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Modeling work in neuroscience can be classified using two different criteria. The first one is
the complexity of the model, ranging from simplified conceptual models that are amenable to
mathematical analysis to detailed models that require simulations in order to understand their
properties. The second criterion is that of direction of workflow, which can be from microscopic to
macroscopic scales (bottom-up) or from behavioral target functions to properties of components
(top-down). We review the interaction of theory and simulation using examples of top-down and
bottom-up studies and point to some current developments in the fields of computational and
theoretical neuroscience.

Mathematical and computational ap-
proaches in neuroscience have a long
tradition that can be followed back

to early mathematical theories of perception
(1, 2) and of current integration by a neuronal
cell membrane (3). Hodgkin and Huxley com-
bined their experiments with a mathematical
description, which they used for simulations on
one of the early computers (4). Hebb’s ideas on
assembly formation (5) inspired simulations on
the largest computers available at that time (1956)
(6). Since the 1980s, the field of theoretical and
computational neuroscience has grown enor-
mously (7).

Modern neuroscience methods requiring ex-
tensive training have led to a specialization of
researchers, such that neuroscience today is frag-
mented into labs working on genes andmolecules,
on single-cell electrophysiology, on multineuron
recordings, and on cognitive neuroscience and
psychophysics, to name just a few. One of the
central tasks of computational neuroscience
is to bridge these different levels of description
by simulation and mathematical theory. The
bridge can be built in two different directions.
Bottom-up models integrate what is known on
a lower level (e.g., properties of ion channels) to
explain phenomena observed on a higher level
[e.g., generation of action potentials (4, 8–10)].
Top-down models, on the other hand, start with
known cognitive functions of the brain (e.g.,
working memory), and deduce from these how
components (e.g., neurons or groups of neurons)

should behave to achieve these functions. Influ-
ential examples of the top-down approach are
theories of associative memory (11, 12), rein-
forcement learning (13, 14), and sparse coding
(15, 16).

Bottom-up and top-down models can be
studied either bymathematical theory (theoretical
neuroscience) or by computer simulation (com-
putational neuroscience). Theory has the advan-
tage of providing a complete picture of the model
behavior for all possible parameter settings, but
analytical solutions are restricted to relatively sim-
ple models. The aim of theory is therefore to pu-
rify biological ideas to the bare minimum, so as
to arrive at a “toy model” that crystallizes a con-
cept in a set of mathematical equations that can
be fully understood. Simulations, in contrast, can
be applied to all models, simplified as well as
complex ones, but they can only sample the mod-
el behavior for a limited set of parameters. If the
relevant parameters were known, the whole or
a major fraction of the brain could be simulated
using known biophysical components—a prospect
that has inspired recent large-scale simulation
projects (17–21).

How can theory and simulation interact to
contribute to our understanding of brain func-
tion? In this article, we illustrate the interaction
with four case studies and outline future avenues
for synergies between theory and simulation. Even
though it forms an important subfield of compu-
tational neuroscience, the analysis of neuronal
data (22–24) is not included in this review.

From Detailed to Abstract Models of Neural
Activity: Bottom-Up Theory
The brain contains billions of neurons that com-
municate by short electrical pulses, called action
potentials or spikes. Hodgkin and Huxley’s de-
scription of neuronal action potentials (4) today
provides a basis for standard simulator software
(25, 26) and, more generally, a widely used frame-
work for biophysical neuron models. In these
models, each patch of cell membrane is described
by its composition of ion channels, with specific

time constants and gating dynamics that control
themomentary state (open or closed) of a channel
(Fig. 1C).

By a series of mathematical steps and ap-
proximations, theory has sketched a systematic
bottom-up path from such biophysical models of
single neurons to macroscopic models of neural
activity. In a first step, biophysical models of
spike generation are reduced to integrate-and-fire
models (27–32) where spikes occur whenever
the membrane potential reaches the threshold
(Fig. 1B). In the next abstraction step, the pop-
ulation activity A(t)—defined as the total number
of spikes emitted by a population of intercon-
nected neurons in a short time window—is pre-
dicted from the properties of individual neurons
(33–35) using mean-field methods known from
physics: Because each neuron receives input from
many others, it is sensitive only to their average
activity (“mean field”) but not to the activity pat-
terns of individual neurons. Instead of the spike-
based interaction among thousands of neurons,
network activity can therefore be described mac-
roscopically as an interaction between different
populations (33, 35, 36). Such macroscopic
descriptions—known as population models, neu-
ral mass models, or, in the continuum limit, neu-
ral field models (Fig. 1A)—help researchers to
gain an intuitive and more analytical understand-
ing of the principal activity patterns in large
networks.

Although the transition from microscopic to
macroscopic scales relies on purely mathematical
arguments, simulations are important to add as-
pects of biological realism (such as heterogeneity
of neurons and connectivity, adaptation on slow-
er time scales, and variability of input and recep-
tive fields) that are difficult to treatmathematically.
However, the theoretical concepts and the es-
sence of the phenomena are often robust with
respect to these aspects.

Decision-Making: Theory Combines
Top-Down and Bottom-Up
Many times a day we are confronted with a de-
cision between two alternatives (A or B), such as
“Should I turn left or right?” Psychometric mea-
sures of performance and reaction times for two-
alternative forced-choicedecision-makingparadigms
can be fitted by a phenomenological drift-diffusion
model (37). This model consists of a diffusion
equation describing a random variable that ac-
cumulates noisy sensory evidence until it reaches
one of two boundaries corresponding to a specific
choice (Fig. 2A). Despite its success in explaining
reaction time distributions, the drift-diffusionmod-
el suffers from a crucial disadvantage, namely the
difficulty in assigning a biological meaning to the
model parameters.

Recently, neurophysiological experiments have
begun to reveal neuronal correlates of decision-
making, in tasks involving visual patterns of
moving random dots (41, 42) or vibrotactile (43)
or auditory frequency comparison (44). Compu-

REVIEW

1School of Computer and Communication Sciences and Brain
Mind Institute, School of Life Sciences, Ecole Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland. 2Technische
Universität Berlin, 10587Berlin, Germany. 3Humboldt-Universität
zu Berlin, 10115 Berlin, Germany. 4Bernstein Center for Com-
putational Neuroscience Berlin, 10115 Berlin, Germany. 5Center
for Brain and Cognition, Department of Information and Commu-
nications Technologies, Universitat Pompeu Fabra, Roc Boronat 138,
08018 Barcelona, Spain. 6Institució Catalana de Recerca i Estudis
Avançats, Passeig Lluís Companys, 2308010 Barcelona, Spain.

*To whom correspondence should be addressed. E-mail:
wulfram.gerstner@epfl.ch

5 OCTOBER 2012 VOL 338 SCIENCE www.sciencemag.org60

 o
n 

Ja
nu

ar
y 

15
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

15
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

15
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

15
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

15
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

15
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/


tational neuroscience offers a framework to bridge
the conceptual gap between the cellular and the
behavioral level. Explicit simulations of micro-
scopic models based on local networks with large
numbers of spiking neurons can reproduce and
explain both the neurophysiological and behav-
ioral data (39, 45). These models describe the
interactions between two groups of neurons
coupled through mutually inhibito-
ry connections (Fig. 2C). Suitable
parameters are inferred by studying
the dynamical regimes of the system
and choosing parameters consistent
with the experimental observations
of decision behavior. Thus, the pure
bottom-up path is complemented
by the top-down insights of target
functions that the network needs
to achieve.

Theory has provided a way to
identify the connection between the
simulation-based biophysical level
and the phenomenological drift-
diffusion models that were used to
quantify behavioral data in the
past. This analysis first involves
reducing the system of millions of
differential equations to only two
equations, by the mean-field tech-
niques (33) discussed in the previ-
ous paragraph (see Fig. 1A). In this
reduced system, different dynami-
cal regimes can be studied bymeans
of a bifurcation diagram (Fig. 2B),
leading to a picture in which the
dynamics of decision-making can
be visualized as a ball rolling down
into one of the minima of a multi-
well energy landscape. Close to the
bifurcation point (DD), finally, the
dynamics can be further reduced to
a nonlinear one-dimensional drift-
diffusion model (46) (Fig. 2A).

Hebbian Assemblies and
Associative Memories:
Top-Down Concepts
The name of Hebb is attached to
two different ideas that are inti-
mately linked (5): the Hebbian cell
assembly and the Hebbian learning
rule. The former states that mental
concepts are represented by the
joint activation of groups of cells
(assemblies). The latter postulates
that these assemblies are formed by
strengthening the connections be-
tween neurons that are “repeated-
ly and persistently active together.”
These strong connections enable
the network to perform an associa-
tive retrieval ofmemories (Fig. 3A):
If a neuron that is part of the as-
sembly does not receive an exter-
nal stimulus sufficient to trigger

its firing, it can nonetheless be activated by
lateral excitatory input from active partners in the
assembly, such that eventually the stored activity
pattern is completed and the full assembly—
and thus the memory—is retrieved. Although
Hebb wrote down his ideas in words, these soon
inspired mathematical models of learning rules
and large-scale simulation studies (6). Whereas

the simulations pointed to limitations of Hebb’s
original ideas in practical applications, mathe-
matical studies (11, 48, 49) cleared the first
paths through the jungle of possible model con-
figurations toward a working model of memory
retrieval. In analogy to models of magnetic sys-
tems and spin glasses in statistical physics, the
picture of memory retrieval as movement toward

a minimum in an energy landscape
emerged (Fig. 3B), first in networks
of binary units (12, 50) and later for
ratemodels (51, 52). In these frame-
works, important questions could be
answered, such as that of memory
capacity. Because each neuron can
participate in many different assem-
blies, memory capacity is difficult
to estimate by pure verbal reason-
ing. Theory shows that the num-
ber of different random patterns
that can be stored scales linearly with
the number of neurons (53): A net-
work with 10,000 neurons can store
about 1000 patterns, but if we dou-
ble the number of neurons, we can
store twice as many.

It took many steps from these
abstract concepts to arrive at biolog-
ically plausible models of memory.
Whereas the energy landscape anal-
ogy is restricted to a limited class of
abstractmodels, the concept ofmem-
ory retrieval as movement toward an
attractor state (Fig. 3C) turned out
to be robust with respect to model
details. The top-down path (Fig. 3,
C to E) of model development in-
cludes the transition fromhigh-activity
states to low-activity states (54); from
networks with complete and recip-
rocal connectivity to ones with sparse
and asymmetric connections (55);
tuning of inhibition in sparsely ac-
tive networks (56); transition from
rate neurons to spiking neurons
(34, 57, 58); addition of a spontane-
ous state at low firing rates (59, 60);
homeostatic control of threshold or
plasticity (47, 61); and further steps
still to be taken, so as to solve the
issue of online learning in associa-
tive memory networks (62). The
above historical sketch shows the
flow of ideas from top to bottom, by
adding biological realism and de-
tails to well-understood abstract con-
cepts. As research moves along this
path, numerical simulations gain in
importance, but theory remains the
guiding principle. Given the tech-
nical challenges of detecting dis-
tributed but jointly active neuronal
assemblies in the brain, it is not
surprising that experimental evi-
dence for associative memories as

Fig. 1. Bottom-up abstraction scheme for neuronal modeling. (A) Neural
mass model at the macroscopic scale. (B) Integrate-and-fire point neuron
model. (C) Biophysical neuron model. The ion currents flowing through chan-
nels in the cell membrane (left) are characterized by an equivalent electrical
circuit comprising a capacity C and a set of time-dependent conductances g,
one for each channel type (right). These currents can generate action po-
tentials (green). At the next level of abstraction (B), action potentials are treated
as formal events (“spikes”) generated whenever the membrane potential u
(solid red line) crosses a threshold ϑ (dashed blue line). After each spike the
voltage is reset (dashed red line). Arrivals of spikes from other neurons (red
arrows) generate postsynaptic potentials. At the highest level of abstraction
(A), groups of neurons interact by their population activity An(t) derived
mathematically from neuronal parameters. In a continuum description (neural
field model), different neuronal populations are characterized by their input
characteristics such as the preferred orientation q of a visual stimulus.
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attractor states remains scarce and indirect: Neither
invariant sensory representations as observed in
individual high-level neurons (63) nor persistent
activity during working memory tasks (64, 65)
are sufficient to prove attractor dynamics, and the
interpretation of multiunit recordings during
remapping in the hippocampus as a signature
of attractors (66) has been questioned (67), so
that novel experimental approaches that enable
large-scale recordings of complete neural ensem-
bles (68–70) will be necessary.

Reward-Based Learning: From Behavior
to Synapse
Hebbian assemblies play a role in models of
decision-making (e.g., two populations repre-
senting choices A or B), but the assemblies are
fixed and do not change. As such, these models
describe static stimulus-response mappings that do
not take into account that we can alter our deci-
sion strategies, that we can learn from experience.
Theories of behavioral learning are an example
for a top-down approach that has led from psy-

chology to models of synaptic plasticity, which
go beyond a simple Hebbian learning rule.

Models of behavioral learning date back to
early experimental psychology. Thorndike’s “law
of effect” (71) stated that animals use behavioral
alternatives more often when they were rewarded
in the past. The mathematical theory of Rescorla
andWagner (13) extended this idea and suggested
that it is not reward per se that drives learning,
but the discrepancy between actual and expected
outcome—an insight that is also essential in mod-
els of temporal difference learning (72). In the
1980s, this line of research on trial-and-error learn-
ing in animal psychology and artificial intelligence
joined the parallel, mainly engineering-driven line
of control theory (73) to form the large research
field of reinforcement learning (74).

Although reinforcement learning often makes
use of neural architectures (75, 76), its main focus
is algorithmic. The renewed interest of computa-
tional and theoretical neuroscience in reward-
based learning was triggered in the 1990s by two
physiological findings. First, Schultz and col-

leagues discovered that dopamine neurons in the
midbrain respond to unexpected rewards (77)
with activity patterns that resemble the reward
prediction error of temporal difference learning
(14). Moreover, it was shown that synaptic plas-
ticity, long hypothesized to form the neural basis
of learning (78), is under dopaminergic control
(79–81) and is thus modulated by reward pre-
diction errors. These findings have led to the idea
that the traditional Hebbian view of synaptic plas-
ticity driven by pre- and postsynaptic activitymust
be augmented by reward prediction error as a
third factor (80). The current tasks of computa-
tional neuroscience are to compare the learning
rules suggested by the top-down approach with
experimental data, and to generalize existing
concepts in order to evaluate whether, and under
what conditions, three-factor learning rules (82–84)
of reward-modulated Hebbian synaptic plastic-
ity can be useful at the macroscopic level of
networks (85, 86) and behavior (87, 88).

Reinforcement learning is a textbook ex-
ample for a synergistic interaction of theory

Fig. 2. Binary decision-making. (A) Behavioral level: Drift-diffusion model for reaction
time experiments (37). A decision is taken (arrow) when the decision variable hits a
threshold (first trial, green, choice A; second trial, red, choice B). (B) Mesoscopic level:
Mathematical model of interacting populations. A decision can be visualized (left) as a
ball moving down the energy landscape into one of the minima corresponding to A or
B. The black lines in the energy landscape correspond to an unbalanced (50-50) free
choice (i.e., no evidence in favor of any decision); the dotted red lines represent the cases
with evidence for decision A. The three different landscapes correspond to different
parameter regimes, indicated in the bifurcation diagram (right). In the multistable region
(M), the spontaneous state is stable, but noise can cause a transition to a decision. In the
bistable region (BI), a binary choice is enforced. At the bifurcation point (DD), the land-
scape around the spontaneous state is flat and the decision dynamics can be further
reduced to the drift-diffusion process in (A). The vertical dashed line in the energy
landscape indicates the “point of no return” and correspond to the decision thresholds
in (A). (C) Multineuron spiking model (38, 39). Two pools of neurons (left) receive input
representing evidence for choice option A or B, respectively, while shared inhibition leads
to a competition between the pools. In the absence of stimuli, the system is spontaneously
active, but if a stimulus is presented, the spontaneous state destabilizes and the dynamics
evolve toward one of the two decision states (attractor states, bottom right). During a
decision for option A, the firing rate of neurons in pool A increases (top right, green line).
The mathematical model in (B) can be derived from the spiking model in (C) by mean-field
methods (40). The parameter of the bifurcation diagram in (B) is the strength of excitatory
self-interaction of neurons in (C).
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and simulation. Most algorithms are based on
mathematical theory, but without an actual
implementation and simulation, it is difficult to
predict how they perform under realistic condi-
tions. The undesired increase in learning timewith
problem complexity observed in simulations of
most algorithms poses challenges for the fu-
ture. The solution could lie in effi-
cient representations of actions (89)
as well as environmental and bodily
states (90), possibly adapted through
Hebbian learning; place cells could
serve here as an example (91, 92).
Large-scale simulations will be key
to evaluating whether neuronal rep-
resentations across different brain
areas are apt to turn complex reward-
based learning tasks into simple ones,
or whether we need a paradigm shift
in reward-based learning.

Large-Scale Simulation
Needs Theory
With the growth of computer power,
the notion of large-scale simulation
continues to change. In the 1950s,
networks of 512 binary neurons were
explored on the supercomputers of
that time (6); both network size and
biological realism increased in the
1980s to 9900 detailed model neu-
rons (93). Current simulations of net-
works go up to 109 (94) or 1011 (95)
integrate-and-fire neurons or 106

multicompartment integrate-and-fire
models with synaptic plasticity (96).

The structure of neural networks,
which is intrinsically distributed and
parallel, lends itself to implementa-
tions on highly parallel computing
devices [e.g., (97, 98)] and has trig-
gered specialized “neuromorphic”
design of silicon circuits (99, 100). Fu-
ture implementations of large networks
of integrate-and-fire neuronswith syn-
aptic plasticity on specialized paral-
lel hardware (101–104) should run
much faster than biological real
time, opening the path toward rapid
exploration of learning paradigms.
Current large-scale implementations
on general-purpose or specialized
computing devices are feasibility
studies suggesting that the simula-
tion of neural networks of the size of
real brains is possible. But before
such simulations become a tool of
brain science, major challenges need
to be addressed—and this is where
theory comes back into play.

First, theory supports simulations
across multiple spatial scales. Even
on the biggest computers it is im-
possible to simulate the whole brain
at a molecular resolution. However,

in (for example) a study of the interaction of a
drug with a synapse, the synapse could be sim-
ulated at the molecular level; the neuron onwhich
the synapse sits could be simulated at the level of
biophysical model neurons; the brain area in
which the circuit is embedded could be simu-
lated at the level of integrate-and-fire models;

and the remaining brain areas can be summarized
in population equations that describe their mean
activity. Theory provides the methods to sys-
tematically bridge the scales while ensuring the
self-consistency of the model.

Second, theories guide simulations of learn-
ing. Because learning (at the behavioral level)

Fig. 3. Top-down evolution of ideas and models from Hebbian assemblies to associative memories. (A) Left: According
to Hebb, neurons that are active together (red triangles) during a concept such as “apple” form a cell assembly with
stronger excitatory connections with each other (thick lines) relative to connections to and from inactive neurons
(yellow). Right: Partial information is sufficient to excite the inactive neuron of the assembly and retrieve the full
concept (green arrow indicates flow of network dynamics). (B) The dynamics can be visualized in an energy landscape
(energy as a function of network state) as a downward flow into the well corresponding to “apple”; other concepts (car,
grandmother) correspond to other minima of the energy. (C) Similarity of the present network state with one of the
assemblies. After a short presentation of partial information resembling the concept “apple,” the network moves
toward an attractor state with high similarity (blue) to the corresponding assembly. After a reset, the network is ready to
respond to a second stimulus (“car,” red). Similarity with other learned patterns (green) remains nearly unchanged
during retrieval of one of the memories. The dashed horizontal line indicates maximal similarity, and therefore identity,
with a stored assembly. (D) In a brainlike neural network, only few units have elevated firing rates (red). (E) Memory
retrieval from partial information also works in networks of excitatory (red) and inhibitory (black) spiking neurons. In
the spontaneous state (left), each neuron emits only a few spikes (vertical bars along a horizontal line); during memory
retrieval, a few excitatory neurons fire many spikes (right). [Adapted from (47)]
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and long-term plasticity of synapses (at the
cellular level) evolve on the time scale of hours,
experimental progress is slow and data to con-
strain synaptic plasticity rules are scarce. Even
before a candidate plasticity rule is implemented
in a simulation, theories allow us to predict, in
some cases, that a given rule cannot work for the
task at hand; that another rule should work, but
might be slow; and that yet another rule should
work perfectly if combined with some finely
tuned homeostatic process, etc.

Third, regularization theories provide a frame-
work for optimization of parameters. Even at
the level of a single neuron, the number of pa-
rameters is huge because there are about 200
different types of ion channels (105), the den-
sity of which varies along the dendrite. More-
over, in a network of billions of neurons, each
with thousands of connections, the number of
parameters to specify the connectivity is daunt-
ing. How then, can experimental findings ever
sufficiently constrain such detailed models?

A solution to this problem could be provided
by regularization theory, which penalizes param-
eter settings that deviate from what is considered
plausible. The challenge in the application of reg-
ularization to biologically detailed neural networks
consists in designing appropriate regularization
terms that summarize plausible prior assumptions
in a transparent fashion. For example, ion chan-
nel distributions along a dendrite can be regular-
ized by imposing plausible density profiles (10,106)
and penalizing the use of more than a few chan-
nels for any neuron (107). Connectivity can be
regularized by penalizing deviations from simple
“connectivity rules” (108, 109).

Fourth, theory drives understanding. It is ex-
tremely difficult to control a complex simulation
if we do not have an intuition of the basic mech-
anisms at work. Mathematical abstraction forces
us to express intuitions rigorously—to turn ideas
into toy models. These not only make qualitative
predictions of how a complex simulation should
behave under changes of parameters, but also
provide the understanding necessary to commu-
nicate ideas to others.

Theory Needs Simulations
Although theoretical concepts exist for some brain
functions, many of our cognitive abilities still
await neurally plausible models—for example,
verbal and mathematical reasoning or representa-
tions of language and music. Will existing and
future concepts developed in mathematical toy
models be transferable to systems of the size of a
brain with realistic input and output? We believe
so, but extensions to large systems cannot cur-
rently be tested. In our opinion, mathematical toy
models will continue to play a major role in
guiding the way we think about neuroscience.
However, initiatives for shared modular and re-
usable code and standardized simulator inter-
faces (110–113) are important; today the biggest
problems addressed in computational neuroscience
are often limited to the size of one Ph.D. project.

More generally, the community of theoretical and
computational neuroscience would profit from a
simulation environment where the ideas devel-
oped in the toy models could be tested on a
larger scale, in a biologically plausible setting,
and where the ideas arising in different commu-
nities and labs are finally connected to the bigger
whole.
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