
A standard neuroscience technique involves record-
ing the extracellular activity of single neurons to study 
their responses in different tasks and conditions1. This 
approach has provided invaluable information about 
the functions of neurons in different areas2, but it  
has the caveat that individual neurons are usually studied 
in isolation, thus giving a limited picture of how neu-
ronal populations give rise to sensation, behaviour or 
other complex brain processes. Moreover, the responses 
of single cells to external stimuli are often averaged over 
several trials to reduce the effects of neuronal variability. 
However, the brain usually processes information and 
takes decisions based on single events, making sense of the  
noisy responses from individual neurons by evaluating  
the activity of large populations.

Current recording systems and multielectrode 
probes3–8 allow recording from dozens or even hundreds 
of sites simultaneously. However, although the need to 
study whole neuronal populations is clear4,9, analysing 
this type of data involves two major mathematical chal-
lenges: the activity of single neurons must be identified 
from the extracellular recordings using spike-sorting algo-
rithms (BOX 1), and the information from the population 
of neurons must be extracted with objective measures.

There are two complementary approaches to study 
how the brain extracts features and deciphers infor-
mation encoded in the single-trial activity of neuronal 
populations. The first uses decoding algorithms to pre-
dict a given stimulus or behaviour from the pattern of 
neuronal responses10–14. The second uses concepts from 

information theory15 to determine how much informa-
tion neurons carry about the stimuli12,14,16,17. Although 
the two approaches have been developed in parallel and 
with limited interaction, we aim to show here how they 
are intrinsically related. We also illustrate with several 
examples how much more information can be extracted 
with a population analysis than by studying the firing of 
individual neurons.

Extracting information from neuronal populations
There are three main steps to analyse multiple  
single-cell recordings (FIG. 1). First, the neuronal activ-
ity is recorded with implanted microwires. Second, the 
activity of single neurons is extracted from the recorded 
data using spike-detection and -sorting algorithms18 
(BOX 1). In this respect automatic spike-sorting algo-
rithms are needed for studying large neuronal popula-
tions, because they minimize the user’s interaction and 
allow a fast analysis of large numbers of channels18–21. The 
final step is to interpret the resulting patterns of multiple 
spike trains using decoding or information theory.

Advantages of the population analysis. The power of the 
population analysis using decoding or information the-
ory relies on several facts. First, these methods consider 
the information carried by the population of neurons 
as a whole, and they allow the determination of how 
each member of the population and the interactions 
between them contribute to the stimulus representation. 
For example, the responses of a given neuron might not 
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Spike sorting
The grouping of spikes into 
clusters based on the similarity 
of their shapes. Given that, in 
principle, each neuron tends to 
fire spikes of a particular 
shape, the resulting clusters 
correspond to the activity of 
different putative neurons. The 
end result of spike sorting is 
determining which spike 
corresponds to which of these 
neurons.

Decoding
Predicting the most likely 
stimulus or behaviour eliciting 
an observed neural response.
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Abstract | To a large extent, progress in neuroscience has been driven by the study of 

single-cell responses averaged over several repetitions of stimuli or behaviours. However, 

the brain typically makes decisions based on single events by evaluating the activity of large 

neuronal populations. Therefore, to further understand how the brain processes information, 

it is important to shift from a single-neuron, multiple-trial framework to multiple-neuron, 

single-trial methodologies. Two related approaches — decoding and information theory — 

can be used to extract single-trial information from the activity of neuronal populations. 

Such population analysis can give us more information about how neurons encode stimulus 

features than traditional single-cell studies.
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Information theory
A mathematical theory that 
deals with measures of 
information and their 
application to the study of 
communication systems. In 
neuroscience it is used to 
establish the amount of 
information about a stimulus or 
behaviour that is contained in 
the neural responses.

Local field potential
(LFP). A neurophysiological 
signal that is obtained by 
low-pass filtering extracellular 
recordings. It represents the 
mean field potential generated 
by the slow components of 
synaptic and neural events in 
the vicinity of the recording 
electrode.

clearly indicate whether an apple or an orange is being 
seen, but this uncertainty might be resolved when the 
activity of other neurons is considered. In fact, the popu-
lation analysis based on decoding or information theory 
can reveal how the other neurons resolve this ambigu-
ity — for example, by coordinating their firing to tag 
particularly salient events22,23 or by having each neuron 
represent a particular stimulus feature24–26. Second, 
postsynaptic neuronal systems must usually interpret 
neuronal responses obtained in only one trial. Both the 
information-theoretic and the decoding approaches 
quantify stimulus knowledge obtained with the observa-
tion of single-trial population responses, thus providing 
a framework that is compatible with the strict timescales 

of online brain processing. Third, the stimulus features 
encoded by the spike trains can be discovered by assess-
ing whether the population response can discriminate 
different stimuli containing a particular feature. Fourth, 
it is possible to systematically evaluate how different 
features of the spike trains affect the performance of a 
decoding algorithm or the amount of extracted infor-
mation. Fifth, the information given by different meas-
ures of neuronal activity, such as spike trains and local 
field potentials (LFPs), can be analysed and combined. 
Although these two signals have very different charac-
teristics and signal-to-noise ratios, information theory 
and decoding algorithms allow a direct comparison 
between LFPs and spikes because they project the two 

Box 1 | Extracellular recordings

Extracellular recordings are usually performed by inserting microwires into the brain1. After amplification, the signal is 

low-pass filtered to obtain the local field potential — the mean field potential generated by neurons in the vicinity of the 

electrode — and high-pass filtered to identify the activity of single neurons using spike detection and sorting algorithms. 

The example shown in the figure corresponds to a recording of approximately half an hour in the left hippocampus of an 

epileptic patient24,44, of which 5 s of continuous data are shown. After high-pass filtering, the firing of nearby neurons 

appears as spikes on top of background activity. Spikes are detected using an amplitude threshold (represented by the red 

horizontal line). Features of the spike shapes are extracted and the spikes are sorted accordingly. For neurons located 

approximately 50–100 μm from the electrode tip4,122, the signal-to-noise ratio is good enough to distinguish the activity of 

each single unit (inner circle; spikes in red, green and cyan). For more distant neurons, up to approximately 150 μm from the 

tip (outer circle), spikes can be detected but the difference in their shapes is masked by the noise and they are grouped 

together in a ‘multi-unit’ cluster (spikes in blue). Spikes from neurons further away from the tip (shown in light grey in the 

schematic) cannot be detected and contribute to the background noise.

There are several issues that make spike sorting challenging18. In particular, some neurons fire very sparsely — for 

example, the neuron shown in cyan in the figure fired only 42 spikes in approximately half an hour, a mean firing rate of less 

than 0.05 Hz. These neurons are usually hard to detect. Interestingly, such sparsely firing neurons showed the most 

selective and interesting responses in human recordings24.
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Information
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Posterior probability
The posterior probability of a 
random variable is the 
conditional probability 
assigned to the variable given 
some event. For example, the 
posterior probability P(s|r) is 
the conditional probability that 
stimulus s was presented, given 
that a response r was 
observed.

Shannon entropy
A measure of the uncertainty 
about the value that might be 
taken by a random variable.

Bit
The unit used to measure 
reduction of uncertainty. One 
bit corresponds to a reduction 
of uncertainty by a factor of 
two (for example, a correct 
answer to a yes/no question).

signals on to a common scale. It then becomes possible 
to assess whether the LFP adds some knowledge about 
the stimulus that cannot be obtained from spikes alone 
and vice versa.

Decoding algorithms. Decoding is the prediction of 
which stimulus or behaviour elicits a particular neuro-
nal response in a single trial. An example is given by 
Bayesian decoding. Let P(s) denote the probability of 
presentation of stimulus s (belonging to a set S) and P(r|s) 
denote the conditional probability of obtaining a popula-
tion response r (out of a response set R) when stimulus s 
is presented. Using Bayes’ theorem, we obtain27:

P(s|r) = P(r|s) · P(s)
P(r)        

(1)

with 

P(r) = s P(r|s) · P(s)       (2)
Equation 1 gives the posterior probability that, given a 

response r, stimulus s was presented. Bayesian decoding  
calculates from this posterior probability distribu-
tion a single prediction of the most likely stimulus (sP)
(REFS 13,28–30) — for example, by taking: sP = arg maxs 
(P(s|r)).

Besides the Bayesian approach, there are several 
other methods to decode the stimulus in a given trial. 
A thorough discussion of these decoding algorithms 
has been provided elsewhere10,11,13,14,31, and a short 
description of the most common methods is given in 
BOX 2. The implementation of decoding algorithms is  
illustrated in FIG. 2.

To validate decoding results, some trials can be used 
to optimize the decoder (the training set) and the rest to  
test its performance, a procedure called cross-validation32.  
It is important that trials belonging to the training set are 
not used to evaluate the decoding performance because 

this may lead to artificially high values owing to overfit-
ting33. Furthermore, both the training and the testing 
sets should be large enough to avoid underestimating the 
decoding performance owing to poor optimization of 
the decoder in the first case and low statistics for testing 
in the latter. A common procedure is the ‘leave-one-out’ 
validation, in which each trial is predicted based on the 
distribution of all the other trials. This has the advan-
tage that both optimization and testing are based on the  
largest possible number of trials33.

Decoding results are usually presented in the form 
of ‘confusion matrices’ (FIG. 2c). The values on a given 
row i and column j of a confusion matrix represent the 
(normalized) number of times that a presentation of 
stimulus i is predicted by the decoder to be stimulus j. 
If the decoding is perfect, the confusion matrix should 
have entries equal to one along the diagonal and zero 
everywhere else. For equiprobable stimuli, performance 
at chance levels should be reflected by a matrix in which 
each entry has equal probability 1/K (with K being the 
number of stimuli).

Shannon information theory. Another powerful way to 
study the activity of neuronal populations is to calculate 
the information about a given stimulus or behaviour 
contained in the neuronal responses using the formal-
ism of Shannon information theory. As before, suppose 
that a stimulus s belonging to a set S is presented with a 
probability P(s). The Shannon entropy H(S) of the distri-
bution of probabilities P(s) for each stimulus is defined 
as15,16,27,34:

H(S) = –  P(s)log2P(s)
s        

(3)

This quantifies the uncertainty about which stimulus 
is presented or, conversely, the average amount of infor-
mation gained with each stimulus presentation. Entropy 
is measured in bits if the logarithm is taken with base 2 

Figure 1 | Three main steps for the population analysis of neural recordings. The common steps for analysing how a 

population of neurons encodes information about visual inputs are shown. First, recordings are taken at different sites 

with implanted electrodes. Second, the simulated activity of single neurons is extracted from the continuous data using 

spike-sorting algorithms. Third, information is inferred from the multiple spike trains with decoding algorithms (which can 

predict that the stimulus was an apple), or information theory (which quantifies the knowledge about the stimulus gained 

by observing the population response). The population analysis allows the study of the information carried by the different 

features of the multiple spike trains. For example, it can be established whether the information of the apple is given by an 

increase in firing (neuron in red), by a particular temporal firing pattern (neuron in green) or by the simultaneous firing of a 

subset of neurons (neurons in blue and grey). The vertical dotted line marks stimulus onset.
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Unbiased decoder
A decoder is said to be 
unbiased if the expected value 
of its decoding error (the 
difference between the true 
and the estimated stimulus 
values) is zero.

(as in equations 3–5 and 10–12). The Shannon entropy 
is zero when the same stimulus is presented each time, 
and is positive otherwise. It reaches a maximum of 
H(S) = log2 K when the probability of presenting each  
of K different stimuli is equal.

If the neuronal population response r contains 
information about the stimulus, then its observation 
will reduce the stimulus uncertainty of equation 3. The 
residual uncertainty about the stimulus after observing 
the neuronal response is called equivocation and it is 
given by the weighted average entropy of the posterior 
distribution P(s|r) (see equation 1):

H(S|R) = –  P(r) · P(s|r) log2P(s|r)
s,r

       (4)

From this, mutual information is defined as the 
reduction of uncertainty (or gained information) about 
the stimulus obtained by knowing the neuronal response. 
It is given by the difference between the stimulus entropy 
H(S) and the equivocation H(S|R):

I(S;R) =  P(r)P(s|r)log2 s,r

s,r

P(s|r)
P(s)

P(s,r) 
P(s) · P(r) 

 

= P(s,r)log2

      (5)

P(s,r) denotes the joint probability of observing 
the response R = r together with the stimulus S = s.  
These probabilities are not known a priori but they 

can be estimated empirically. For example, the range of 
responses of each neuron can be partitioned into M bins, 
and the frequency of observing a response in each bin 
is computed (for reviews of other estimation methods, 
see REFS 35,36). Information, like entropy, is measured 
in bits. Every bit of information provided by the neurons 
reduces the overall uncertainty about the stimulus by a 
factor of two. If the stimuli and the responses are inde-
pendent, the mutual information equals zero. Otherwise 
it takes positive values. Perfect knowledge about the 
stimulus from the neuronal activity or, in other words, 
an errorless stimulus reconstruction gives a maximum 
mutual information of I(S;R) = H(S).

Alternatively, the knowledge about the stimulus con-
tained in the neuronal responses can be measured using 
Fisher information34: 

FI =  P(r|s)  d  lnP(r|s)
r

2

ds .       (6) 

The inverse of Fisher information is a lower bound 
to the mean square decoding error obtained with any  
unbiased decoder. Fisher information can be used only 
with continuous stimuli and thus its application to 
experimental neuroscience has remained more limited 
than that of Shannon information.

Complementarities of decoding and information theory. 
Both decoding and information theory extract quanti-
tative information from the population responses, by 
quantifying the knowledge about the stimulus that is 
gained from observing a neuronal population response 
on a single trial. However, they each quantify a differ-
ent aspect of this knowledge. Decoding algorithms pre-
dict the stimulus that caused the single-trial neuronal 
responses, and their performance is typically measured 
by the percentage of correct predictions (BOX 2). But 
even with an optimal decoder, the amount of extracted 
information may be less than the information available 
in the neuronal responses. Information theory quantifies 
the overall knowledge about the presented stimulus that 
is gained with the single-trial neuronal responses. This 
distinction is important because neurons can convey 
information by means other than just telling which is the 
most likely stimulus37–39: for example, they can provide 
information about other stimuli that are unlikely (FIG. 3). 
The complementarities between decoding and infor-
mation theory are explicit when considering Bayesian 
decoders, because in this case both decoding and infor-
mation theory are just two different computations over 
the posterior probability P(s|r) of equation 1: Bayesian 
decoders give the most likely stimulus (arg max P(s|r)), 
whereas information theory gives a smooth integration 
of information over the whole posterior probability 
P(s|r). The different amounts of information extracted 
by decoding algorithms and information theory are 
detailed in BOX 3.

Only a few studies have quantified the information 
that is lost when using decoding algorithms. One of them 
evaluated the information that could be gained from the 
population activity of head-direction cells (neurons that 
encode the direction of the animal’s head) in the primate 

 
Box 2 | Decoding algorithms

Several decoding algorithms have been developed. Nearest-neighbour decoders 

assign a given trial to the class of its nearest neighbour31,61. Fisher linear discriminant 

algorithms introduce a dimensionality reduction (by projecting the original space 

where the classification is performed on to a line with a direction that maximizes the 

ratio of between-class to within-class distances) that optimally separates the samples 

of each class31,44. Support vector machines project the data into a high-dimensional 

space in which it is possible to find a hyperplane (a high-dimensional plane) that 

optimally separates the data123. This is particularly useful if points corresponding to two 

given classes are separated by a nonlinear region. Bayesian decoders assign a given 

trial to the class that minimizes the probability of an error, given the prior probabilities 

of each class and the posterior probabilities (see equation 1)11,28,29. Decoding can also 

be performed by training an artificial neural network65.

Decoding performances are usually quantified by the relative number of hits (that is, 

the average of the diagonal in the confusion matrix). As the outcomes of the 

predictions of each stimulus can be regarded as a sequence of Bernoulli trials 

(independent trials with two possible outcomes: success and failure), the probability of 

successes in a sequence of trials follows the Binomial distribution124. Given a probability p 

of getting a hit by chance (p = 1/K, in which K is the number of stimuli), the probability of 

getting k hits by chance in n trials is given by 

!!""#$# #"!%#&##"$%&%"
"
$

      

(7)

, where 

 

#$#
"
$ $'

!$%&%""'"'
       

(8)

is the number of possible ways of having k hits in n trials. From this it is possible to 

assess statistical significance and calculate a p-value by adding up the probabilities 

of getting k or more hits by chance44:

#()*+,-#$# !!'"
'#$#"

.        

(9)
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and reported that a Bayesian decoding algorithm pro-
vided ~95% of the total information available from the 
neuronal responses40. This information loss was higher 
with predictions using the ‘population vector’ method 
(see below)41, in agreement with previous findings show-
ing that Bayesian decoders performed better than the 
population vector13,28,29,42.

There is evidence that animals estimate posterior dis-
tributions P(s|r) of stimulus variables43; however, the final 
behavioural outcome of most neuronal calculations is a 
decision about what is the most probable stimulus or the 
most appropriate behaviour. Thus, decoding (identify-
ing the most likely stimuli) is well suited for comparing 
neuronal and behavioural performance. Information 
theory has the advantage of summarizing all the informa-
tion contained in the population responses into a single, 
meaningful number. The mutual information between 
the stimuli and neuronal responses gives an upper bound 
to the amount of knowledge that can be provided by a 
decoding algorithm. This makes information theory  
a strong tool with which to evaluate the computational 
capabilities of neuronal codes, as it can consider ways of 
transmitting information that might not be revealed by 
decoding algorithms.

A straightforward way to link information theory 
and decoding is to compute the mutual information 
between the actual and the predicted stimuli from the 
decoding outcomes — that is, the mutual information 
I(S;SP) between the rows and columns of the confusion 
matrix15,34,40,44–46 (BOX 3). This can give more information 
than just the relative number of hits (correct predictions 
(BOX 2)). For a given number of hits more information 
can be obtained if incorrect predictions are concen-
trated into clusters around the correct stimulus38,47. For 
example, the relative number of hits in FIG. 2 tells us 
that the presentations of picture 29 were often wrongly 
decoded, but not that they were mainly confused with 
picture 26 and not just predicted at random, as would 
have occurred if the neurons had no information about 
the stimulus44. The combined analysis of decoding and 
information theory can reveal such systematic errors in 
the decoder.

It has been shown that populations of neurons can 
not only compute the most likely stimulus — or the opti-
mal response — but also estimate probability distribu-
tions48–50. The combination of information theory and 
decoding could give a valuable measure to clarify how 
populations of sensory neurons can report the predicted 
stimulus and other relevant information, such as the 
uncertainty of these predictions51–53. This can be achieved 
by comparing the information between stimuli and neu-
ronal responses, I(S;R), with the information obtained 
from the confusion matrix after decoding, I(S;SP). The 
difference between these two quantities gives the amount 
of information available in the neuronal responses that 
could be gained by means other than decoding the most 
likely stimulus. It is possible to extend this calculation 
by computing for each trial the predicted stimulus and 
another specific aspect U of its uncertainty (for example, 
the variance of the prediction, or the relative likelihood 
of the best and second best stimuli) and then evaluate 

Figure 2 | Decoding analysis. The decoding analysis is 

illustrated with the prediction of which picture presentation 

elicited single-cell responses recorded from human subjects 

implanted with intracranial electrodes for clinical reasons.  

a | For simplicity, the responses of two out of a population of 

N neurons to two out of K stimuli (a picture of a spider and a 

picture of the Tower of Pisa) are shown. b | Each trial is 

represented as a point in an N-dimensional space. Trials  

in which the spider was shown are marked in red; those in 

which the Tower of Pisa was shown are marked in blue. A 

new trial to be decoded (shown in grey) can, for example, be 

assigned to the class of its nearest neighbour. c | The 

outcome of the decoding algorithm, in the form of a 

confusion matrix, for all 32 pictures that elicited responses 

in this particular recording session. The colour code shows 

the relative number of times that a presentation of picture i 
(in the y axis) was predicted to be picture j (in the x axis). A 

perfect decoding should have all entries in the diagonal. In 

this case, the overall percentage of hits — the average along 

the diagonal — was 35.4%, which was significantly better 

than chance (1/32 = 3.1%) with p<10–49 (see BOX 2). Parts a 

and c are reproduced, with permission, from REF. 44  

(2007) American Physiological Society.
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whether the information given by the combination of 
the stimulus prediction and its uncertainty, I(S;SPU), is 
greater than I(S;SP) and how much it accounts for all the 
information I(S;R) carried by the neuronal response.

Limitations of decoding and information theory. The 
main limitation of decoding is that it does not con-
sider all the potential ways to transmit information. 
Moreover, decoding algorithms may fail to decode stim-
uli owing to a high-dimensional response space or the 
use of incorrect assumptions about the recorded data. 
In such circumstances it may therefore be dangerous 
to rule out a candidate neuronal code only because it 
gives a near-chance performance with a given decoding  
algorithm.

One disadvantage of information-theoretic measures 
is that high information values in a neuronal code might 
not be biologically relevant because neural systems  
might not be capable of exploiting all of this information. 
This issue can be addressed by analysing the perform-
ance of decoding algorithms that incorporate some of 
the limitations of the postsynaptic neuronal circuitry.

Another problem of information-theoretic analyses 
(and, to a lesser degree, of decoding algorithms) is that 

the stimulus–response probabilities must be estimated 
empirically. This can also lead to ‘limited sampling 
biases’ — that is, pronounced systematic errors caused 
by limited amounts of data36,54. Taking the spike counts 
from a population of N neurons and partitioning the 
response of each neuron into M bins gives MN pos-
sible values. The cardinality of the set of all possible 
responses R increases exponentially with the number 
of neurons and becomes even larger if we also con-
sider temporal firing patterns. In real experiments, R 
must be sampled in a finite number of trials and not all 
possible response outcomes can be sufficiently sam-
pled. Despite recent progress to correct for such biases 
(by using algorithms that evaluate and remove these 
systematic errors), when considering simultaneously 
recorded neurons the minimum number of trials per 
stimulus that is needed to obtain an unbiased informa-
tion calculation approximately equals the cardinality  
of the response set R36. This dimensionality curse pre-
vents the application of information theory to very 
large populations. As decoding algorithms are more 
data-robust and can be easily applied to recordings of 
larger populations, a practical way to approximate the 
information carried by large neuronal populations is to 

Figure 3 | Sources of information loss. a | A first source of information loss in the analysis of spike trains is given by a 

simplification of the responses — for example, when the original temporal precision is reduced (left), when the spikes are 

binned in time (centre) or when the total spike counts are used (right). b | The use of decoding algorithms gives another 

source of information loss, because decoders miss out information about unlikely stimuli. Given the response distributions 

P(r|s) of a (simulated) visual neuron responding to apple, pear and banana stimuli, when the neuron fires a response r
1
 just 

above the average response to pear, a pear will be decoded. However, this particular neural response not only informs us 

that the pear is the most likely stimulus, it also informs us that a banana is very unlikely. Similarly, when the neuron fires a 

response r
2
  just below the average response to pears, a decoder will again predict that a pear was presented, but it will 

miss the information that it is very unlikely that an apple was presented. c | More generally, information is lost when 

mistakes about the true neural response probabilities are made. Shown are the spike rasters of a simulated single neuron 

to the three different stimuli. If the observer has to decode the responses in time window 1, but does not know the precise 

post-stimulus time at which the considered responses were emitted, it might set the decoder using the wrong response 

probabilities (for example, those corresponding to window 2 rather than window 1). The stimulus reconstruction will then 

be flawed and information will be lost.
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compute the mutual information from the confusion 
matrices. This reduces the dimensionality of R from 
MN (the set of all possible responses of N neurons) to K 
(the number of stimuli). However, this method intro-
duces potentially severe information losses (BOX 3) and 
its results should be interpreted with care.

Practical applications of population analyses
A pioneering study41 defined a population vector — the 
weighted sum of the preferred tuning of each neuron 
— to show that although neurons in the primate motor 
cortex are broadly tuned to movement directions, the 
activity of a population of these neurons could be used 
to accurately predict the direction of arm movements. 
Subsequent studies have shown that, in different systems 
and conditions, it is possible to infer information about 
a stimulus or behaviour using population vectors or the 
more comprehensive decoding approaches described 
in the previous sections10,14. We describe a few of these 

studies, which illustrate how more information can be 
obtained from a population analysis than from the study 
of single cells in isolation.

Attention or intention in the posterior parietal cortex? 
Evidence has shown that neurons in the posterior pari-
etal cortex are involved in movement planning55. Reach 
and delay saccade tasks (FIG. 4) showed that neurons in 
the lateral intraparietal area (LIP) are involved in sac-
cade plans56–58 and that neurons in the parietal reach 
region (PRR) are involved in planning arm reaches55,58. 
However, it has also been argued that these neurons are 
not involved in movement planning and are exclusively 
driven by attention to the target location59,60, and that 
changes in the responses to reaches and saccades may be 
due to the different attention loads of each task.

This controversy is difficult to resolve because the 
information given by single neurons is ambiguous55,59. 
However, a decoding analysis with a population of PRR 
and LIP neurons revealed that neurons in these areas 
did encode movement plans. LIP neurons predicted 
saccades significantly better than reaches, whereas neu-
rons in the PRR predicted reaches significantly better 
than saccades61. Furthermore, predictions of movement 
intentions were significantly better than predictions of 
the locus of attention. In no case was a reach confused 
with a saccade or vice versa, and predictions of both 
reaches and saccades were nearly perfect. Other stud-
ies gave further evidence of the possibility of predict-
ing movement plans from the activity of neurons in the 
posterior parietal cortex62–64. These predictions might 
be useful in developing prosthetic devices for paralyzed 
patients or amputees3,65–67.

Odour identity and concentration in the locust. Further 
evidence of the value of the population analysis comes 
from another study that examined whether odour iden-
tity and intensity could be determined from the firing 
pattern of a population of antennal lobe projection 
neurons in the locust68. Single-cell results were incon-
clusive because different odour concentrations changed 
the firing patterns of these neurons. However, when the 
whole neuronal population was considered it was pos-
sible to disentangle this ambiguity and establish stimulus  
identity for different concentrations.

Extracting the stimulus features encoded by the neuro-
nal population. Another example of the use of decoding 
algorithms to assess what stimulus features are encoded 
in the neuronal population comes from the analysis of 
the responses of single cells in the human medial tem-
poral lobe to picture presentations. Neurons in this area 
have been suggested to encode the identity of the per-
son or object eliciting responses, rather than basic visual 
features24. FIGURE 2 shows the confusion matrix obtained 
when a decoding algorithm predicted the presentation of 
32 different pictures based on the activity of 19 simulta-
neously recorded units. It was possible to predict which 
person or object was shown each time (FIG. 2c), but it was 
not possible to distinguish between different pictures of 
the same person or object44.

 
Box 3 | Data-processing inequality and sources of information loss

There are several sources of information loss when processing neural responses. The 

first is given by a simplification of the neural responses — for example, by dividing the 

spike trains into small consecutive time bins or by taking the spike count (FIG. 3a). These 

operations can be formalized as a transformation of the neural response: r  f(r). By 

analogy with equation 5, the Shannon information about the stimulus carried by the 

processed response f(r) can be defined as:
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(10)

The data-processing inequality states that any transformation f(r) can only decrease 

the Shannon information that was accessible from the original responses; that is, 

I(S;f(R)) I(S;R)34. This information loss can, for example, result from ignoring temporal 

patterns in the spike trains or from ignoring information given by the precise 

coincident firing of different neurons.

Decoding can be formalized as a second transformation of the neural responses:  
r  g(f(r)) = sP, where  sP denotes stimulus prediction. By analogy with equation 10, the 

Shannon information about the stimulus carried by sP is defined as
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This is the mutual information between the rows and columns of the confusion matrix 

(FIG. 2). The data-processing inequality states that the stimulus prediction using 

decoding algorithms gives a second source of information loss — that is: 

I(S,SP) I(S,f(R)) I(S,R), for sp = g(f(r)). An example of this information loss is given in 

FIG. 3b (for a formal proof, see REFS 37,39).

In general, information losses occur when the observer of the neural responses (the 

information-extracting algorithm) uses an incorrect probability of stimuli and 

responses Q(r,s) rather than the correct one P(r,s). For example, the observer may not 

know the precise post-stimulus time at which current responses were emitted (FIG. 3c). 
Alternatively, the observer may not know that neurons are correlated and may 

incorrectly treat them as independent95.

The information I (S;R) that can be extracted by an algorithm using the wrong 

probability Q(r,s) is less than or equal too the information that is encoded by the neural 

responses: I (S;R) I(S;R). A lower bound to I (S;R) is given by:
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A formulation similar to equation 12 was first explored in REF. 32 and later developed 

in REF. 125. If the error in the probability distribution is made only because of a 

response simplification r  f(r) (that is: Q(s,r) = P(s,f(r)); Q(r) = P(f(r))), then equation 12 is 

an equality and becomes identical to equation 10. Similarly, if this simplification is due 

to decoding (that is: Q(s,r) = P(s,sP); Q(r) = P(sP)), then equation 12 is equal to equation 11.
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Brain–machine interface
A direct communication link 
between a brain (human or 
animal) and an external device, 
such as a prosthetic limb or a 
sensing device.

The possibility of decoding information from human 
neuronal population recordings has relevance for the 
development of brain–machine interfaces66,67, and such 
decoding provides information that is not apparent from 
the analysis of single-cell recordings. In experiments like 
those shown in FIG. 2 it was found that: first, spike sorting 
significantly improved predictions44, stressing the value 
of optimal processing of the recordings (BOX 1); second, 
decoding performances were the same when all neurons 
or only those that produced significant responses were 
considered, showing that unresponsive neurons did not 
carry relevant information; third, each responsive neu-
ron carried an average of 0.25 bits of information about  
the stimulus; and fourth, most of the information about the  
pictures was given by an average of only 4 spikes fired 

between 300 and 600 ms after the stimulus onset in a 
relatively small number of neurons.

The features that are encoded by a population can 
also be assessed with the information-theory approach. 
For example, by grouping stimulus features and calculat-
ing the amount of information obtained in each case it 
was found that neurons in the rat barrel cortex encoded 
a conjunction of the stimulus frequency and amplitude 
(the product of both, and not each of these parameters 
independently) when stimulated with sinusoidal whisker 
vibrations69.

Temporal coding of sensory information. Two hypoth-
eses have been proposed to explain how neurons encode 
information. The spike-count hypothesis states that 

Figure 4 | Decoding arm reaches and saccades to eight different directions. a | In a delay reach and saccade task a 

monkey is shown a briefly flashed target in one of eight possible locations and, after a go signal (the disappearance of the 

initial fixation point), has to perform either a reach or a saccade depending on the colour of the target (green or red, 

respectively). b | Average firing rates of a neuron in the parietal reach region (PRR) and a neuron in the lateral intraparietal 

area (LIP) to delay reaches and delay saccades in their preferred and non-preferred directions. The neuron in PRR is tuned 

to the preferred direction for reaches and has a lower firing rate for saccades. Conversely, the neuron in LIP is tuned to the 

preferred direction for saccades and has a lower firing rate for reaches. c | Decoding of all 8 directions for reaches and 

saccades using the whole population of 47 PRR and 32 LIP neurons with a nearest-neighbour algorithm. The colour code 

in the confusion matrix shows the relative number of times that a reach or saccade i (along the y axis) was predicted to be j 
(along the x axis). In no case was a reach confused with a saccade or vice versa. Predictions of both reaches and saccades 

were nearly perfect. The only exception was for saccades to the left, as recordings were made in the left hemisphere and 

saccades are usually encoded in the contralateral field. Parts b and c are modified, with permission, from REF. 61  (2006) 

Society for Neuroscience.
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Principal-component 
analysis
A linear transformation that 
projects the data on to an 
orthogonal base, in which the 
greatest variance of the data 
lies on the first coordinate (the 
first principal component),  
the second greatest variance 
on the second coordinate, and 
so on. It is usually used to 
reduce the dimensionality of 
complex data.

Spike afterpotential
A transient hyperpolarization 
of a neuron following the  
firing of an action potential. It 
is caused by K+ channels, 
which open during the spike 
and close a few milliseconds 
after the neural membrane 
potential goes back to its 
resting value.

neurons represent information only by changing their 
firing rates over some relevant time window12,70. The 
temporal-coding hypothesis states that the precise timing 
of spikes adds important information to the information  
given by the spike counts45,71–73.

Determining which code best represents information 
is analogous to evaluating the temporal precision with 
which spikes provide knowledge about stimuli. High 
temporal precision favours temporal coding, whereas 
rough temporal precision favours spike-count codes. 
The temporal precision can be established by taking 
transformations of the original response r  f(r) that 
eliminate any information potentially carried in the 
temporal pattern of the spike trains (BOX 3). This can be 
achieved by binning the neuronal responses (FIG. 3a) or 
by randomly jittering the spike times within some time 
range. Then, using equation 10, we can measure how 
information, or decoding performance, changes with 
the timing precision. Temporal information can also be 
identified by comparing the information given by the 
total spike counts with that contained in the temporal 
waveform of the responses — determined, for example, 
using principal-component analysis71,74.

Studies in subcortical structures and primary sen-
sory cortices have reported that the timing of spikes 
adds information to that given by spike counts, even 
down to a timing precision of the order of a few milli-
seconds72,75–79. Evidence for temporal coding is less 
established in higher areas80 (but see REFS 71,81–83 and 
FIG. 5d,e). Most studies on temporal coding have concen-
trated on single brain areas and only a few have reported 
how timing codes are transformed across different stages 
of a sensory pathway84–88. One such study considered 
how the temporal coding of naturalistic whisker stimuli 
is transformed across the rat somatosensory pathway, 
and found that millisecond-precise timing conveyed 
high amounts of information both in the ganglion and 
in the somatosensory cortex89. In the ganglion the tem-
poral code was supported by precise interspike intervals, 
whereas in the cortex interspike intervals were variable 
and the temporal code was based on the times of tran-
sient responses measured from the time of the whisker 
deflections. This ‘latency code’ has been reported widely 
at the cortical level76,90–92. However, it is unclear whether 
or how the latency code is used by the brain, given that 
the measurement of these response latencies requires 
knowledge of the stimulus time.

The extent to which information in response latencies 
is accessible to the brain can be addressed with informa-
tion theory, by considering how much information can 
be extracted with an imprecise knowledge of the stimu-
lus time. For this, one can use an approximate stimulus–
response distribution obtained by shifting the spike trains 
within the range of the time uncertainty of the stimulus, 
thus generating a loss of information if stimulus tim-
ing is crucial (see equation 12 and FIG. 3c). In the study 
described above89, information from the spike timing in 
the cortex required a precise knowledge of the stimulus 
time, whereas information from the ganglion did not. 
This finding can be interpreted by noting that the cor-
tex might estimate stimulus time using the output of the 

motor system93 — exploiting the advantages of latency 
codes, namely scale invariance and simplicity for down-
stream computations73 — whereas ganglion cells and 
their direct targets are unlikely to receive stimulus time 
information and may be forced to deliver information  
in other ways.

Assessing the importance of correlations. Given the tech-
nical difficulties in acquiring and processing simulta-
neously recorded data from a large number of neurons 
(BOX 1), it is common to obtain the population activity 
by recording one neuron after another under exactly the 
same experimental paradigm. However, this assumes 
that neurons fire independently and ignores the role of 
correlated firing in neuronal information processing. 
It is therefore important to establish how realistic the 
information obtained by recording one cell at a time is, 
compared with that obtained by recording the neurons 
simultaneously. This issue has been covered in detail 
elsewhere13,94–97.

With simultaneous recordings, the role of correla-
tions can be assessed by comparing the information 
about the stimuli from the recorded population and that 
obtained after eliminating the correlations across cells. 
The latter is computed through equation 5 by replacing 
the true response probability, P(r,s), with Psh(r,s), which 
is obtained by shuffling the trials corresponding to each 
stimulus independently for each neuron. This proce-
dure has shown that correlations can either reduce or 
increase the overall information content of a population. 
Shuffling the neural responses typically increases the 
information when positively correlated neurons — those 
that tend to increase or decrease their firing together — 
with similar stimulus selectivities are considered13,94,98. 
Alternatively, removing correlations by shuffling can 
also decrease the information given by a neuronal pop-
ulation when, for example, neurons are positively cor-
related but have opposite stimulus selectivities or when 
correlations change from stimulus to stimulus to tag par-
ticular sensory features99. For decoding, the performance 
in the absence of correlations can be also estimated by  
shuffling both training and test data sets44.

In practice, studies on small populations indicate 
that noise correlations make a small quantitative dif-
ference in stimulus coding44,95,100–102 (but see REF. 103 for 
an exception). However, analytical extrapolations sug-
gest that this effect may be important for large neuronal 
populations95,98. Testing these scaling predictions in real 
data requires the development of improved information-
theory or decoding algorithms that are optimized for 
large populations.

Merging information from different neuronal signals. 
Measures of neuronal activity such as LFPs reflect a 
number of subthreshold integrative processes that 
are not reflected in spike trains, including input and 
intracortical population synaptic potentials104,105, spike 
afterpotentials and voltage-dependent membrane oscilla-
tions106,107. Thus, the simultaneous recording and analysis 
of spikes and LFPs (BOX 1) may provide complementary  
information about the overall network activity.
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The population analysis can address the information  
content of different types of neuronal signals. For 
example, in the primary visual cortex of anaesthetized 
macaques108,109 it was found that the presentation of nat-
uralistic colour movies elicited reliable responses across 
trials both for the spikes and for the delta (1–4 Hz)  
LFP phase (FIG. 5a,b). In order to test whether the LFP 
phase at the time of spike firing conveyed information  
that could not be extracted from spike rates, the 
researchers investigated whether it was possible to 

disambiguate different movie scenes eliciting exactly 
the same firing rate using the phase of the LFP at 
which the spikes were fired (FIG. 5c). The phase of  
firing was indeed found to convey information that was 
not accessible from the spike rates alone: the overall 
information about the movie increased by 55% when 
the LFP phase of firing was considered. It should be 
noted that this type of phase coding represents another 
form of spike-timing information discussed in the  
previous sections.

Figure 5 | Encoding of information by the local field potential phase. a | Delta band (1–4Hz) local field potential (LFP) 

traces (measured in standard-deviation units (sdu)) in the monkey primary visual cortex during five presentations of a 

naturalistic colour movie. The line colour denotes the instantaneous LFP phase (phase range is divided into quarters: 

0–π/2, π/2–π, π–3π/2 and 3π/2–2π). b | Spike times (indicated by dots) elicited with 30 presentations of the same movie.  

c | The same spike times as in part b, but with the spikes coloured according to the concurrent LFP phase. The movie scenes 

indicated by green and blue arrows can be much better discriminated from each other using the phase of firing (coloured 

spikes) than using the spike counts (black spikes). d | Mean heading and position errors that occur when the trajectory of a 

rat in a two-dimensional environment is predicted using the spikes fired by place cells at different LFP phases. Heading and 

position predictions were optimal when considering spikes fired at opposite theta phases (180 and 0 degrees, respectively). 

e | The movement path of the animal over a 10 s period. The heading predictions (marked in red) were based only on spikes 

fired in the 180-degree phase. The inset shows an enlarged portion of the trajectory in which good predictions were made 

when the animal turned sharply. Parts a–c are reproduced, with permission, from REF. 108  (2008) Cell Press. Parts d and e 

are reproduced, with permission, from REF. 81  (2008) Macmillan Publishers Ltd. All rights reserved.
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Voxel
In MRI research, a voxel refers 
to the smallest measured 
volume unit, analogous to a 
three-dimensional pixel. In 
functional MRI studies these 
are typically of the order of  
30 mm3, although much 
smaller voxel volumes have 
been achieved in more recent 
work.

The role of LFP phases in the rat hippocampus has 
also been debated. Single-cell studies using the global 
statistical relationship between LFP phase and spike 
firing could identify a partial dissociation of phase  
and firing rate in response to the animal’s location and 
speed of movement82 but could not determine whether 
these signals encode complementary information about 
separate external features. Other studies have also shown 
that both theta phase and rate reflect the amplitude of the 
cell’s input and might convey redundant spatial informa-
tion110–112. Interestingly, a recent population study using 
decoding techniques81 clearly demonstrated that the 
phase of firing of hippocampal place cells encodes fea-
tures related to the animal’s spatial navigation that are 
not encoded by spike rates (FIG. 5d,e).

The finding of different tunings for LFPs and spikes 
has also been reported for medial temporal lobe neurons 
in human subjects113 and inferotemporal neurons in the 
macaque cortex114. Interestingly, in other cortical areas, 
such as in the posterior parietal cortex in monkeys, it 
was found that LFPs and spikes carry similar informa-
tion about movement plans63,64. Moreover, the LFPs car-
ried more information than spikes about the time of the 
planned movement and the behavioural state. This has 
significant implications for the development of brain–
machine interfaces, given that LFPs are much more sta-
ble and easier to record for large periods of time than 
single-cell activity115.

Conclusions
We have described the advantages of a single-trial popu-
lation analysis over traditional single-cell studies of trial-
averaged responses. In particular, we have shown how 
much more knowledge can be extracted using decoding 
and information-theory methodologies and how infor-
mation that is ambiguous at the single-cell level can 
sometimes be clearly interpreted when considering the 
whole population.

Decoding and information theory describe comple-
mentary aspects of knowledge extraction. Decoding has 
the main advantage of producing an output (the stimu-
lus prediction) that is easy to interpret and is close to 
behavioural choices, whereas mutual information gives 
a more comprehensive quantification of the information 
contained in a neuronal population, by evaluating the 
reduction of uncertainty about the stimuli that can be 
obtained from the neuronal responses. The complemen-
tary knowledge offered by these two approaches is only 
now beginning to be investigated in neuroscience47,54. A 
more systematic joint application of both methodologies 
may offer additional insights.

An interesting question that could benefit from such 
a joint approach is comparing the information given by 

the prediction of the stimulus and the uncertainty of 
these predictions with the total information contained 
in the population. Representing uncertainty is important  
for decisions involving risks and may be fundamental for  
neuronal computations that take place in the pres-
ence of both sensory and neural noise51–53. As discussed 
above, combining information-theoretic and decoding 
approaches provides a rigorous way to quantify how much 
of the information provided by neuronal populations con-
cerns the prediction of the stimulus, and how much of this 
information is about specific aspects of the uncertainty of 
these predictions. A combination of these approaches can 
therefore provide precise quantitative answers about how 
the brain deals with intrinsically noisy signals.

Information-theoretic calculations are difficult with 
neuronal populations because of the curse of dimen-
sionality. Although until recently it was thought to be 
problematic to compute accurate information meas-
ures from the activity of more than one neuron9, recent 
progress now permits the computation of the infor-
mation carried by populations of up to ten neurons36. 
This enables us to examine the details of information 
processing in local networks, and future work may set 
this bar even higher. A major and important challenge 
for neurostatisticians is to find ways to further extend 
the feasibility of performing information computations 
with large populations. Two directions are particularly 
promising. First, it is important to explore the use of 
optimal dimensionality-reduction techniques that dis-
card dimensions not carrying any relevant information. 
Second, the information-bias problem for large popula-
tions is exacerbated by the fact that the activity of neu-
rons is often correlated. This problem can be diminished  
by simplifying the correlation structure — for example, by  
considering pair-wise correlations between neurons and 
ignoring higher-order interactions116.

A neuroscientific revolution has been triggered by 
the use of imaging techniques such as functional MRI. 
How functional MRI signals correlate with the activity 
of single neurons and LFPs is far from completely under-
stood117. However, all these signals give complementary 
information, with different coverage and different tem-
poral and spatial resolutions. Decoding and informa-
tion theory offer elegant ways to combine all of these 
signals and quantify their information and redundancy. 
Interestingly, a few studies have already shown the value  
of decoding for extracting information from populations of  
voxels118,119, and other studies have compared the infor-
mation given by spikes and LFPs. It remains to be seen 
how much more information can be extracted from a 
single-trial combined analysis of the neurophysiologi-
cal signals (spikes and LFPs) and the voxel activity, an 
enterprise that has only recently been initiated120,121.

1. Hubel, D. Tungsten microelectrode for recording from 
single units. Science 125, 549–550 (1957).

2. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. 
Principles of Neural Science (McGraw Hill, New York, 
2000).

3. Schwartz, A. B. Cortical neural prosthetics. Annu. Rev. 
Neurosci. 27, 487–507 (2004).

4. Buzsaki, G. Large-scale recording of neuronal 
ensembles. Nature Neurosci. 7, 446–451 (2004).

5. Csicsvari, J. et al. Massively parallel recording of unit 
and local field potentials with silicon-based electrodes. 
J. Neurophysiol. 90, 1314–1323 (2003).

6. Kelly, R. C. et al. Comparison of recordings from 
microelectrode arrays and single electrodes in the 
visual cortex. J. Neurosci. 27, 261–264 (2007).

7. Rousche, P. J. & Normann, R. A. Chronic recording 
capability of the Utah intracortical electrode in cat 
sensory cortex. J. Neurosci. Methods 82, 1–15 (1998).

8. Blanche, T. J., Spacek, M. A., Hetke, J. F. & Swindale, 
N. V. Polytrodes: high-density silicon electrode arrays 
for large-scale multiunit recording. J. Neurophysiol. 
93, 2987–3000 (2005).

9. Brown, E. N., Kass, R. E. & Mitra, P. P. Multiple neural 
spike train data analysis: state-of-the-art and future 
challenges. Nature Neurosci. 7, 456–461 (2004).

10. Abbott, L. F. Decoding neuronal firing and modelling 
neural networks. Q. Rev. Biophys. 27, 291–331 (1994).

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE  VOLUME 10 | MARCH 2009 | 183



11. Pouget, A., Dayan, P. & Zemel, R. Information 
processing with population codes. Nature Rev. 
Neurosci. 1, 125–132 (2000).

12. Rieke, F., Warland, D., de Ruyter van Steveninck, R. R. 
& Bialek, W. Spikes: Exploring the Neural Code (MIT 
Press, Cambridge, Massachusetts, 1997).

13. Oram, M. W., Foldiak, P., Perrett, D. I. & Sengpiel, F. 
The ‘ideal homunculus’: decoding neural population 
signals. Trends Neurosci. 21, 259–265 (1998).

14. Dayan, P. & Abbott, L. F. Theoretical Neuroscience: 
Computational and Mathematical Modeling of Neural 
Systems (MIT Press, Cambridge, Massachusetts, 
2001).

15. Shannon, C. E. A mathematical theory of 
communication. Bell Syst. Tech. J. 27, 379–423 & 
623–656 (1948).

16. Deco, G. & Obradovic, D. An Information-Theoretic 
Approach to Neural Computing (Springer, Berlin, 1997).

17. Borst, A. & Theunissen, F. E. Information theory and 
neural coding. Nature Neurosci. 2, 947–957  
(1999).

18. Quian Quiroga, R. Spike sorting. Scholarpedia 2, 
3583 (2007).
A short review describing the steps for processing 
neural data, basically focused on spike detection 
and sorting.

19. Quian Quiroga, R., Nadasdy, Z. & Ben-Shaul, Y. 
Unsupervised spike detection and sorting with 
wavelets and superparamagnetic clustering. Neural 
Comput. 16, 1661–1687 (2004).

20. Lewicki, M. A review of methods for spike sorting: the 
detection and classification of neural action potentials. 
Network 9, R53–R78 (1998).

21. Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H. & 
Buzsaki, G. Accuracy of tetrode spike separation as 
determined by simultaneous intracellular and 
extracellular measurements. J. Neurophysiol. 84, 
401–414 (2000).

22. Singer, W. & Gray, C. M. Visual feature integration and 
the temporal correlation hypothesis. Annu. Rev. 
Neurosci. 18, 555–586 (1995).

23. Engel, A. K. & Singer, W. Temporal binding and the 
neural correlates of sensory awareness. Trends Cogn. 
Sci. 5, 16–25 (2001).

24. Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C. & 
Fried, I. Invariant visual representation by single 
neurons in the human brain. Nature 435, 1102–1107 
(2005).

25. Reich, D. S., Mechler, F. & Victor, J. D. Independent 
and redundant information in nearby cortical neurons. 
Science 294, 2566–2568 (2001).

26. Barlow, H. B., Hill, R. M. & Levick, W. R. Retinal 
ganglion cells responding selectively to direction and 
speed of image motion in the rabbit. J. Physiol. (Lond.) 
173, 377–407 (1964).

27. MacKay, D. M. Information Theory, Inference, and 
Learning Algorithms (Cambridge Univ. Press, 
Cambridge, 2003).

28. Foldiak, P. in Computation and Neural Systems (eds 
Eeckman, F. H. & Bower, J.) 55–60 (Kluwer, Norwell, 
Massachusetts, 1993).

29. Sanger, T. D. Probability density estimation for the 
interpretation of neural population codes. 
J. Neurophysiol. 76, 2790–2793 (1996).

30. Paradiso, M. A. A theory for the use of visual 
orientation information which exploits the columnar 
structure of striate cortex. Biol. Cybern. 58, 35–49 
(1988).

31. Duda, O. H., Hart, P. E. & Stork, D. G. Pattern 
Classification (Wiley & sons, New York, 2001).

32. Kjaer, T. W., Hertz, J. A. & Richmond, B. J. Decoding 
cortical neuronal signals: network models, information 
estimation and spatial tuning. J. Comp. Neurosci. 1, 
109–139 (1994).

33. Averbeck, B. B. in Coherent Behavior in Neuronal 
Networks (ed. Rubin, J., Matias, M. and Romo, R.) 
(Springer, New York, in the press).

34. Cover, T. M. & Thomas, J. A. Elements of Information 
Theory. (Wiley & sons, Hoboken, New Jersey, 2006).

35. Victor, J. D. Approaches to information-theoretic 
analysis of neural activity. Biol. Theory 1, 302–316 
(2006).

36. Panzeri, S., Senatore, R., Montemurro, M. A. & 
Petersen, R. S. Correcting for the sampling bias 
problem in spike train information measures. 
J. Neurophysiol. 98, 1064–1072 (2007).

37. Samengo, I. Information loss in an optimal maximum 
likelihood decoding. Neural Comput. 14, 771–779 
(2002).

38. Treves, A. On the perceptual structure of face space. 
Biosystems 40, 189–196 (1997).

One of the first papers to analyse the information 
given by the confusion matrix, showing that the 
distribution of incorrect stimulus predictions is 
important for understanding neural 
representations. This work was later extended to 
the study of how incorrect stimulus predictions 
relate to the mutual information between stimuli 
and responses in reference 47.

39. Panzeri, S., Treves, A., Schultz, S. & Rolls, E. T. On 
decoding the responses of a population of neurons 
from short time windows. Neural Comput. 11,  
1553–1577 (1999).

40. Robertson, R. G., Rolls, E. T., Georges-Francois, P. & 
Panzeri, S. Head direction cells in the primate pre-
subiculum. Hippocampus 9, 206–219 (1999).

41. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. 
Neuronal population coding of movement direction. 
Science 233, 1416–1419 (1986).
The first study to implement a population analysis 
of neuronal responses by using a population vector.

42. Zhang, K., Ginzburg, I., McNaughton, B. L. & 
Sejnowski, T. J. Interpreting neuronal population 
activity by reconstruction: unified framework with 
application to hippocampal place cells. 
J. Neurophysiol. 79, 1017–1044 (1998).

43. Knill, D. C. & Pouget, A. The bayesian brain: the role 
of uncertainty in neural coding and computation. 
Trends Neurosci. 27, 712–719 (2004).

44. Quian Quiroga, R., Reddy, L., Koch, C. & Fried, I. 
Decoding visual inputs from multiple neurons in the 
human temporal lobe. J. Neurophysiol. 98,  
1997–2007 (2007).
This paper showed that it is possible to correctly 
predict picture presentations from the firing of 
neurons in the human medial temporal lobe far 
above chance. The authors also showed that more 
information can be extracted from a population 
analysis than from a single-cell study.

45. Victor, J. D. & Purpura, K. P. Nature and precision of 
temporal coding in visual cortex: a metric-space 
analysis. J. Neurophysiol. 76, 1310–1326 (1996).

46. Schnupp, J. W. H., Hall, T. M., Kokelaar, R. F. & 
Ahmed, B. Plasticity of temporal pattern codes for 
vocalization stimuli in primary auditory cortex. 
J. Neurosci. 26, 4785–4795 (2006).

47. Thomson, E. E. & Kristan, W. B. Quantifying stimulus 
discriminability: a comparison of information theory 
and ideal observer analysis. Neural Comput. 17,  
741–778 (2005).

48. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. 
Bayesian inference with probabilistic population 
codes. Nature Neurosci. 9, 1432–1438 (2006).

49. Beck, J. M. et al. Probabilistic population codes for 
Bayesian decision making. Neuron 60, 1142–1152 
(2008).

50. Averbeck, B. B., Sohn, J.-W. & Lee, D. Activity in 
prefrontal cortex during dynamic selection of action 
sequences. Nature Neurosci. 9, 276–282 (2006).

51. Pouget, A., Zhang, K., Deneve, S. & Latham, P. E. 
Statistically efficient estimation using population 
coding. Neural Comput. 10, 373–401 (1998).

52. Sahani, M. & Dayan, P. Doubly distributional 
population codes: simultaneous representation of 
uncertainty and multiplicity. Neural Comput. 15,  
2255–2279 (2003).

53. Pouget, A., Zemel, R. & Dayan, P. Inference and 
computation with population code. Annu. Rev. 
Neurosci. 26, 381–410 (2003).

54. Victor, J. D. & Nirenberg, S. Indices for testing neural 
codes. Neural Comput. 20, 2895–2936 (2008).
The authors analysed in detail the relative 
strengths and weaknesses of information theory 
and Bayesian decoders when they are used to rule 
out neural codes. They also introduced a set of 
measures that varied smoothly between 
information theory and Bayesian decoders.

55. Andersen, R. A. & Buneo, C. A. Intentional maps in 
the posterior parietal cortex. Annu. Rev. Neurosci. 25, 
189–220 (2002).

56. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., 
Sakata, H. & Acuna, C. Posterior parietal association 
cortex of the monkey: command functions for 
operations within extrapersonal space. 
J. Neurophysiol. 38, 871–908 (1975).

57. Andersen, R. A., Essick, G. K. & Siegel, R. M. Neurons 
of area 7 activated by both visual stimuli and 
oculomotor behavior. Exp. Brain Res. 67, 316–322 
(1987).

58. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding 
of intention in the posterior parietal cortex. Nature 
386, 167–170 (1997).

59. Bisley, J. W. & Goldberg, M. E. Neuronal activity in the 
lateral intraparietal area and spatial attention. 
Science 299, 81–81 (2003).

60. Robinson, D. L., Goldberg, M. E. & Stanton, G. B. 
Parietal association cortex in the primate: sensory 
mechanisms and behavioral modulations. 
J. Neurophysiol. 41, 910–932 (1978).

61. Quian Quiroga, R., Snyder, L. H., Batista, A. P., Cui, H. 
& Andersen, R. A. Movement intention is better 
predicted than attention in the posterior parietal 
cortex. J. Neurosci. 26, 3615–3620 (2006).
Using a decoding population analysis, the authors 
showed that neurons in the posterior parietal 
cortex encode different movement plans and not 
just attention to target location.

62. Musallam, S., Corneil, B., Greger, B., Scherberger, H. 
& Andersen, R. A. Cognitive control signals for neural 
prosthetics. Science 305, 258–262 (2004).

63. Pesaran, B., Pezaris, J., Sahani, M., Mitra, P. M. & 
Andersen, R. A. Temporal structure in neuronal 
activity during working memory in macaque parietal 
cortex. Nature Neurosci. 5, 805–811 (2002).

64. Scherberger, H., Jarvis, M. & Andersen, R. A. Cortical 
local field potential encodes movement intentions in 
the posterior parietal cortex. Neuron 46, 347–354 
(2005).

65. Wessberg, J. et al. Real-time prediction of hand 
trajectory by ensembles of cortical neurons in 
primates. Nature 408, 361–365 (2000).

66. Andersen, R. A., Burdick, J. W., Musallam, S., 
Pesaran, B. & Cham, J. G. Cognitive neural prosthetics. 
Trends Cogn. Sci. 8, 486–493 (2004).

67. Nicolelis, M. A. Actions from thoughts. Nature 409, 
403–407 (2001).

68. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity 
versus identity coding in an olfactory system. Neuron 
39, 991–1004 (2003).

69. Arabzadeh, E., Panzeri, S. & Diamond, M. E. Whisker 
vibration information carried by rat barrel cortex 
neurons. J. Neurosci. 24, 6011–6020 (2004).

70. Adrian, E. D. The Basis of Sensations (Norton, New 
York, 1928).

71. Optican, L. M. & Richmond, B. J. Temporal encoding 
of two-dimensional patterns by single units in primate 
inferior temporal cortex. III. Information theoretic 
analysis. J. Neurophysiol. 57, 162–178 (1987).
The first study to demonstrate that the time profile 
of cortical spike trains encodes much more 
information about static visual features than spike 
counts.

72. de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, 
S. P. & Koberle, R. Reproducibility and variability in 
neural spike trains. Science 275, 1805–1808 (1997).

73. Hopfield, J. J. Pattern recognition computation using 
action potential timing for stimulus representation. 
Nature 376, 33–36 (1995).

74. Theunissen, F. & Miller, J. P. Temporal encoding in 
nervous systems: a rigorous definition. J. Comp. 
Neurosci. 2, 149–162 (1995).

75. Victor, J. D. Temporal aspects of neural coding in the 
retina and lateral geniculate. Network 10, R1–R66 
(1999).

76. Panzeri, S., Petersen, R. S., Schultz, S. R., Lebedev, M. 
& Diamond, M. E. The role of spike timing in the 
coding of stimulus location in rat somatosensory 
cortex. Neuron 29, 769–777 (2001).

77. Reinagel, P. & Clay Reid, R. Temporal coding of visual 
information in the thalamus. J. Neurosci. 20,  
5392–5400 (2000).

78. Berry, M. J., Warland, D. K. & Meister, M. The 
structure and precision of retinal spike trains. Proc. 
Natl Acad. Sci. USA 94, 5411–5416 (1997).

79. Engineer, C. T. et al. Cortical activity patterns predict 
speech discrimination ability. Nature Neurosci. 11, 
603–608 (2008).

80. Shadlen, M. N. & Movshon, J. A. Synchrony unbound: 
a critical evaluation of the temporal binding 
hypothesis. Neuron 24, 67–77; 111–125 (1999).

81. Huxter, J. R., Senior, T. J., Allen, K. & Csicsvari, J. 
Theta phase–specific codes for two-dimensional 
position, trajectory and heading in the hippocampus. 
Nature Neurosci. 11, 587–594 (2008).
The authors recorded spiking activity and local field 
oscillations in the hippocampus of rats moving 
through a two-dimensional environment. Using a 
decoding analysis, they demonstrated that spikes 
emitted at different oscillation phases represent 
complementary aspects of the animal’s trajectory.

82. Huxter, J. R., Burgess, N. & O’Keefe, J. Independent 
rate and temporal coding in hippocampal pyramidal 
cells. Nature 425, 828–832 (2003).

R E V I E W S

184 | MARCH 2009 | VOLUME 10  www.nature.com/reviews/neuro



83. Buracas, G. T., Zador, A., DeWeese, M. & Albright, T. 
Efficient encoding of rapidly varying stimuli by motion-
sensitive neurons in MT of alert monkeys. Neuron 20, 
959–969 (1998).

84. Kara, P., Reinagel, P. & Clay Reid, R. Low response 
variability in simultaneously recorded retinal, thalamic, 
and cortical neurons. Neuron 27, 635–646 (2000).

85. Theunissen, F. E. From synchrony to sparseness. 
Trends Neurosci. 26, 61–64 (2003).

86. Perez-Orive, J. et al. Oscillations and sparsening of 
odor representations in the mushroom body. Science 
297, 359–365 (2002).

87. Hahnloser, R. H. R., Kozhevnikov, A. A. & Fee, M. S. 
An ultra-sparse code underlies the generation of 
neural sequences in a songbird. Nature 419, 65–70 
(2002).

88. Salinas, E., Hernandez, A., Zainos, A. & Romo, R. 
Periodicity and firing rate as candidate neural codes 
for the frequency of vibrotactile stimuli. J. Neurosci. 
20, 5503–5515 (2000).

89. Arabzadeh, E., Panzeri, S. & Diamond, M. E. 
Deciphering the spike train of a sensory neuron: 
counts and temporal patterns in the rat whisker 
pathway. J. Neurosci. 26, 9216–9226 (2006).
This paper developed an analytical formalism that 
quantifies how much sensory information can be 
extracted from the spike times when the stimulus 
time is not known precisely.

90. Reich, D. S., Mechler, F. & Victor, J. D. Temporal 
coding of contrast in primary visual cortex: when, 
what, and why. J. Neurophysiol. 85, 1039–1050 
(2001).

91. Gawne, T. J., Kjaer, T. W. & Richmond, B. J. Latency: 
another potential code for feature binding in striate 
cortex. J. Neurophysiol. 76, 1356–1360 (1996).

92. Muller, J. R., Metha, A. B., Krauskopf, J. & Lennie, P. 
Information conveyed by onset transients in responses 
of striate cortical neurons. J. Neurosci. 21,  
6978–6990 (2001).

93. Ahrens, K. F. & Kleinfeld, D. Current flow in vibrissa 
motor cortex can phase-lock with exploratory rhythmic 
whisking in rat. J. Neurophysiol. 92, 1700–1707 
(2004).

94. Abbott, L. F. & Dayan, P. The effect of correlated 
variability on the accuracy of a population code. 
Neural Comput. 11, 91–101 (1999).

95. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural 
correlations, population coding and computation. 
Nature Rev. Neurosci. 7, 358–366 (2006).
An up-to-date and comprehensive review of the 
role of noise correlations in population coding.

96. Nirenberg, S. & Latham, P. E. Decoding neuronal spike 
trains: how important are correlations? Proc. Natl 
Acad. Sci. USA 100, 7348–7353 (2003).

97. Salinas, E. & Sejnowski, T. J. Correlated neuronal 
activity and the flow of neural information. Nature Rev. 
Neurosci. 2, 539–550 (2001).

98. Zohary, E., Shadlen, M. & Newsome, W. Correlated 
neuronal discharge rate and its implications for 
psychophysical performance. Nature 370, 140–143 
(1994).

99. Panzeri, S., Schultz, S., Treves, A. & Rolls, E. T. 
Correlations and the encoding of information in the 

nervous system. Proc. R. Soc. Lond. B Biol. Sci. 266, 
1001–1012 (1999).

100. Petersen, R. S., Panzeri, S. & Diamond, M. E. 
Population coding of stimulus location in rat 
somatosensory cortex. Neuron 32, 503–514  
(2001).

101. Montani, F., Kohn, A., Smith, M. A. & Schultz, S. R. 
The role of correlations in direction and contrast 
coding in the primary visual cortex. J. Neurosci. 27, 
2338–2348 (2007).

102. Nirenberg, S., Carcieri, S. M., Jacobs, A. L. & Latham, 
P. E. Retinal ganglion cells act largely as independent 
encoders. Nature 411, 698–701 (2001).

103. Dan, Y., Alonso, J. M., Usrey, W. M. & Clay Reid, R. 
Coding of visual information by precisely correlated 
spikes in the lateral geniculate nucleus. Nature 
Neurosci. 1, 501–507 (1998).

104. Mitzdorf, U. Properties of the evoked potential 
generators: current source-density analysis of visually 
evoked potentials in the cat cortex. Int. J. Neurosci. 
33, 33–59 (1987).

105. Juergens, E., Guettler, A. & Eckhorn, R. Visual 
stimulation elicits locked and induced gamma 
oscillations in monkey intracortical and EEG-
potentials, but not in human EEG. Exp. Brain Res. 
129, 247–259 (1999).

106. Harada, Y. & Takahashi, T. The calcium component of 
the action potential in spinal motoneurones of the rat. 
J. Physiol. 335, 89–100 (1983).

107. Kamondi, A., Acsady, L., Wang, X. J. & Buzsaki, G. 
Theta oscillations in somata and dendrites of 
hippocampal pyramidal cells in vivo: activity-
dependent phase-precession of action potentials. 
Hippocampus 8, 244–261 (1998).

108. Montemurro, M., Rasch, M. J., Murayama, Y., 
Logothetis, N. K. & Panzeri, S. Phase-of-firing coding 
of natural visual stimuli in primary visual cortex. Curr. 
Biol. 18, 375–380 (2008).
This study used information theory to demonstrate 
that, in the macaque primary visual cortex, the 
phase of slow (<12 Hz) local field fluctuations 
encodes information about natural visual scenes 
that cannot be obtained from spike counts.

109. Belitski, A. et al. Low-frequency local field potentials 
and spikes in primary visual cortex convey 
independent visual information. J. Neurosci. 28, 
5696–5709 (2008).

110. Mehta, M. R., Lee, A. K. & Wilson, M. A. Role of 
experience and oscillations in transforming a rate code 
into a temporal code. Nature 417, 741–746 (2002).

111. Harris, K. D. et al. Spike train dynamics predicts theta-
related phase precession in hippocampal pyramidal 
cells. Nature 417, 738–741 (2002).

112. Harris, K. D. Neural signatures of cell assembly 
organization. Nature Rev. Neurosci. 6, 399–407 
(2005).

113. Kraskov, A., Quian Quiroga, R., Reddy, L., Fried, I. & 
Koch, C. Local field potentials and spikes in the human 
medial temporal lobe are selective to image category. 
J. Cogn. Neurosci. 19, 479–492 (2007).

114. Kreiman, G. et al. Object selectivity of local field 
potentials and spikes in the macaque inferior temporal 
cortex. Neuron 49, 433–445 (2006).

115. Andersen, R. A., Musallam, S. & Pesaran, B. Selecting 
the signals for a brain-machine interface. Curr. Opin. 
Neurobiol. 14, 720–726 (2004).

116. Schneiman, E., Berry, M. J., Segev, R. & Bialek, W. 
Weak pairwise correlations imply strongly correlated 
network states in a neural population. Nature 440, 
1007–1012 (2006).

117. Logothetis, N. K. What we can do and what we cannot 
do with fMRI. Nature 453, 869–878 (2008).

118. Haxby, J. V. et al. Distributed and overlapping 
representations of faces and objects in ventral 
temporal cortex. Science 293, 2425–2430 (2001).

119. Haynes, J.-D. & Rees, G. Decoding mental states from 
brain activity in humans. Nature Rev. Neurosci. 7, 
523–534 (2006).

120. Eichele, T. et al. Assessing the spatiotemporal 
evolution of neuronal activation with single-trial event-
related potentials and functional MRI. Proc. Natl 
Acad. Sci. USA 102, 17798–17803 (2005).
First study using a single-trial analysis to combine 
the temporal and spatial resolutions of electroen-
cephalogram and functional MRI recordings.

121. Debener, S., Ullsperger, M., Siegel, M. & Engel, A. K. 
Single-trial EEG-fMRI reveals the dynamics of cognitive 
function. Trends Cogn. Sci. 10, 558–563 (2006).

122. Gerstein, G. L. & Clark, W. A. Simultaneous studies of 
firing patterns in several neurons. Science 143, 
1325–1327 (1964).

123. Vapnik, R. J. Statistical Learning Theory (Wiley & sons, 
New York, 1998).

124. Soong, T. T. Fundamentals of Probability and Statistics 
for Engineers (Wiley, Sussex, 2004).

125. Latham, P. E. & Nirenberg, S. Synergy, redundancy, 
and independence in population codes, revisited. 
J. Neurosci. 25, 5195–5206 (2005).
This study derived a rigorous measure of the 
information that is lost when using algorithms that 
make incorrect assumptions about the probabilities 
of neural responses to stimuli. It provides a useful 
tool for understanding which features of the 
stimulus–response relationship are important for 
information transmission.

Acknowledgements
We are very thankful to F. Montani, K. Whittingstall, J. 
Csicsvari, A. Mazzoni and G. Kreiman for comments, to  
P. Dayan for interesting discussions about uncertainty and 
decoding, and to all our brilliant colleagues that collaborated 
with us on these topics: R. Andersen, M. Diamond, I. Fried, 
C. Koch, N. Logothetis, C. Kayser, M. Montemurro,  
R. Petersen and A. Treves. We acknowledge support from the 
Engineering and Physical Sciences Research Council, the 
Medical Research Council, the Royal Society and the Italian 
Institute of Technology.

FURTHER INFORMATION
Quian Quiroga’s homepage:  

http://www.le.ac.uk/neuroengineering

Stefano Panzeri’s homepage:  

http://www.iit.it/stefano_panzeri

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE  VOLUME 10 | MARCH 2009 | 185

http://www.le.ac.uk/neuroengineering%20
http://www.iit.it/stefano_panzeri

