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First published December 16, 2015; doi:10.1152/jn.00699.2015.—Neu-
ral recording technology is improving rapidly, allowing for the detec-
tion of spikes from hundreds of cells simultaneously. The limiting step
in multielectrode electrophysiology continues to be single cell isola-
tion. However, this step is crucial to the interpretation of data from
putative single neurons. We present here, in simulation, an illustration
of possibly erroneous conclusions that may be reached when poorly
isolated single cell data are analyzed. Grid cells are neurons recorded
in rodents, and bats, that spike in equally spaced locations in a
hexagonal pattern. One theory states that grid firing patterns arise
from a combination of band firing patterns. However, we show here
that summing the grid firing patterns of two poorly resolved
neurons can result in spurious band-like patterns. Thus, evidence
of neurons spiking in band patterns must undergo extreme scrutiny
before it is accepted. Toward this aim, we discuss single cell
isolation methods and metrics.

spike sorting; grid cells; medial entorhinal cortex
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THE HIPPOCAMPUS CONTAINS “place cells,” which fire when an
animal is moving around in specific parts of an environment
(O’Keefe and Dostrovsky 1971). Several associated regions
contain “head-direction cells,” which fire when the animal is
facing or moving in a specific direction, regardless of loca-
tion (Ranck 1984; Taube et al. 1990). More recently, “grid
cells,” which fire in a rhomboidal (aka triangular or hexag-
onal) lattice (Fyhn et al. 2004; Hafting et al. 2005) over an
environment, and “border cells,” which fire near environ-
mental boundaries (Savelli et al. 2008; Solstad et al. 2008),
have been discovered in the medial entorhinal cortex
(MEC), an area that projects directly to the hippocampus.
The properties of these neurons suggest that they are in-
volved in highly elaborate computations involved in repre-
senting the animal’s position in space. Grid cells in partic-
ular have been hypothesized to perform a calculation using
information about the animal’s movement (proprioception,
vestibular information, and optic flow) to form and update a
unique code for relative position (McNaughton et al. 2006).
Several classes of models have been proposed for how this
“path integration” is accomplished.

One class of models extends an earlier model for keeping
track of head direction with rotational movement information
(Skaggs et al. 1995) to two-dimensional position (Samsonov-
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ich and McNaughton 1997). These models propose that a
specific pattern of connectivity of a group of neurons results in
a quasicontinuous “attractor,” which stabilizes activity, and is
thus able to keep a representation of a variable, such as
position, in the absence of external input. To update this
representation with rotation (in the case of the head-direction
attractor), or translation (in the case of the position attractor),
another group of neurons, which contain information about
both head direction (or position) and rotation (or translation)
interacts with the attractor network and moves the activity from
one “attractor state” to another. This combined network “inte-
grates” translational movement to calculate relative position.
Grid-like activity results when periodic boundary conditions
are applied to this model.

A second class of models makes use of the oscillatory
properties of a major class of neurons in the MEC and
suggests that if the information about the speed of move-
ment is carried in the frequency of this oscillation, then the
interference of this oscillation with another reference oscil-
lation will give information about relative position (O’Keefe
and Burgess 2005). One major difference in the practical
implementation of this second class of models is that it does
not allow the representation of a two-dimensional variable,
such as position, without an intermediate step. The interfer-
ence pattern of multiple (2 or more) oscillations can gener-
ate a grid pattern such as that exhibited by grid cells;
however, the electrical properties of neurons do not allow
them to carry multiple oscillations with different frequen-
cies and phases (Remme et al. 2009). This means that each
oscillation must be carried by a different neuron, and the
summation carried out in stages.

One possible consequence of the interference of oscillations
occurring in stages is that neurons that indeed represent one-
dimensional position information exist. These neurons would
fire in a “band-like” pattern when an animal traversed an
environment, so that when the animal ran along one dimension
of the environment, the neuron would alternate between rapid
firing, and low or no firing, and in the orthogonal dimension the
firing rate would remain the same (for a model using such cells
see Mhatre et al. 2012). The summation of the inputs from
three of these “band” cells, each with bands oriented at 60
degrees from one another, would result in the firing pattern
already demonstrated by grid cells. Krupic et al. (2012) re-
cently reported that the firing patterns of some medial entorhi-
nal and parasubicular cells resemble those of these hypothe-
sized “band cells.”
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Unlike the oscillatory interference model, continuous attrac-
tor networks can naturally represent either a one-dimensional
variable or a two-dimensional variable such as position. To
represent a one-dimensional variable such as head direction,
the neural connectivity is arranged so that the neurons form a
virtual line (or circle) with symmetrical connectivity along the
line, and a two-dimensional variable is represented with the
neural connectivity arranged so that the neurons form a virtual
sheet with connectivity to all neighbors. This sheet is
wrapped around both edges to form a torus to allow for the
continuous repetition of firing fields shown by grid cells.
Thus, the continuous attractor class of models favors repre-
sentation of position immediately in two dimensions, with
no intermediate one-dimensional stage, and did not predict
band cells (but is not incompatible with the existence of
band cells). The oscillatory interference model would be
greatly supported by the existence of band cells, but alter-
nate forms of the model may also be implemented without
band cells (Welday et al. 2011).

Thus, Krupic and collegues’ finding is a potentially sig-
nificant development in the field, and proof of the existence
of band cells would further the understanding of path
integration mechanisms. We hypothesized, however, that
the appearance of spatial band-like patterns could instead be
achieved with the summation of grid firing patterns. Fyhn et
al. (2007) showed that MEC grid cells recorded on the same
tetrode show the same spacing and orientation of their grids,
but different phases (position offsets) of the firing fields. We
hypothesized that considering spikes from two grid cells
recorded from the same tetrode, with the same spacing and
orientation but different offset, as one unit would result in a
spatial firing pattern that resembled “spatial bands.” We
simulated what would happen when clusters contaminated
with spikes of a neighboring grid cell were analyzed in the
same manner as in Krupic et al. (2012). Furthermore, we
review methods for single cell isolation and determining the
contamination level of “single” units, and make some rec-
ommendations for analyses that would provide better proof
that the firing patterns observed by Krupic et al. constitute
well-isolated band cells.

METHODS

Grid cell simulations. Activity of simulated grid cells was gener-
ated using position data from a rat randomly foraging ina 1 X 1-meter
box during hippocampal recordings. The position of the rat was
determined from a circular set of lights on the head stage connected to
a hyperdrive implanted over the rat’s head and recorded on an
overhead camera. For each time frame of the video (60 frames/s), a
circle was fit to the active pixels in the video, and the center of this
circle was counted as the rat position. Noise in the video was removed
by considering only pixels within a small radius of the position in the
previous time frame.

For each simulated grid cell, an independent hexagonal grid pattern
was defined in space, and the number of spikes generated by the cell
was calculated based on the rat’s location for each point in time. The
probability a simulated cell would generate a spike depended on
the distance from the nearest vertex at that point in time. Specifically,
the probability of a spike at time ¢, p,, was:

P = Ke—X/T

where K was the maximum probability of generating a spike at a given
location (K = 0.012-0.12/video frame, frame duration 16.7 ms), x

was the distance to the nearest grid vertex, and 7 was 20% of the
distance between vertices. T was set to 20% to approximate the field
width observed in grid cells recorded in MEC.

Contaminated “units” were created by combining spikes from two
simulated cells with varying spiking probabilities. For example,
spikes from a simulated grid cell with K = 0.12 were combined with
spikes from a simulated cell with K = 0.06 to create a 33% contam-
inated cell. Grid patterns of combined cells had the same orientation
and periodicity but different spatial phase.

Spike trains generated as described above were then used for
standard grid cell analyses. The position of the rat and the locations
where each spike was fired were plotted (Fig. 1A4); spatial firing rate
maps were computed (Fig. 1B) and used to generate spatial autocor-
relations (Fig. 1C), and gridness scores were calculated.

Gridness score. Grid scores were calculated as in Sargolini et al.
(2006) and Langston et al. (2010). The autocorrelogram of the
smoothed and occupancy normalized spatial firing plot was calcu-
lated, and a circular sample centered on the central peak (with the
central peak removed) was used to calculate the grid score. This
score is the maximum difference between the correlations of the
circular sample at 60- and 120-degree rotations vs. 30-, 90-, and
150-degree rotations. The original “gridness” score designed by
Sargolini et al. (2006) used a circular sample of the autocorrelo-
gram defined by the first six peaks (outside of the central peak).
Because cells that are less grid-like do not have six clear peaks at
the same spacing in the autocorrelogram, Krupic et al. (2012)
found the first peak and expanded the circle to 2.5 times that
distance. Langston et al. (2010) used a different method to calcu-
late grid scores for poorly defined grid cells of young rats, which
was to calculate a grid score for each circular sample between 10
and 10 cm less than the width of the box, and use the maximum.
Each method calculates different values of grid scores, but they are
correlated (Langston et al. 2010). To calculate the significance of
the grid score, the timing of the spikes is offset by random values
(>20 s), and the resulting spike trains (and the semirandom
positions of the animal at those spike times) are used to calculate
a distribution of grid scores. Any grid score above the 95-percen-
tile value of the grid scores from randomized spike trains is
considered significant. Using the same method, we calculated a
distribution of randomized grid scores with our simulated units for
the Sargolini et al. (2006) peak-based grid score and the Langston
et al. (2010) best radius-based grid scores and found 95-percentile
thresholds of 0.13 and 0.43, respectively.

Fast-fourier transform. The periodicity of the spatial responses of
clusters was estimated using a two-dimensional Fourier transform of
the unsmoothed firing rate map (Krupic et al. 2012). The unsmoothed
map was represented in a 64 X 64 array (corresponding to 1.5-cm?
bins) with the mean value subtracted from each bin. The array was
then zero-padded out to 256 X 256, to increase spatial resolution, and
then the Fourier transform was applied. The two-dimensional Fourier
spectogram was shifted such that low frequencies were at the center,
and higher frequencies were in the periphery.

Grid cell recording. Extracellular recording was performed in a
Long Evans rat using a chronically implanted 12-tetrode “hyperdrive”
(see, e.g., Navratilova et al. 2012). All animal procedures were
performed in accordance with the animal care guidelines issued by the
government of Belgium and approved by the institutional welfare
body at KU Leuven. The hyperdrive was implanted 3.6 mm laterally
in the right hemisphere, 0.2—0.3 mm anterior to the transverse sinus,
and at an angle of 10° to the sagittal plane in the anterior direction.
Tetrodes were gradually lowered to 2.5-3 mm below the brain surface
over 1-2 wk. The rat was trained to forage for chocolate and was kept
at 85% of free-feeding body weight. Recording was performed in an
open planar area, with area of movement limited only by the length of
recording wires. A single boundary existed at the edge of the foraging
area. Foraging radius was ~1.7 meters.
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Fig. 1. Numerical simulation of spatially %
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periodic bands arising from overlap of the
grid fields of two poorly isolated or possibly
physiologically coupled grid cells. A: posi-
tion data from a rat foraging randomly in an
environment is used to create a simulated
spike distribution from two grid cells (red
and blue). The spikes from cell 1 (red) are
combined with 50% of the spikes from cell 2
(blue), to generate a “unit” containing 33%
contamination. B: smoothed and occupancy
normalized firing rate distributions of the
spikes from the simulated cells and the com-
bined contaminated unit. The firing rate
color scale ranges from O (blue) to 5 (dark
red) Hz in all images. C: spatial autocorre-
logram of the smoothed firing rate distribu-
tions. D: 2-dimensional Fourier transform of
the clean and contaminated units, calculated
as in Krupic et al. (2012).
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“Bandiness” analysis. To examine the band-like response of cells
reported by Krupic et al. (2012), the smoothed position maps and
corresponding Fourier plots (Krupic et al. 2012, Supplementary Fig.
10) were rotated until lines in the autocorrelogram were horizontal.
With the use of image manipulation software (www.gimp.org), a
rectangular section was taken from the rotated map at each location
corresponding to a periodic band. A reverse mapping was made
between the color of the position map and the map intensity. With the
use of reverse mapping, the average intensity of each band was plotted
as a function of position along the band.

RESULTS

To determine if units contaminated by one or more grid
cells could create firing patterns that appear band-like, we
simulated firing of grid cells with different relative offsets
and combined them in different ratios. The firing patterns
were simulated along a route followed by a rat during
foraging for chocolate sprinkles randomly distributed in a
1-meter square box. An example firing pattern of two
simulated cells is shown in Fig. 1A. The firing peaks of these
two cells were offset from each other by 50% of the grid
spacing along the horizontal axis (one of the three major
axes of the rhomboidal grid) and by 8.8% along the vertical
axis (which represents a 10-degree shift from the major
axis). The spikes from each cell are combined in a ratio of
2:1, generating a unit that is 33% contaminated from spikes
of a second cell. This level of contamination by such a cell
generated a firing pattern that showed many peaks, oriented
approximately along several parallel lines, resembling bands
(Fig. 1B). The autocorrelation of the spatial firing pattern of
this “unit” appeared very band-like (Fig. 1C).

We calculated the Fourier spectrograms for the simulated
contaminated units as in Krupic et al. (2012). This calculation
is essentially decomposing the spatial firing pattern into band
patterns at different scales and orientations (Krupic et al. Fig.
1F). Grid cells should show six peaks in this plot, correspond-

ing to the orientation of the three major axes of the hexagonal
grid, and the spacing between grids. This indicates that a grid
pattern could be conceptualized as the summation of three band
patterns of the same scale, oriented at 60 degrees from one
another but, of course, says nothing of how the pattern was
generated in the brain. For a band-like spatial firing pattern, the
Fourier spectrogram would show only two peaks. As shown in
Fig. 1, however, the summation of two grid cells with the same
spacing and orientation but an offset along (or almost along)
one major axis will result in the Fourier components corre-
sponding to that axis being stronger than the other two major
axes (Fig. 1D).

“Grid scores” for simulated units were calculated as in
Sargolini et al. (2006) and Langston et al. (2010). This grid
score is the maximum difference between the correlations of
a circular sample of the autocorrelogram of the spatial firing
plot at 60- and 120-degree rotations, vs. 30-, 90-, and
150-degree rotations (see METHODS for details). Each method
chooses a circular sample in different ways and calculates
different values of grid scores, but the scores from different
methods are correlated (Langston et al. 2010). Krupic et al.
(2012) used a third method (see METHODS) to choose the
circular sample. With each method, grid scores for random-
ized spike trains are also calculated, and any grid score
above the 95-percentile score of the randomized spike trains
is considered significant. We calculated a distribution of
randomized grid scores for our simulated units using the
Sargolini et al. (2006) peak-based grid score and the Langs-
ton et al. (2010) best radius-based grid score and found
95-percentile thresholds of 0.13 and 0.43, respectively. The
grid score for the example contaminated “cell” in Fig. 1
is —0.04 when calculated according to the method in Sar-
golini et al. (2006) and 0.33 when calculated as in Langston
et al. (2010), both of which are below the respective signif-
icance level, and thus this unit would be considered a
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spatially periodic nongrid cell by Krupic et al. (2012). For
the remainder of the simulations, grid scores calculated with
the Sargolini et al. (2006) peak-based method are used,
since these were more similar to the calculation Krupic et al.
(2012) used, and the distribution of scores for randomized
spike trains was more Gaussian with this measure.

Simulated unit contamination levels were varied between
10 and 50% to determine how much contamination is
needed for the appearance of bands. An example of a unit
increasingly contaminated by a cell with 50% offset is
shown in Fig. 2. Bands appear in the autocorrelogram at a
contamination of 25%, and the grid score becomes nonsig-
nificant at a contamination of 33%. The Fourier spectrogram
shows two main peaks at a contamination of 25%, and the
other four peaks disappear by 40% contamination (data not
shown). Units with the same contamination and offset pa-
rameters were simulated two times (with a different Poisson
spike train) for each of two paths, and all four simulations at
40% contamination had nonsignificant grid scores. In one
case, 25% contamination was enough for a nonsignificant
grid score.

The relative offset of the primary grid cell and the contam-
inating grid cell is a major determinant of whether the resulting
unit will appear grid-like, band-like, or some other pattern. We
used contaminating grid cells with several offsets and ob-
served that offsets of up to 15% resulted in units with firing
patterns and grid scores indistinguishable from those of
clean units, whereas offsets of 35% or more resulted in
lower, sometimes nonsignificant, grid scores, an appearance
of bandiness, and decreased hexagonal symmetry in the
Fourier transform (Fig. 3). The three “prototypical” offsets
are little or no offset (Fig. 3A, bottom left, and Fig. 3Bi),
which would result in grid patterns and six peaks in the
Fourier transform, 50% offset along a grid axis (and little or
no offset in the orthogonal axis; Fig. 3A, bottom right, and
Fig. 1), which would result in band-like patterns and two
peaks in the Fourier transform, and 50% along a nongrid

Contamination Level

10% 25% 33%

o JE ¥ - . = = -
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& = N5 4 J? o - ey v

Fig. 2. Increasing contamination from a second grid cell increases the appear-
ance of a band-like pattern. Contaminations of 10, 25, and 33% are shown.
Top, smoothed firing rate plots contain several bumps, corresponding to firing
fields of two cells. The firing rate color scale ranges from 0 (blue) to 5 (dark
red) Hz in all images. Middle, autocorrelograms also contain multiple bumps.
Bottom, as a result of the contamination, two or more peaks in the Fourier
transform become weaker. Grid scores for these simulated units decrease from
0.39 and 0.27 (significant gridness) to 0.049 (below the 95 percentile of
shuffled data).

axis (30-degree shift from the grid axis; Fig. 3A, top right,
and Fig. 3Biv), which would result in honeycomb-like
patterns and six peaks in the Fourier transform, occurring at
two spatial frequencies (if a large enough portion of the
pattern is sampled). Examples of simulations with the most
band-like patterns are shown in Figs. 1 (50% horizontal
offset, 8.8% vertical offset) and 2 (45% horizontal offset,
0% vertical). The orientation and periodicity of the grid are
the same for all grid cells recorded on the same tetrode
(Fyhn et al. 2007; Stensola et al. 2012), and thus were not
varied.

Even though many of our simulated units appeared band-like
in the autocorrelogram, and showed only two peaks in the
Fourier transform, passing the criteria for “spatially periodic
nongrid cell,” it was still evident that the spatial firing pattern
of these units did not form clean bands. There were multiple
peaks in the spatial firing plot, indicating multiple fields, rather
than bands. An analysis of the firing rate along each of the
bands formed by combining simulated grid cells revealed
repeating peaks of high firing rate (Fig. 4, C and D), unlike a
simulation of a band cell (Fig. 4E). Thus, we performed a
similar analysis of the Krupic et al. data to determine if their
“band-like cells” resembled actual bands, with uniform firing
rate along one axis, or a combination of many fields arranged
in a band. The nine best examples of band-like cells, compiled
in Krupic et al.”’s Supplementary Fig. 10, all contained multiple
peaks along each band (Fig. 5).

There are few reliable methods for estimating the contami-
nation of a unit isolated from tetrode recordings (see DISCUS-
sioN). The only method that does not rely on the same measures
that are used for spike sorting is to check the number of spikes
that occur within the refractory period of another spike. Hill
and colleagues (2011) derived an equation for estimating the
number of expected refractory period violations (r) of an
isolated cluster with a given false positive (contamination) rate
(c), which is as follows:

Z(TR - ’Tc) N2(1 - C)C
r =
T

where 7 is the length of the refractory period, 7o is the
censored period following a spike during which spikes are not
detected by the recording system, N is the number of spike
events clustered as part of the unit, and 7 is the total length of
the recording during which spikes are detected. From this
equation, we derived an estimate of the contamination of a

unit:
4 X
o[ Axe
F X 2.5 ms

2

c =

where F is the firing rate of the unit (N/T), r has been
replaced with the proportion of refractory period violations
(p = rIN), and Ty — 7 has been replaced with the typical
values used in recordings in our laboratory (17x = 2 ms;
Tc = 0.75 ms). This shows that the contamination rate of the
unit depends not only on the proportion of refractory period
violations, but also on the firing rate of the unit. Units with
low firing rates are expected to show very few refractory
period violations, even at high contamination rates. Labo-
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Fig. 3. Varying the offset and the direction of the offset of the contaminating grid cell results in varying “gridness” scores, a varying appearance of “bandedness,”
and different numbers of peaks in the spatial Fourier transform. A: schematic of mixtures of two grid cells with different offsets from each other. The component
of the offset along the x-axis (one of the axes of the grid pattern) is expressed in percent of grid spacing, and the offset along the orthogonal axis is expressed
as an angle from the x-axis. (The columns correspond to 10, 30, and 50% x-axis offsets and the rows to ~29, 18, and 5% y-axis offsets.) B: examples of spatial
firing (top), spatial autocorrellograms (middle), and spatial Fourier transforms (bottom) of units with 33% contamination from cells with offsets i—v shown in the
panel. The firing rate color scale ranges from O (blue) to 5 (dark red) Hz in all spatial firing rate images. A: the prototypical examples are i (almost perfect grid)
and iv (perfect honeycomb). Unit ii is an example of a contamination of medium offset along a nongrid axis [30% x (grid)-axis offset, and 17.3% y-axis offset],
which distorts the grid somewhat, but the gridness score is still significant. Unit v contains a contamination with large offset along a nongrid axis (50% x-axis
offset, 18.2% y-axis offset), which results in a more zigzag, rather than band-like, pattern, but the grid is distorted enough to make the gridness score
nonsignificant, and only one axis on the Fourier transform shows significant peaks. The Fourier transforms also show artifacts relating to the enclosure walls and
the fact that only a small portion of the spatial pattern is sampled. C: gridness score as a function of offset for all simulated units containing 33% contamination
(red circles). Simulated “clean” grid cells are also plotted (blue circles). The size of the circle indicates the average gridness score of all simulations at that offset
and 33% contamination. Gridness scores that are not significantly different from random are also marked with an asterisk. Each simulation was repeated for two
different paths through the environment and 1-4 times with different Poisson distributions of spikes. (Thus each point is the average of 2—8 simulations.) All
average grid scores of contaminated and clean units are plotted repeatedly, to illustrate the pattern of the grid. This figure illustrates that contamination of a grid
cell (with vertices at the blue circles) with spikes from another grid cell (with vertices at one set of red circles) results in nonsignificant gridness scores at certain
grid field offsets but significant gridness at other offsets.

ratories vary widely in how they report cluster isolation
quality and refractory period violations (see DISCUSSION), but
often a threshold of maximum proportion of refractory
period violations is used as a criterion, without considering
the firing rate of the unit. As can be seen in Fig. 6A, even the
conservative value of 0.2% of refractory period violations
actually indicates an unacceptably high contamination rate

when used for units with mean firing rates of <5 Hz. The
accepted proportion of refractory period violations should
actually be scaled with the firing rate of the cluster, depend-
ing on the desired maximum contamination rate according
to the relation:

p=(c—c2)><F><2.5ms
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Fig. 4. Comparison of spiking distributions for a grid cell, simulated grid cells with various contaminations, and a hypothetical band cell. A: spiking activity of
a recorded grid cell. White line indicates the position of the animal over time. Red shows the locations when this cell spiked. The overlaid rectangle outlines
a slice that was analyzed for band-like behavior. Bottom, relative spiking response as a function of location along the long axis of the rectangle (no. of spikes
divided by occupancy). Red line is the firing rate smoothed with a 4- to 6-cm kernel. B: a simulated grid cell. Simulated spikes were generated based on position,
using the same tracking data as recorded in A. Analysis rectangle is the same as in A. C: the summed spikes of two simulated grid cells. Spikes were generated
for two grids, both aligned with the long axis of the analysis rectangle, with vertices 50% offset; 67% of spikes come from one grid cell, and 33% are from the
other. D: the summed spikes of three simulated grid cells. Three grids with vertices aligned along the analysis rectangle and offset 33 and 67% from one another
were simulated; 50% of spikes come from one grid cell and 33 and 17% from the other two. E: a simulated band cell. Spikes were generated in the same way
as in B—-D except, instead of distance from the vertex of hexagonal grids, the distance from 3 lines aligned with the analysis rectangle was used. The result shows
a band of spiking activity (fop) with no periodicity and smaller variance to mean ratio (bottom) than the cases in which apparent bands are the result of grid

superposition.

which is plotted in Fig. 6B.

Another criterion used to evaluate refractory period viola-
tions is the R,.;, value proposed by Fee et al. (1996). This
calculation involves comparing the rate of refractory period
violations with the rate of spikes within 7~ — 10 ms of another
spike according to the equation:

(10 ms — 7¢) "
(TR - TC) Fio

If we assume that F,,/(10 ms — 7) is similar to the firing rate
of the unit, we can also use R,., to estimate the contamination

rate as:
1_ \/ 1 _4XR2:10

2

Ry.i0=

Cc =

This suggests that, for a maximum contamination of 10%, only
units with R,.;, = 0.09 should be used. Of course, the rate of
spikes within 10 ms of another spike is higher than the baseline
firing rate of a bursting neuron, and thus R,.,, provides an
(often large) overestimate of the contamination rate of bursting
cells.

Krupic et al. (2012) do not report the criterion of refractory
period violations they used, and thus we cannot comment on
the contamination levels of their units. Another important
caveat is that the refractory period criterion is based on uncor-
related Poisson spike trains. However, two grid cells with
perfectly offset fields are expected to have a negative correla-
tion. In this case, even the refractory period violation criterion
does not aid in determining the isolation quality. This is a
general issue for units that may have intrinsic nonzero corre-
lations.

DISCUSSION

Spike sorting methods. While tetrodes provide superior iso-
lation of single units compared with most single channel
electrodes, and hence facilitate extracting activity of many
single neurons simultaneously, the isolation of single neurons
is still difficult and for most units cannot be accomplished
perfectly. This method involves detecting action potentials
from extracellularly recorded electrical potentials. Bandpass
filtering is used to detect signals in the frequency band of
action potentials, and, most commonly, an amplitude filter is
used to detect these spikes. To identify the spikes from single
neurons, the waveform shapes and amplitudes on the four
channels of the tetrode are used to classify different neurons
(Gray et al. 1995). Different spike sorting algorithms use
slightly different measures of the waveforms, but, generally,
each waveform is decomposed into two to four features that are
most representative of the spike. Usually this is done with
principal component analysis (PCA) of the full waveforms of
all recorded spikes on an electrode, and the first and second
principal components (PCs) are used for sorting. The first
component usually corresponds to the amplitude of the wave-
form (Harris et al. 2000; e.g., Lewicki 1998), which can also be
replaced with a measure of the peak amplitude, the peak-to-
trough height, or the energy of the waveform (the root mean
square of all samples taken along the waveform). The second
component corresponds to features of the second half of the
spike waveform (Harris et al. 2000; e.g., Lewicki 1998), since
the spikes vary in width and amount of afterhyperpolarization.
In algorithms where energy is used instead of the first PC,
the waveforms are energy normalized before PCA, and thus the
first PC corresponds to the waveform shape, similar to the
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Fig. 5. Periodic firing rate modulation within
bands recorded by Krupic et al. suggests the
summation of multiple fields. A: an analysis
of firing rate along the bands was conducted
on the best 8 examples from Krupic et al. B
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second PC described earlier (e.g., Schmitzer-Torbert et al.
2005). Finally, these features of the waveforms are used (either
manually, or with an automated algorithm) to sort spikes into
clusters that roughly correspond to single neurons (called units,
because single cell isolation cannot be completely con-
firmed). Automated algorithms often operate under the as-
sumptions that clusters are Gaussian in shape (but see Fee et
al. 1996, Quiroga et al. 2004, Takekawa et al. 2010), spikes
and the underlying “noise” are independent, and background
noise is stationary. These assumptions are sometimes vio-
lated (in particular the Gaussian clusters assumption, see
below), and thus a manual step in which a user corrects the

>

©
IS

Contamination rate

0 10 20 30 40
Firing rate of unit (Hz)

0.5 B

clusters generated is often included. Manual correction of
automated clustering is easiest if the automated algorithm
overclusters the data, and the experimenter then merges
clusters that have similar spike shapes and cross-corrello-
grams indicative of a single neuron.

Two types of problems are encountered when sorting spikes:
incorrectly excluding spikes fired by the recorded neuron (false
negatives, type II error) and incorrectly including spikes not
fired by the neuron in the cluster (false positives, type I error).
The reasons for false negatives are: exclusion of spikes when
background noise in the recording causes the spike amplitude
to drop below the detection threshold, exclusion of spikes
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Fig. 6. Assuming Poisson firing statistics and uncorrelated tuning curves of neurons, the false positive rate (contamination rate) of a unit can be estimated from
the number of spikes occurring during the refractory period following another spike (see text). A: false positive rate as a function of firing rate of the cluster given
an accepted percentage of 0.2 and 0.02% spikes in the refractory period (p). Note that a contamination rate of 0.5 (50%) indicates a cluster containing 50% true
spikes and 50% spikes from other neurons. B: the acceptable percentage of spikes in the refractory period should vary based on firing rate of the unit and the
experimenter’s accepted false positive rate, for example, 5 or 10%, as plotted here.
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when multiple recorded neurons fire in close temporal prox-
imity, resulting in a compound spike waveform that is unde-
tectable or unclassifiable (Harris et al. 2000; Lewicki 1998),
and incorrect classification of spikes from one cell to the
cluster of another cell because of similarity in waveforms. The
analysis of a unit with many false negatives will result in
incorrect calculation of firing rate, and receptive fields will
appear to have smaller amplitudes (Hill et al. 2011). Reasons
for including false positives in a cluster are: the incorrect
segregation of two or more cells with similar waveform shapes
and amplitudes and misclassification of composite spikes or
noise in the recording as spikes from a single neuron. The
analysis of a unit with many false positives also results in an
incorrect calculation of firing rates and, additionally, in an
incorrect characterization of the receptive field (Hill et al.
2011), such as what is modeled in this paper.

The likelihood of spike sorting errors increases when there
are large numbers of spike overlaps. Spike overlaps increase
during population burst events such as sharp waves (SPWs), or
when two of the cells recorded on a tetrode are coupled, and
therefore often spike in rapid succession. Additional problems
occur when the assumptions of the spike sorting algorithms are
violated. For example, spike waveform shapes and amplitudes
are known to change within a burst, violating the assumption
that waveforms only vary with Gaussian noise (e.g., Harris et
al. 2000). In addition, if the position of a tetrode drifts during
a recording, the recorded spikes will change as well. These
problems require users to manually adjust the results from
automated clustering algorithms but often cannot be assessed
quantitatively.

Resulting spike clusters may include both false positive and
false negative errors, and the larger the proportion of each, the
noisier any subsequent analysis will be. It is therefore impor-
tant to determine the quality of unit isolation, to be able to
evaluate the significance of any analysis that assumes single
cell isolation. In an experiment in which spike sorting from
tetrode recordings was evaluated with knowledge of the true
spike times of a cell that was also recorded intracellularly,
manually cut clusters contained somewhere between 0 and
30% errors, depending on the recorded amplitude of the spike
(which corresponds to the inverse square of the distance
between the tetrode and the neuron) and the experience of the
cluster cutter (Harris et al. 2000). Better results were achieved
with a semiautomated algorithm (in which the automated
algorithm delineates clusters in multidimensional space, and
then the human operator merges overclustered units) up to a
theoretical limit determined again by the strength of the
signal and the degree of violation of the assumptions of the
algorithm the cell displays, including burstiness and over-
lapping spikes. Without simultaneous intracellular record-
ings, the true cell classification of spikes cannot be known,
and thus any measures of isolation quality or errors are only
estimates. The strength of the signal can by quantified by the
signal-to-noise ratio (S/N), which determines how good the
recording of a particular neuron will be and can be used to
ensure that spikes will not be excluded because they do not
pass the threshold of detection due to noise in the recording
(Lemon 1984). This metric does not, however, quantify the
proportion of undetected spikes, nor does it measure
whether spikes from two cells have been classified as one
unit (Joshua et al. 2007).

Unit isolation measures. One way to evaluate cluster isola-
tion quality is to use the same measures used to separate
clusters (e.g., waveform shape and amplitude). Harris et al.
(2001) suggested a metric called isolation distance to calculate
the distance between a cluster and all the other spikes recorded
on the same tetrode (in the 8-dimensional space defined by the
energy and first PC of waveform shape on the 4 recording
channels). This metric measures the distance from the center of
an identified cluster that will contain all the spikes in the cluster
and the same number of noise (noncluster) spikes. When used
on the Harris et al. (2000) tetrode recordings, which also
included intracellular recordings indicating the true result, the
isolation distance of a cluster was found to correlate well with
the false positives included in that cluster and very slightly, but
significantly, with the number of false negatives (Schmitzer-
Torbert et al. 2005). While this measure allows the comparison
of the isolation of units recorded on a single tetrode, it is very
dependent on the distribution of the noncluster spikes, and thus
cannot be used to quantitatively compare values between
tetrodes. For example, a cluster that is very close to one other
smaller cluster, but far away from the rest of the spikes
recorded on that tetrode, may earn a higher isolation score than
a lower-amplitude cluster (closer to the multiunit noise) that is
nonetheless farther removed from all other points. Therefore, it
is not possible to design a criterion value of isolation distance
that can be compared between experiments. Schmitzer-Torbert
and Redish (2004) designed a different measure of cluster
isolation, L-Ratio, which discounts noise spikes that are distant
from the center of the cluster, providing a more accurate
account of the distribution of noise spikes surrounding a
cluster. This measure was found to correlate pretty well both
with true false positives and true false negatives (Schmitzer-
Torbert et al. 2005). Joshua et al. (2007) went a step further
when defining their “isolation score” and quantified the local
distances between points within the cluster and those outside.
They also tested their score with a simulation of false positive
and negative errors, which they used to suggest a threshold
isolation score that would determine units suitable for further
study. In addition to the isolation score, the authors designed
separate calculations for estimating false positives and false
negatives and determined that these estimates are likely to be
accurate for units above the threshold isolation score. Their
measures worked well in simulation but have not been
evaluated with data for which the true false positive and
false negative rates are known (Harris et al. 2000) and thus
cannot be adequately compared with the two above-men-
tioned measures. One fault in common between all above
measures is that they only use features also used in auto-
mated spike sorting and thus are subject to the same as-
sumptions. For example, a cluster of a bursty cell may show
a worse isolation score than two clusters made up of the
high-amplitude (early in the burst) and low-amplitude (late
in the burst) spikes from the same cell.

A method to detect false positive errors in spike sorting that
is completely independent of the sorting method involves
counting the spikes that occur during the refractory period
following another spike in the same cluster. The spikes that
occur during the refractory period cannot belong to the same
cell, and thus the proportion of spikes showing a low (2-3 ms)
interspike interval can be used to estimate the contamination of
a cluster, under the appropriate conditions. This value has been
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used in two main ways: calculating just the proportion of
spikes that occur in the refractory period (Takehara-Nishiuchi
and McNaughton 2008) or the ratio of spikes in the refractory
period (2 ms within another spike) to spikes within 10 ms of
another spike (R,.;,; Fee et al. 1996). Unlike the proportion of
spikes in the refractory period, R,.,, is an indicator of contam-
ination that is independent of the firing rate of the unit (see
RESULTS and below); however, bursting neurons increase their
firing rate in the 10 ms following a previous spike, and thus this
value is higher than the overall firing rate for those neurons.
Harris et al. (2000) recommended comparing firing in the
refractory period with the asymptotic value of the autocorre-
logram (which is the firing rate) but did not suggest a quanti-
tative criterion.

Krupic et al. (2012) do not report what criterion for refrac-
tory period violations was used in their study, but hippocampal
electrophysiology studies in our lab typically exclude any units
with a percentage of spikes in the refractory period greater than
between 1 and 0.2%. The false positive rate can be calculated
from the percentage of spikes occurring in the refractory period
based on the expected probability that a rogue spike occurs
around the spikes of the clean unit (Hill et al. 2011). From Hill
and colleagues’ equation, the false positive rate depends on the
proportion of spikes occurring in the refractory period and the
firing rate of the cluster (see REsULTS and Fig. 6). For a cell that
fires at 10 Hz, 0.2% spikes in the refractory period represents
a 5% false positive rate, but for a cell that only fires at 1 Hz
(which is the average rate reported in the Krupic at al. study),
0.2% spikes in the refractory period would mean a false
positive rate of >50% (see Fig. 6). From our experience,
most low firing rate clusters would not show this high of a
rate of refractory period violations, but this calculation
illustrates that the criterion needs to be adjusted for cells
with low firing rates. Furthermore, this calculation makes
the assumption that contaminating spikes occur indepen-
dently of spikes from the unit of interest, which is definitely
violated when the contamination comes from another place-
related cell. Two grid cells with non- or only partially
overlapping fields (such as those we show in Figs. 1 and 2,
which would sum to a band-like response) should show very
little spike timing overlap, and thus in that case this calcu-
lation is a severe underestimate of the contamination rate.
On the other hand, during SPWs spike timing overlap is
higher than expected by chance, and so when epochs con-
taining many SPWs are used for spike sorting, this calcula-
tion may be an overestimate of the false positive rate.

Additional methods of estimating false positives and false
negatives include estimating the spikes missed as a result of the
detection methods and measuring the overlap between each
pair of clusters (Hill et al. 2011). The proportion of spikes that
have not been detected based on a threshold spike amplitude
(or any other detection method) can be calculated by plotting
the distribution of the cluster around the detection threshold,
fitting a Gaussian to the distribution, and calculating the
proportion of spikes that would fall under the threshold but
have not been detected (Hill et al. 2011). This problem
should be reduced, however, by using only cells with a high
enough S/N and setting an appropriate detection threshold.
The other causes of undetected spikes are spikes that oc-
curred during the detection of another spike (either because
of spike overlap or because of the censored period following

detection of a spike). The expected proportion of spikes
missed in this way can be easily calculated (under the
assumptions of Poisson spiking that is uncorrelated between
neurons) from the firing rate of the cell, the total number of
detected events, and the length of each censored period (Hill
et al. 2011). Hill and colleagues (2011) suggest estimating
the total number of false positives and false negatives by
combining these measurements of undetected spikes, the
measurement of false positives from refractory period vio-
lations, and a measurement of the probability of misclassi-
fying each spike into another identified cluster. As complete
as this calculation attempts to be, it is still only an estimate,
since the statistics of spike timing are not strictly Poisson
(and all the calculations dependent on expected rates of
spikes assume Poisson statistics). Nonetheless, Hill et al.’s
calculation captures the idea that no one measure gives a
complete picture of the isolation quality of a unit and that
strict criteria should be set and reported for inclusion of
“well-isolated single units” in an analysis.

In conclusion, while methods to determine cluster isolation
quality are still imperfect, the reporting of the use of such
metrics is even more so. A literature search of the spike sorting
metrics used in prominent laboratories in the in vivo electro-
physiology hippocampal field indicated that very few papers
actually report which specific criteria were used for evaluation
of spike sorting quality. Many papers report qualitative criteria
(e.g., “only units with clear refractory periods are included”),
or which measure was used (e.g., isolation distance was cal-
culated), without stating the criterion value(s), and many do not
report which measures were used at all. As more laboratories
use these techniques and more spike sorting methods are
introduced, this standard will have to change, so that readers
and reviewers can better evaluate the results and conclusions of
a paper. Promising new spike sorting methods are being
developed (e.g., Takekawa et al. 2010), which have yet to be
tested with novel in vivo data, and there is a push for more
automated methods (for review, see Rey et al. 2015). This
makes it even more important to discuss isolation quality and
come to some consensus on criteria.

Neuronal population analyses do not necessarily require
perfect cell isolation (e.g., Davidson et al. 2009), but when
making a statement about the receptive fields of single cells,
extreme caution should be used to determine that the property
in question is true of even the best isolated single units. We
have shown in this paper that, given the current knowledge of
grid cells, contamination of grid cell clusters would result in
multipeaked spatial receptive fields that could be considered
band-like. Because of the difficulty in ascertaining single cell
isolation, and the simulation that we show here, we believe that
Krupic et al. (2012) did not provide definitive proof of band-
like cells in either of the two regions they recorded from (MEC
and parasubiculum). To demonstrate that such cells exist, they
would have to show several more rigorous analyses to prove
that the units they claim are band cells are very well isolated,
as well as that their Fourier transform analysis is reliable at
identifying band cells. Krupic et al. (2012) claim that showing
the mean isolation distance and L-Ratio measures for their
“grid” and band-like cells proves that the two classes are
equally well isolated. We show in Fig. 3, however, that
contaminated clusters could also be classified as grid cells. We
posit that poorly isolated units also contributed to the mean
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isolation score for the “grid cell” class and suggest that the
mean values of those measures are not definitive proof that the
classes are equal, since it does not show the distribution of
isolation metrics for each recorded unit. Showing this distri-
bution or the correlation between isolation and gridness score
would better illustrate whether any of the best-isolated units
contribute to the finding of band-like cells. Krupic et al.’s
observation that grid cells have greater between-session stabil-
ity than spatially periodic nongrid cells (their Fig. 2) is con-
sistent with our hypothesis that their band-like clusters are less
likely to be well-isolated.

Finally, we show that Krupic and colleagues’ raw data
(spatial firing rate plots) show multiple peaks along the axis of
each of their identified “bands” (Fig. 5), putting into question
the reliability of their Fourier transform analysis for identifying
bands. This analysis attempts to fit differently oriented and
spaced band patterns to the spatial firing plot of units (see
Krupic et al.’s Fig. 1F), and then interprets the presence of less
than three peaks (which indicate grid cells) in the resulting
Fourier plot as evidence of band-like firing. We found that the
presence of spikes from other grid cells reduces the number of
peaks in this spatial Fourier transform (Fig. 2) and that this
measure becomes unreliable with increasing spacing of fields
when only a few fields are observed in the environment (data
not shown). Krupic et al. used data from units with few and
very noisy fields in their analysis of the proportion of grid and
band-like cells, without accounting for how unreliable the
measurements on these units are. Their observation that spa-
tially periodic nongrid cells show less precise Fourier compo-
nent orientation tuning than grid cells (their Fig. 3) is consis-
tent with our suggestion that many of their band-like cells are
poorly isolated and/or sparsely spiking, resulting in a less
reliable Fourier analysis. When they initially discovered grid
cells, Fyhn et al. (2004) compared the waveforms of spikes in
each of the regularly repeating fields to ensure that each field
was in fact a result of firing of the identical cell and that their
finding was not due to poor isolation (their Supplementary Fig.
3). Krupic et al. (2012) could show a similar analysis for the
multiple peaks observed in the spatial firing plots of their
band-like cells to convince us that our simulation results do not
apply to their data. Therefore, we call on Krupic and colleagues
to show better evidence of cluster isolation quality and analyze
their best-isolated units for bandiness with a measure that
includes a reliability estimate.
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