three
waves in each packet gave rise to a weight profile with a strong center
peak and two progressively weaker peaks at larger distances.

As learning progresses, Wij
learn converges to the expected value

of ( fi � f�i)fj over all wave packets. This expected value can be
determined analytically as a function of the distance d between
units i and j. Let �i be the temporal phase of some unit i. Outside
the packet, fi � f�i, so dWij

learn/dt � 0 We therefore only consider
values of �i between 0 and 2�Nw. Let �i be the temporal phase of
some unit j. Figure 1F shows an example of units i and j, both
within the wave packet. Let us consider unit i to be at some fixed
temporal phase �i within the packet; thus, varying �wave results in
the packet rotating about unit i. The temporal phase of unit j can
therefore be expressed as a function of �i, �wave, and the relative
positions of the two units on the sheet:

� j � �i 	 �dij sin��ij 	 �wave�, (A4)

where �ij is the angle of unit j relative to unit i. By averaging over
the ranges of �i and �wave, one can calculate the asymptotic values
of Wij

learn as a function of the distance between units:

���d� �
1

2�Nw
�

0

2�Nw 1

2� �
0

2�

� fi 	 f�i� fjd�waved�i .

(A5)

The outer integral averages over the range of temporal phases of
unit i as the packet passes over it. The inner integral averages over
the various phases of unit j at a given distance d by averaging over
all possible directions of wave propagation.

To evaluate Equation A5, we must consider the piecewise na-
ture of the firing rate function (Eq. A2). Although we assume by
construction that unit i is always within the packet, unit j may or
may not be, depending on the value of �wave. Figure 1G shows the
result of increasing �wave to the point at which unit j is at the front
edge of the wave packet. This value of �wave will be referred to
as �front,1. Rotating the wave packet further results in unit j
being outside the wave packet. Rotating it further, unit j re-
joins the wave packet at �front,2. Rotating further, unit j re-
mains within the packet until �back,1 and is behind the packet
until �back,2. Thus, �wave values may be divided into four inter-
vals: [�back,2, �front,1] and [�front,2, �back,1] when unit j is within
the packet; [�front,1, �front,2] when the packet has yet to pass

over unit j; and [�back,1, �back,2] when the packet has finished
passing over unit j. This leads to the following substitution of
Equation A2 into Equation A5:

���d� �
1

4�2Nw
�

0

2�Nw ��
�back,2

�front,1

sin�i� ftonic � sin�j�d�wave �

�
�front,2

�back,1

sin�i� ftonic � sin�j�d�wave �

�
�front,1

�front,2

sin�iftonicd�wave �

�
�back,1

�back,2

sin�iftonicd�wave� d�i. (A6)

The inner integral in Equation A5 has been divided into a sum of
integrals in Equation A6, each spanning one of the four afore-
mentioned intervals of �wave. The first and second inner integrals
are equal and so they are collapsed together in Equation A7. The
third and fourth inner integrals do not contribute to the result
because the range of the outer integral is a multiple of 2�. Sim-
plifying Equation A6 and substituting in Equation A4 yields the
following:

���d� �
1

2�2Nw
�

0

2�Nw �
�back,2

�front,1

sin�i� ftonic � sin��i � �d sin��ij

	 �wave���d�waved�i . (A7)

Although the intervals of �wave and the value �ij depend on the
position of unit j relative to unit i, the value of the inner integral
depends only on the distance between the units because of the
rotational symmetry underlying its construction. Hence, � is
simply a function of d.

Equation A7 was integrated numerically for many values of d,
resulting in the green line shown in Figure 1E. The results of these
integrations were used in the construction of the weight matrices
shown in Figure 1A–D and in the simulations shown in Figure 2.
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