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Abstract

This chapter provides an introduction to Bayesian models and their application in
cognitive neuroscience. The central feature of Bayesian models, as opposed to other
classes of models, is that Bayesian models represent the beliefs of an observer as
probability distributions, allowing them to integrate information while taking its
uncertainty into account. In the chapter, we will consider how the probabilistic
nature of Bayesian models makes them particularly useful in cognitive neuroscience.
We will consider two types of tasks in which we believe a Bayesian approach is
useful: optimal integration of evidence from different sources, and the development
of beliefs about the environment given limited information (such as during learning).
We will develop some detailed examples of Bayesian models to give the reader a taste
of how the models are constructed and what insights they may be able to offer about

participants’ behavior and brain activity.



Introduction

In the second half of the 18t century, the French mathematician Pierre-Simon
Laplace was confronting a dilemma. He wanted to use observations of the location of
planets to test the predictions made recently by Isaac Newton about the motion of
heavenly bodies and the stability of the solar system. However, the data Laplace was
confronted with was cobbled together from sources all over the word and some of it
was centuries old. Couple that with the imprecision of the instruments of the time and

Laplace had what we now call noisy data on his hands.

Laplace decided he needed a method that would allow him to use the large amounts
of data obtained by astronomers, some of which might be unreliable, to determine the
real state of the universe they were observing. In other words, he needed a way to
move back from observed events (the astronomers’ observations) to the most
probable cause (the position of a planet). In doing so he created a way of thinking
fundamentally different from the established approaches at the time. Because Laplace
unwittingly hit upon elements of an earlier work by the English reverent Thomas

Bayes [1], we now know this way of thinking as ‘Bayesian’.

The Bayesian way of thinking is so different from conventional statistics that it was
‘non grata’ in most university departments for a long time. Only since the mid-20th
century has this begun to change. Bayesian methods were starting to be applied
pragmatically to solve a host of real-world problems. Moreover, the invention of
computers enabled people to perform the often labor intensive computations
required in Bayesian statistics automatically. Slowly, Bayesians dared to come out of
the closet (see McGrayne [2] for a history of Bayesian thinking). Bayesian thinking
has now been applied to almost every field imaginable, including code-breaking,
weather prediction, improving the safety of coal mines, and—most relevant for the

purpose of this book—the modeling of human behavior and human brain function.

This chapter is about the use of Bayesian models in cognitive neuroscience and
psychology, with particular reference to the modeling of beliefs and behavior. The

reason for using formal models in this context is to gain insight into internal



representations of the environment and of experimental tasks that are held by
participants, and to use them to predict behavior and brain activity. We will therefore
begin by explaining how the representation of the world contained in a Bayesian
model (or brain) differs from non-Bayesian representations, and go on to consider
how these features can be used in the context of cognitive neuroscience and

psychology research.

We will first discuss three key features of Bayesian system: Bayesian systems
represent beliefs as probability distributions, Bayesian systems weight different
sources of information according to their associated uncertainty, and Bayesian

systems interpret new observations in the light of prior knowledge.

After considering how a Bayesian model’s worldview differs from that of a non-
Bayesian model, we will briefly review some evidence from the psychology and
neuroscience literature that human and animal observers behave in a Bayesian
manner. In particular we will focus on two classes of problems in which Bayesian
models behave differently from non-Bayesian ones: integration of sensory evidence

from different sources, and learning.

In the final section of the chapter, we will look in more detail at how Bayesian models
can be constructed and what insights can be gained from them. We will consider
Bayesian approaches to two problems: inferring a spatial distribution from a few
observations, and inferring the probability of targets or rewards appearing in one of
two locations in a gambling task. By constructing Bayesian ‘computer participants’ for
each of these tasks, we will gain insights into factors that might predict the

performance of human or animal participants on the same tasks.

The defining features of a Bayesian model

Bayesian statistics is a framework for making inferences about the underlying state of

the world, based on observations and prior beliefs. The Bayesian approach, to try and

infer causes from their observed effects, differs philosophically from other approaches



to data analysis. Other approaches, often referred to as ‘frequentist’ approaches, focus
on obtaining summary statistics for the observed data (such as the mean or expected
value of an observation) without reference to the underlying causes that generated

the data.

Bayesian systems represent beliefs as probability distributions

A Bayesian approach to understanding data is to consider a range of possible causes
for the observed data, and assign probabilities to each of them. A subtle but crucial
consequence of this approach is that, although the true state of the environment takes
a single value, the observer’s idea of the environment can be represented as a
continuous distribution over many possible states of the environment. In other
words, even though the observer knows there is only one true cause of his
observations, he can still assign a graded probability to several possible causes. The
observer’s model represents these possibilities as a probability density function (pdf).
This single feature, the representation of beliefs as probability density functions,
gives rise to much of the behavior that differentiates Bayesian models from non-

Bayesian ones.

Let’s illustrate the use of probability density functions with an example. Consider the
following scenario: Isaac Newton is foraging for apples in his garden when he sees an
apple fall from a tree into long grass (Fig. 1a). Where should he go to retrieve the
apple? If he saw the apple fall into the undergrowth, then the most likely place to look
for the apple is near where it fell. We might, therefore, represent his belief about the
location of the apple (his internal model of the state of the environment) as a single
value, the location at which the apple entered the undergrowth (Fig. 1b; for
simplicity, let’s assume we can represent the location in a one-dimensional space).
However, because the apple is now out of sight, Isaac can’t be certain exactly where it
is (it may have rolled along the ground in an unknown direction). This uncertainty
can be incorporated into his internal model, if instead of using a single value the
apple’s position is represented as a probability distribution. Then we can make
statements like ‘there is a 95% chance that there will be an apple between locations A

and B’ (Fig. 1c). Note that as well as the most likely location of the apple (the model of



the distribution) this representation captures uncertainty (the width or variance of

the distribution).

<Please insert Figure 1 about here>

Note that the Bayesian use of probability density functions to represent degree of
belief about a single state of the world is rather distinct from the typical use of
probability density functions to represent the frequency of observations. In our apple
example, Isaac Newton knows a single apple fell from the tree, and represents the
location of that single apple as a probability density function, although in fact there is
only one apple and it has only one true location. A more typical (frequentist)
construction of a probability density function would be to represent the frequency
with which apples were observed in different locations. Whilst for a hundred apples,
the frequentist and Bayesian pdfs may look the same, for a single apple, the

frequentist view is that the apple is either in a position, or it is not.

Bayesian systems integrate information using uncertainty

When a belief about the state of the world (for example, about the location of an
apple) is represented as a probability density function, the variance of that pdf, in
other words the width of the pdf, represents the degree of uncertainty about the state
of the world. One key feature of the Bayesian approach is that Bayesian systems take
this uncertainty into account and use it to weight different sources of information

according to their relative precisions.

Imagine that Isaac Newton has both seen an apple fall from the tree into long grass,
and heard it hit the ground. His belief about the location of the apple based on each of
these sources of information (vision and hearing) can be represented as a single
probability density function. How should Isaac’s brain use these two sources of
information to get the best estimate of the apple’s location? One solution is to use
only the more reliable, or preferred sense. But this wastes the information from the
other sense. A better solution is to combine the estimates of location based on vision

and hearing.



How should the two sensory modalities be combined? Perhaps Isaac could take a
point midway between the most likely location given what he saw, and the most likely
location given what he heard? The Bayesian solution to this problem is to apply
precision weighting the two sources of information, that is to give more weight to the
observation with the lowest variance. If, for example, vision gives a more precise
estimate of where the apple fell, then visual evidence should be given more weight.
On the other hand, if vision is unreliable (e.g. at night), auditory evidence should be

given more weight.

Let’s look at this graphically. In figure 2a, we can see that the pdf of Isaac’s visual
information (in red) is much less wide than his pdf based on hearing (in blue). Or, to
put it more precisely, the variance of the vision pdf is smaller than that of the hearing
pdf. Thus, optimally combining these two sources of information will result in a pdf
closer to the vision pdf. However, in figure 2b, the vision is much less reliable,
indicated by a greater variance in the red pdf. The combined pdf now is much closer

to the hearing one.

<Please insert Figure 2 about here>

Precision weighting is only possible if the observations (by vision and hearing) are
represented as probability density functions; if each observation was represented in
terms of a single most likely location, we could still combine the predictions by taking
a point between the locations given vision and hearing, but there would be no way to
take into account the relative reliability or precision of the two sources of
information. However, given that observations are represented as probability density
functions, precision weighting arises naturally from simply multiplying together the
two probability distributions®. Then the probability of the apple’s location given both

visual and auditory information is highest where the two distributions overlap, and

L In fact, the probability of each location given hearing and vision can only be
obtained by multiplication if the variance in the two probability density functions is
independent. In this case, we are talking about uncertainty that arises from noise in
the sensory systems, which we can safely assume is independent between vision and
hearing.



the mode (peak) of the combined distribution lies closer to the mode of the

distribution with the lowest variance.

Bayesian systems interpret new information in the light of prior knowledge

[saac Newton probably had some previous experience with apples falling from trees.
Therefore, it would seem sensible if he used this prior knowledge to inform his model
of where the apple might lie. For example, he might have some expectations about
how far the apple might roll, the slope of the land, etc. Even if Isaac didn’t see an apple
fall, he would still have a prior belief that apples should be found under the apple tree
- not, for example, under the lamppost. Isaac knows the apple should not fall far from

the tree.

In the same way the location of the apple, given Isaac saw it fall, can be represented as
a probability density function, so can his prior beliefs. In Bayesian thinking these
prior beliefs are called the priors. Furthermore, current observations can be
combined with the prior, just as probability density functions based on vision and
hearing were combined in the previous section. Combining the current observations

with the prior gives a posterior distribution that takes both into account.

The ability to combine current observations with a prior, or to combine parallel
sources of information like vision or hearing, is embodied in the central theorem of

Bayesian statistics, called Bayes’ theorem:

p(true state | observation) o p(observation | true state) X p(true state)

Eq. 1

... where p(true state) is defined as the probability that a given hypothetical state of
the environment (such as a given location for a planet or an apple) was true, based on
all sources of information other than the observation currently being considered. The
term ‘other sources of information’ can equally well include other sensory modalities

or prior knowledge.



In Bayesian terminology, the left hand side of Equation 1, p(true state | observation),
is called the posterior; the expression p(observation | true state) is called the
likelihood; and p(true state) is called the prior. Bayes’ theorem thus says that our
belief about the true state of the environment after our observations is proportional

to our prior beliefs weighted by the current evidence.

Priors and learning

Because Bayes’ theorem tells us how we should combine new observations with prior
beliefs, it provides particularly useful insights about how the observer’s beliefs
should evolve in situations where information about the environment is obtained
sequentially. For example, we can model how Isaac’s beliefs evolve while he observes
a number of falling apples. After each observation, he updates his prior to a new

posterior. This posterior then serves as the new prior for the next apple.

In experimental paradigms in which participants learn by trial and error, we cannot
assume the observer has complete knowledge of the state of the environment. These
paradigms are a key target for model-based cognitive neuroscience, since if we want
to model a participant’s behavior or brain activity, it is arguably more appropriate to
base our predictions on a model of what the participant might believe the state of the
environment to be, rather than basing our predictions about brain activity on the true
state of the environment, which the participant could not in fact know, unless

he/she/it was clairvoyant.

Of course, not all learning models are Bayesian - for example, temporal-difference
learning models such as the Rescorla-Wagner algorithm are also popular. Non-
Bayesian class of algorithms can do a good job of explaining behavior in many
experiments. In a later section of the tutorial we will investigate the differences
between Bayesian and non-Bayesian learning algorithms in more detail, in order to
highlight cases where Bayesian models can give us enhanced insights into the

participant’s thought processes as compared to non-Bayesian learning algorithms.



Are Bayesian models valid for modeling behavior?

In the previous section we’ve seen how Bayesian thinking can be used to model the
beliefs of an observer and can track how these beliefs should evolve when combining
different sources of information or during learning based on repeated observations.
Mathematically, it can be shown that the Bayesian approach is the best approach to
combine information under uncertainty with the greatest precision [3]. However, for
these models to be useful in cognitive neuroscience we need to know if people
combine information in similar ways. Fortunately, it turns out they often do. People
and animals can show behavior close to the optimum predicted by Bayesian theory.
In this section, we will provide some examples of how human behavior can be
described by Bayesian models. We will limit ourselves to illustrating how human
behavior shows some of the Bayesian characteristics we described above. More in-
depth reviews of how the Bayesian approach can inform our understanding of
behavior and brain function are provided by O’Reilly [4], Chater and Oaksford [5], and
Koérding and Wolpert [6].

At the most fundamental level, one can see the human brain as a device whose job it
is, at least partly, to infer the state of the world. However, we know that the nervous
system is noisy. Thus we need to deal with information under uncertainty. One way
that psychologists have suggested we deal with this is the use of ‘top-down
information’. In the terms of Bayesian theory this means people have a prior that
influences their information processing. The effect of such a prior has been
demonstrated in vision by the existence of a variety of well-known visual illusions.
For instance, in the famous Miiller-Leyer illusion people see two line segments of
equal length that have short lines on their ends, either pointing in the direction of the
line or away from it. Most people report the second line to be longer than the first.
Gregory [7] suggested this is because people have priors about perspective that they
have learned from the buildings in the environment, in which the former
configuration corresponds to an object which is closer and the latter with an object
far away. Interestingly, this predicts that people who have grown up in a different
environment might not have this illusion. This indeed seems to be the case for some

African tribes [8].



In our daily life, we often have to reconcile different sources of information. As shown
above, Bayesian thinking implies that different sources of information should be
combined using precision weighting. As one illustration of whether humans combine
information in this way, Jacobs [9] asked participants to match the height of an ellipse
to the depths of a simulated cylinder defined by texture and motion cues. The
participants were either given motion information, texture information, or both about
the depth of the cylinder. Bayesian models predicted how participants combined the
sources of information. Similarly, Ernst and Banks [10] asked participants to combine
visual and haptic information to judge the height of a raised bar. Participants were
given conflicting information with the experimenter manipulating the precision of the
information available by introducing noise in the visual stimulus. They reported that
participants took the reliability of the visual information into account when
combining the visual and haptic information, in a way that was predicted by Bayes’

theorem.

Once we are satisfied that humans are able to behave in a Bayes’ optimal fashion in
general it becomes interesting to see in which situations their optimality breaks
down. O'Reilly [4] discusses some instances in which a deviation from Bayesian

predictions informs us about the limits of our cognitive system.

The usefulness of Bayes’ theorem for modeling behavior and its particular
characteristics are perhaps best illustrated during learning. Therefore we will spend
the remainder of this chapter looking at the behavior of Bayesian systems during the

learning of environmental contingencies.

Learning

As experimenters in cognitive neuroscience, we create the experimental environment

in which our participants produce behavior. Therefore, we know the true parameters

of the environment (in the previous example, this would be equivalent to knowing



where Newton'’s apple actually is). However, the participant does not know these true

values; s/he must infer them from observations.

Since we are interested in the behavior and brain activity of the participant, it is
advantageous to have an estimate of what the participant knows or believes about the
state of the environment, as this might differ from the true state. This is particularly
true when data about the environment are presented sequentially, as in many
psychological tasks. For example, in the gambling tasks such as the one-armed, two-
armed and multi-armed bandit tasks, participants, from humans [11, 12] to the
humble bumble bee [13], learn the probability of rewards associated with certain
actions by trial and error; similarly in uncued attentional tasks such as the uncued
Posner task [14], participants learn over many trials that targets are more likely to
appear in certain locations than others. In these sequential tasks, a number of trials
must be experienced before the participant’s estimates of the probabilities associated
with each action approach the true values; in environments that change, continuous

learning may be required.

‘Today'’s posterior is tomorrow’s prior’

As we briefly suggested above, learning from a sequence of observations can be
modeled using iterative application of Bayes’ rule. For example, let’s say we observe a
number of apples falling to the ground at locations xj, xz... x;, and we want to infer
from this the most likely location of fallen apples. Let’s make the assumption that the
distribution of apples is Gaussian about the tree trunk, with unknown mean u (the
location of the tree trunk) and variance o?. Then we can say that the variable x, the
location of any given apple, follows a Gaussian distribution x~N (i, 62). Our aim is to

infer the values of u and 62 from the observed values of x.

Let’s assume we have no a-priori knowledge about where the apple might fall. In
other words, we start with a prior distribution such that all possible values of the

parameters u, o2 are considered equally likely. This is called a flat prior.



Then, on trial 1, we observe a data point, say x; = 67. Remember that Bayes’ rule
(Equation 1) tells us we can update our prior (which is flat) by our likelihood to give
our posterior. In our current situation, we can determine the likelihood, since we
know for each possible pair of parameters u, o2 the probability that a value of 67
would have been observed. In this case this is the probability density of a Gaussian
N (u, 0?) for a region about the value 67 with unit width. Thus, we can work out the
probability of each possible pair of parameters y, 62 given this one observation, and
plot a probability density function over ‘parameter space’ - the range of possible
values of u and o2 (Fig. 3a). This probability density distribution based on the current

observation is sometimes called the ‘likelihood function’.

<Please insert Figure 3 about here>

To obtain the posterior probability for each pair of values u, a2 (the left hand side of
Bayes’ rule), we also need to take into account the prior probability that the values
u, a2 are correct by multiplying the likelihood function with the prior probability
distribution. On trial one, we had a uniform prior, so the posterior is equal to the
likelihood distribution. On trial two, we use the posterior resulting from trial one as
be basis for our new prior. Again we observe a data point and update our prior to a
new posterior that functions as the prior on the new trial. Etcetera. In general, what
happens during learning is that the prior at trial i is derived from the posterior at trial

i-1. Hence we can write Bayes’ rule on trial i as follows:

px~N (u,02)| x1.1) < p(x;| x~N (1, 02)) X p(x~N (1, 02) | x1.4-1 )
Eq2

Thus, the posterior distribution on trial i is proportional to the likelihood of the
observed data, x; times the prior distribution at trial i, which was derived from the
posterior at trial i-1 and captures all that is known about how previous data xi.i.1

predict the current data point x;.

In the mind of our Bayesian participant



We can now look into the ‘mind’ or our Bayesian computer participant to see what it
knows and believes about the environment on a trial-to-trial basis. After the first
observation, the posterior distribution (our model’s estimate of the true values of
4, 0%) has a peak at u = 67 and a very low value for o2, since all observed apples (all

one of them) fell near to x=67.

We can represent the posterior over y, g2 graphically on a grid (Fig. 3a, left panel)
that represents all the possible combinations of mean and variance and their
associated probabilities, which are denoted by colour. The space of all possible values

for p, o2 is called the state space or parameter space.

The next data point is x2 = 100. This point is far from the previous observation.
Therefore, the model’s estimates shift. The estimated u moves towards a point
between 67 and 100, and the estimated o2 increases to create a distribution that
encompasses both data points. As you can see the best fit Gaussian is now a much
wider distribution, with a mean to somewhere in between 67 and 100 and a variance
such that both data points are encompassed (Fig. 3b, left panel). However, the model
is also relatively uncertain about the values of 4,02 as can be seen from the wide
spread of probability density across parameter space. As the model obtains more and
more data the posterior distribution converges on a mean and standard deviation,

and uncertainty decreases (Fig. 3c-d, left panels).

We can translate our model’s estimates of the values u, 02 into a probability density
function over physical space (i.e., plot probability as a function of the possible
positions, x, at which apples could fall). We do this in the right-hand panels of Figure
3.

To plot probability density over space, we need to decide how to summarize the
distribution over parameter space, i.e. over u, o2, which in fact represents our degree
of belief in a range of different Gaussian distributions with different values of u, .
How should the distribution in parameter space be translated into a distribution over
x? One option is to take the peak (or mode) of the distribution over u, o - the values

at the deepest red spot in the left-hand panels of Figure 3. This gives the most likely



Gaussian distribution (the maximum likelihood estimate). The resulting distributions
are shown in black/red in the right hand panels of Figure 3. However, this measure
ignores uncertainty about that distribution, throwing away a lot of information.
Another option is to take a weighted sum of all possible Gaussian distributions over

space - as given by?2:

P = ) >l (1, 02X (e~ N (1, 5D 1)

u o?

Eq. 3

This gives a distribution over x that takes into account variance due to uncertainty
over y, 2. The resulting distributions are shown in grey/blue in the right hand panels

of Figure 3.
What is it useful for?

Using a Bayesian learner that iteratively integrates observed data with what is known
from previous observations allows us to follow the dynamics of the different model
parameters on a trial-by-trial basis. Using this trial-by-trial information, we can make
predictions about behaviour - i.e. where Isaac should forage for apples on each trial.
For example, we might hypothesize that he will search in an area centered on the
estimated value of u (i.e., he will search around where he thinks the tree is) and that

the size of the area he searches in should be proportional to 2.

Furthermore, because the Bayesian model represents Isaac’s beliefs about 2 and o2 as
probability distributions, our Bayesian model gives us an estimate of how uncertain
he should be about those values (the spread of probability density in parameter

space). Because we have this insight into uncertainty, which is the defining feature of

2In all the examples and exercises given here, we obtain an approximate solution by
evaluating p(x) for discrete values of (1, 02). In the continuous case, equation 3 would

become:

p(x) = [du [ do? [p(x|x~N (1, a))Xp(x~N (1, 02)|x1.1)]



Bayesian models, we can make and test predictions about behavior based on
uncertainty about the environment (estimation uncertainty [15, 16]) - for example,
we might expect Isaac to express more exploratory behavior when uncertainty about
pand o2 is high [17, 18]. Moreover, we might expect that certain parameters of our
Bayesian model might be reflected in neural activity. Although one has to be careful
with interpretation [19], it is possible to link the values of the model’s parameters to

brain activity.

Another example of a Bayesian learner: one-armed bandit

In the previous example, we showed how a Bayesian computer participant could be
used to model what a human participant knows or believes about the parameters of a
Gaussian distribution from which spatial samples (the location of apples) were
drawn. In fact, this is one example in which the beliefs of the participant (at least, an
optimal Bayesian participant) rapidly approach the true state of the environment as

can be seen in Figure 3.

There are many tasks, including some in common use in cognitive neuroscience,
where an internal model based on sampling of the environment is a much weaker
approximation of the true state of the environment. One such example is given by
tasks in which the environment changes frequently (so the observer must constantly
update his model of the environment) [11]. Another case is presented by tasks in
which the parameters of the environment are learned slowly. These include
probabilistic tasks - for example if we observe a binary variable (say, reward vs. no
reward), we need several trials to estimate the underlying probability p(reward): to
tell the difference between a reward probability of 0.8 and 0.9 would require at least

10 trials for example.

The more the participant’s internal model of the environment differs from the true
state of the environment, the more useful it is for the experimenter to have a model of
what the participant knows/believes about the state of the world rather than

assuming the true parameters of the environment are known.



We will now consider a Bayesian computer participant in a one-armed bandit task.
This is a task in which learning naturally requires a larger number of trials and hence
participants’ model of the environment is likely to differ from the true state of the
environment. We will see that in this task the Bayesian computer participant can give

us rich insights into what participants might think/believe on each trial of the task.

In the one-armed bandit task, participants must choose between two actions, A and B
(say, press a button with the left or right hand), only one of which would lead to
delivery of a reward. The probability that action A is rewarded is set at some value g;
the probability that action B would be rewarded is then (1-q); formally we can say
that the probability that action A is rewarded follows a Bernoulli distribution (a
single-trial binomial distribution) with probability parameter q. From time to time
during the task, the value of g changes to a new value; participants do not know when
these changes will occur or how frequently. Hence the participant’s task is to infer
both the current value of g, and the probability v of a change in g, from the observed
data. The details of this model are not central to our point here, which is to illustrate
that a Bayesian model can give rich insights into the internal thought processes of the
participant. However, for the interested reader we describe the model used to

generate the figures in Appendix A.

Figure 4 (left hand panel) illustrates the task data and model fit. Values of q were
generated randomly with a jump probability (true value of v) of 1/ 15 - the true value

of g on each trial is indicated by the white line. The side that was actually rewarded
on each trial is indicated by the presence of a dot on the left or right of the plot,
respectively. Remember that as p(Left rewarded) = 1-p(Right rewarded), the player
knows which side was rewarded on all trials, even when he chose the unrewarded

side.
<Please insert Figure 4 about here>
The red line and shaded areas represent the model’s maximum likelihood estimate of

the state of the environment (the value of g). The shading represents the probability

density distribution over g on each trail, according to the model.



Inspecting the model’s estimates of the environment across trials, we can see a
number of interesting features. Firstly, we notice that the maximum likelihood
estimate is close to the true value of g most of the time. However, when there are
changes in the underlying environment, the model takes a few trials to ‘catch up’.
Secondly, we can see that the model’s uncertainty about the state of the world
generally decreases over time (the shaded area gets narrower over time), but
uncertainty increases when there is a change in the environment, or when a change is

suspected.

In the right hand panels of Figure 4 (labeled a, b, and c), we take a closer look at the
probability density distributions across parameter space for three sets of trials
around change points or suspected change points. The data points in question are
labeled a, b, and c in the left hand panel. For each data point we show the distribution
of probability density across parameter space on that trial and surrounding trials
(right hand panel). These plots are analogous to the parameter space plots in the left
hand panel of Figure 3, but instead of plotting the distribution of probability density
across values of g and o2 we are now plotting probability density across values of g

and v.

Just before time point a, the model ‘thinks’ that g, the probability of the left side being
rewarded, is near to 100%, as it has just experienced a long run of left-rewarded
trials. At point a, a right-rewarded trial is observed (the actual trial labeled a in the
left hand panel is the same one labeled a in the right hand panel). The probability that
associated with values of g and v other than those which were favored before point a
increases. However, subsequent trials continue to be left-rewarded, and the model
reverts to its previous state of believing the probability of left-rewarded trials to be

very high.

In contrast, time point b represents a successful update. Prior to b, there was a long
run of right rewarded trials, followed by an actual change in g (white line) and a
series of left-rewarded trials starts. In this case, the model updates its estimate of g

over a series of trials. On trial b itself, the model is clearly entertaining both the



hypothesis that g has changed, and the hypothesis that g remains the same. Note that
the ‘change’ hypothesis is associated with a higher value of v (the peak is further to
the right), compared to the ‘no change’ hypothesis, as we would expect since v is the
probability of change, which is inferred based on the number of change points that

were observed.

Finally, point c represents a point at which the model is erroneously updated when
there was in fact no change in q. Just before point c, the model ‘thinks’ g is almost
100%, i.e. only left-rewarded trials can occur. It then observes two right-rewarded
trials, leading it to think g has changed to favour right-rewarded trials. However,
these two trials are followed by more left-rewarded trials, leading the model to revert
to its former hypothesis (favouring the left) but with a more moderate probability
value, so q is now nearer to 80% than 100% (indeed, the maximum likelihood
estimate of g is now nearer to the true value of g, as seen from the white and red lines

on the left-hand panel).

We have briefly described some snapshots of ‘interesting behavior’ of the Bayesian
learning algorithm, in order to illustrate how constructing such a model could allow
us to ‘peek inside’ the mind of a model participant to see how its beliefs about the
state of the evolve. We have seen, for example, that learning models can capture lags
when even an optimal participant could not yet have adjusted to a change in the
environment. We have seen that when a model is fit to the actual data observed by a
participant, it can indicate when the participant could mis-estimate the parameters of
the environment (such as at point c). We have also seen that Bayesian models can
give us insights into internal features of learning such as uncertainty, which may
themselves predict neural and/or behavioral data. Hopefully this brief illustration
will convince the reader that explicitly modeling the contents of the participant’s
mind, as with a Bayesian learning model, can generate and refine our predictions
about what activity we might find in their brain, beyond what could be achieved by

simply relating brain activity to stimuli or responses.

Conclusion



In this chapter, we have discussed the use of Bayesian models in cognitive
neuroscience. We have illustrated of the main characteristics of Bayesian models,
including the representation of beliefs as probability distributions, the use of priors,
and sequential updating of information. These models can be highly predictive of the
actual behavior displayed by humans and animals during a variety of tasks. We have
looked closely at two learning tasks, one in a stable and one in an unstable
environment, and charted how the beliefs of a Baysian model change over trials. The
parameters of such a model can then be used to interrogate behavior and brain

function.

Appendix A: one-armed bandit model

We can write down the generative model, by which the rewarded action (A or

B) is selected as follows:

p(A rewarded on trial /)~ Bernoulli(q;)

L { di-1 if]=0
%= rand(0,1) if ] =1

... where ] is a binary variable which determines whether there was a jump in the

value of q between trial i-1 and trial i; ] itself is determined by
J~ Bernoulli(v)

... where v is the probability of a jump, e.g. if a jump occurs on average every 15 trials,

V=1/15

Then we can construct a Bayesian computer participant which infers the

values of g and v on trial i as follows:



p(q,vix1) = p(xilq;,v) p(q;,v)

where the prior at trial i, p(q;, v), is given by

p(q:;,v) = p(q;ilqi-1,v) P(qi=1, V|X1.i-1)

and the transition function p(q;|q;_1, V) is given by

p(@ilgi-1,v) = 1 —v)qis +v (Uniform(o 1)>

Exercises

Exercise 1. Look at Figure 5. How do you interpret the shadow on the surface shapes?
Most people see the left hand side bumps as convex and the right hand bumps as
concaves. Can you explain why that might be, using your Bayesian perspective? Hint:

think of the use of priors.

Exercise 2. In figure 4 we saw some interesting behavior by a Bayesian learner. For
instance, at point c the model very quickly changed its belief of an environment where
left was rewarded into one where right was rewarded. One important goal of model-
based cognitive neuroscience is to link this type of changes probability distributions
to observed neural phenomena. Can you come up with some phenomena that can be

linked with changes in the model’s parameters?
<Please insert Figure 5 about here>

Exercise 3. In this final exercise we will ask you to construct a simple Bayesian model.
The solutions include example Matlab code, although they are platform independent.
Consider the following set of observations of apple positions x, which Isaac made in

his garden:

i Xi
1 63
2 121
3 148
4 114



131
121
90
108
76
126

[y
Soouown

(a) Find the mean, E(x), and variance, E(x?)-E(x)?, of this set of observations using the
g

formulae

1

E(x)=— ) x,

(x) nE ,

B =Sy

X)=— )X,

n< '
(b) If 1 tell you that these samples were drawn from a normal distribution, x~N(u, ¢@)
how could you use Bayes’ theorum to find the mean and variance of x? Or more

precisely, how could you use Bayes’ theorem to estimate the parameters, u and ¢, of

the normal distribution from which the samples are drawn?
Hint: remember from the text that we can write

P(x~N(p, &) |x1...xn) o P(Xz...Xn | X~N(1, 7)) p(x~N(1,0?))

...where the likelihood function, p(xi; | x~N(u, o)), is given by the standard probability

density function for a normal distribution:

1
Pl = V270> A 20

...and you can assume:
1. The prior probability p(x~N(u 0?)) is equal for all possible values of yand o2,

and



2. The observations are independent samples such that p(xiNx;)=p(xi)p(x;) for all

pairs of samples {xi, xj}.

Now use MATLAB to work out the posterior probability for a range of pairs of
parameter values u and o©?, and find the pair with the highest joint posterior

probability. This gives a maximum likelihood estimate for yand 2.

(c) Can you adapt this model to process each data point sequentially, so that the

posterior after observation i becomes the prior for observation i+1 ?

Hint: remember from the text that (assuming the underlying values of u and &

cannot change between observations), we can write:

p(x~N(p, &) |x1...x1) = p(xi | x~N(1, 7)) p(x~N(1, &) | X1...Xi-1)

... where the prior at trial i, p(x~N(u,&?) | x1...xi-1) is the posterior from trial i-1.

(d) If you have done parts 2 and 3 correctly, the final estimates of {i, ¢} should be the

same whether you process the data points sequentially, or all at once. Why is this?

Further reading

1. McGrayne [2] provides an historical overview of the development of Bayes’
theorem, its applications, and its gradual acceptance in the scientific community;

2. Daniel Wolpert’s TED talk (available at
http://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains.html)

provides a nice introduction in to consequences of noise in neural systems and the
Bayesian way of dealing with it;

3. O’Reilly [20] discusses Bayesian approaches to dealing with changes in the
environment and how different types of uncertainty are incorporated into Bayesian

models and dealt with in the brain.



4. Nate Silver’s book The signal and the noise [21] contains some nice example
about how humans make predictions and establish beliefs. Silver advocates a
Bayesian approach to dealing with uncertainty. It served him very well in the 2012
USA presidential elections, when he correctly predicted for each of the 50 states
whether they would be carried by Obama or Romney.

5. David MacKay’s book Information theory, inference, and learning algorithms
[22] is a much more advanced treatment of many of the principle of Bayesian
thinking. It is available for free at

http://www.inference.phy.cam.ac.uk/itprnn/book.html.
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Figure 1.

a. Apple under tree

b. A single value representation of the most likely locations for apples to fall.

c. Proba

bilistic representation of apple falling positions.
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Figure 2.

Multisensory integration

a. The probability density function (pdf) of hearing (blue line) is much wider than
that of vision (red line), indicating that hearing is associated with much more
uncertainty. As a result, the combined probability density function (dotted line) is
closer to the vision pdf.

b. When vision becomes more uncertain, the resulting combined pdf (dotted line) is

much closer to that of hearing.
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Figure 3.

Four trials of learning the mean and variance of a Gaussian.

The left hand panels indicate the likelihood of each part of state space. The right hand
panels indicate the true distribution (dotted line), the maximum likelihood
distribution of apple locations (black lines), and the weighted combination of all

possible Gaussian distributions over locations (grey lines).
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Learning in an unstable environment.

The left hand panel shows the rewarded sides on each trial (black dots); the true
probability of reward, i.e., the true value of g (white line); the model’s estimate of g
(red line); and the uncertainty of the model’s estimation (shade). The left hand panels
show the model’s beliefs of each possibility in state space. (a) No update - A point at
which a single right side reward trial is observed. The probability in the right hand
region representing increases, but no further right reward trials occur, and the model
goes back to expecting LH to be rewarded. (b) Successful update. (c) False/temporary
update.



Figure 5.

Convex or concave?



