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A substantial body of evidence from both anatomical and physiological  
studies supports the idea that cognitive processes depend on inter­
actions among distributed neuronal populations and brain regions1–3.  
The identification of neural substrates of cognition is aided by  
methods allowing the identification of significant spatial or temporal 
patterns in brain activity—for example, through exploratory multi­
variate statistical techniques such as independent component analysis 
or multivariate pattern analysis4,5. Increasingly, experiments aiming  
to localize regions that are differentially activated across tasks are  
complemented by observations of anatomical and functional  
relationships among such regions. The latter approach is driven by 
methodological developments in neuroimaging that have enabled 
the noninvasive mapping of structural and functional brain connec­
tivity6,7. Data on brain connectivity can be rendered in the form of 
network models8–10: essentially, simplified representations of brain 
systems as sets of neural elements and their interconnections. Such 
network models allow the application of a quantitative theoretical 
framework for the objective and data-driven analysis of network 
attributes associated with specific aspects of human brain structure 
and function.

What insights and conceptual advances have been achieved so far, 
and what are some of the methodological and interpretational pitfalls 
of the network approach? This article takes a critical look at some  
of the advantages and limitations of network models in cognitive  
neuroscience. The article surveys applications of networks in descrip­
tive accounts of brain organization, their utility for clarifying the  
relation of localized and distributed aspects of cognitive function  
and their growing role as a basis for computational models of  
brain activity. Finally, the article identifies future challenges and 

opportunities for network-based approaches in the study of brain 
organization and function.

Network models describe brain organization
The growth of network approaches in neuroscience has not  
occurred in isolation but has largely followed parallel advances in 
the analysis and modeling of complex systems in a range of scientific 
disciplines11, including other areas of biology, such as proteomics, cell 
metabolism and ecology. Rooted in a branch of mathematics called 
graph theory, network models represent complex systems as sets of 
discrete elements (nodes) and their mutual relationships (edges) that 
can be summarized in the form of a connection matrix. The relations of 
nodes and edges define the network’s topology, amenable to descriptive 
analysis through a broad array of measures that probe local and global 
aspects of network organization12. Figure 1 illustrates several of the 
most widely applied measures, including node degree, clustering, mod­
ularity and centrality. Broadly, brain networks fall into two different 
categories. Structural networks represent anatomical wiring diagrams, 
while functional networks are derived from estimates of interactions 
among time series of neuronal activity. The distinct neurobiological  
substrates of structural and functional networks demand careful 
consideration when applying network methodologies. For example, 
because structural networks describe anatomical connections, they 
are well-suited to measures that capture aspects of neuronal signaling  
or communication along structural paths. In contrast, functional 
networks represent patterns of correlations that do not necessarily 
coincide with direct neuronal communication (see below).

An important first step toward constructing a network model from 
brain data involves the definition of nodes and edges. Node definition 
is relatively unambiguous at the neuronal scale. However, at the large 
scale of whole-brain data sets, node definition requires partitioning  
or parcellation of the brain into regions or areas that are internally 
coherent according to anatomical or functional criteria, an issue that 
is of fundamental importance in network science13. Parcellation 
remains particularly challenging in cerebral cortex14, where many 
strategies have been pursued, including random partitioning of 
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The confluence of new approaches in recording patterns of brain connectivity and quantitative analytic tools from network science 
has opened new avenues toward understanding the organization and function of brain networks. Descriptive network models of 
brain structural and functional connectivity have made several important contributions; for example, in the mapping of putative 
network hubs and network communities. Building on the importance of anatomical and functional interactions, network models 
have provided insight into the basic structures and mechanisms that enable integrative neural processes. Network models have 
also been instrumental in understanding the role of structural brain networks in generating spatially and temporally organized 
brain activity. Despite these contributions, network models are subject to limitations in methodology and interpretation, and they 
face many challenges as brain connectivity data sets continue to increase in detail and complexity.
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gray-matter voxels into equal-sized clusters and strategies that use 
cytoarchitectonics or anatomical landmarks. Particularly promising 
are data-driven approaches based on the detection of boundaries in  
structural or functional connectivity profiles15, region-growing  
and clustering methods16, or a combination of connectivity and  
activation-based partitioning criteria17. In the context of combined 
analyses of structural and functional networks, it is clearly advantageous 
to derive a single parcellation that can be applied across modalities.  
However, the extent to which different parcellation approaches  
can produce convergent results across anatomical and functional  
networks remains unknown.

Once nodes are defined, relations among nodes can be represented 
as edges (connections). Across the two domains of structural networks 
and functional networks, a host of edge measures are available, each 
suited to answer specific empirical questions. In structural networks, 
the coarsest information is conveyed by binary adjacency matrices that 
report only the presence or absence of a connection. More detailed 
analyses have employed labeling density18 or, in the case of diffusion 
imaging, density of tractography streamlines, connection probabilities  
or indices of myelination status to estimate connections weights, 
although anatomical interpretations remain unclear19. Functional 
networks are constructed from neuronal time series and express their 
statistical dependencies. In functional magnetic resonance imaging 
(fMRI), cross-correlation remains a useful measure expressing the 
similarity of time courses, despite a known propensity to link struc­
turally unconnected nodes20. Alternative measures such as partial 
correlations or Bayes nets have been proposed21. Regardless of the 
edge measure employed, interpreting network data should take into 
account that even the most sensitive anatomical or functional meas­
ure of connectivity can only provide a limited view of the underlying 
neurobiological substrate.

Methodological issues associated with the definition of nodes and 
edges in brain network data sets are important to consider because 
the use of different parcellation schemes in conjunction with many 
variants of measures of anatomical or functional connections can lead 
to inconsistencies across studies. For example, because parcel bounda­
ries are not aligned with connectivity profiles, atlas-based or random 
node partitions may result in spatial blurring of network connections. 

Overcoming this limitation would require a data-driven parcellation 
strategy based on measures of connectional homogeneity that can be 
uniformly applied across the brain. In another example, comparative 
studies have shown that the spatial scale of the nodal parcellation 
affects subsequent network analyses22. One way in which this issue 
has been addressed involves network construction and analysis across 
different parcellation schemes and spatial scales23 to identify network 
attributes that are robustly expressed. Indeed, it appears that many 
qualitative characteristics of network structure are relatively stable 
across different parcellations24.

Node and edge definition represent examples of methodological 
issues that arise as brain networks are constructed from observational 
data. Other such issues relate to data quality (for example, spatiotem­
poral resolution, tractography and fMRI de-noising strategies), statis­
tical models for estimating node interactions, limited observational 
data, group averaging and network comparison. For example, network 
estimation (and hence subsequent analysis) may be susceptible to 
noisy data acquisition or subtle biasing effects due to physiological 
state or head motion. These issues surrounding network definition  
are not limited to human neuroimaging but extend to invasive studies  
in model organisms, where even the most sensitive anatomical or 
physiological techniques can be subject to measurement noise or 
sampling biases.

Despite these methodological issues, studies of brain networks  
using a variety of parcellations and edge definitions, acquired using 
different hardware and preprocessing and across numerous partici­
pant cohorts, have converged on a set of fundamental attributes of 
human brain organization8,9 that are largely consistent with those 
found in nonhuman primates. Examples include network hubs, 
highly connected nodes that are centrally placed in the network’s  
global topology (Fig. 2). Network analysis can identify such hubs  
with descriptive measures such as node degree or centrality, or 
through perturbation by probing for points of vulnerability. Several 
structural network studies of the human cerebral cortex have  
converged on a restricted set of regions that include the precuneus, 
anterior and posterior cingulate cortex, insula and portions of  
the superior frontal, temporal and lateral parietal cortex as  
putative network hubs25–28. Most of these regions had previously been 
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Figure 1  Network concepts and terminology. These diagrams introduce some of the key terms in network models. (a) A connection matrix summarizing  
binary pairwise relations among 20 nodes. These relations express the presence (black) or absence (white) of a symmetric connection. (b) The same  
matrix as shown in a, but with the nodes reordered according to an optimal modularity partition. Three network modules are shown (red, green, blue).  
(c) Spring-embedded two-dimensional network diagram of the network summarized in a,b, with module assignments indicated by node color. Various nodes 
are highlighted, according to various network measures. For example, node 1 stands out because of its high degree (number of connections), betweenness 
centrality (placement on many of the network’s short paths), and participation coefficient (connections broadly distributed across network modules).  
The node also has low clustering, as most of its topological neighbors are mutually unconnected. Other nodes with high clustering (node 15), low 
betweenness (node 8), low degree (node 14) and low participation coefficient (node 7) are indicated.
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classified as multimodal (transmodal or heteromodal) association 
regions, on the basis of their diverse and complex response profiles. 
Descriptive network analyses add an important new dimension to 
these earlier findings in that they reveal a structural basis for multi­
modality in the topology of inter-regional projections. Data-driven 
network analysis has opened new avenues toward comparative studies  
of brain hubs across species29, as well as in studies of individual  
differences, development and disease states.

Another important contribution of descriptive network models 
has been in the identification of network communities or modules 
(Fig. 2). Intrinsic or resting-state functional MRI has revealed a  
set of distributed components or ‘resting-state networks’ (RSNs)7 
whose constituent regions exhibit coherent signal fluctuations result­
ing in high internal functional connectivity. RSNs can be detected 
with seed-based correlations30, independent component analysis31, 
connectivity-based cluster analysis32 and network-based community  
detection33. An advantage of the network approach is that it not  
only yields a partitioning of the brain into components but also  
offers further insights into RSN intrinsic organization and inter­
connectivity. First, network approaches have revealed not only  
the topography of RSN components but also their mutual network 
relations33—for example, demonstrating that the frontoparietal 
control network is pivotal in balancing activity between default and 
attention networks34. Second, network approaches naturally lend 
themselves to multimodal analysis across the domains of structural  
and functional networks, and such analyses have shown robust  
structure-function relationships in individual RSNs35,36 and whole-
brain network data37–39. Third, quantitative network-based approaches 
can estimate the strength with which individual regions associate with 
their own network community—for example, through measures of 
participation40, cluster stability40,41 and consensus clustering42—thus 
providing information on regional roles in neural processing within 
and across communities.

A caveat in descriptive network analysis concerns the use of  
simple global measures such as ‘small-worldness’. The discovery of 
the widespread occurrence of small-world architectures in complex 
systems43 has led to important findings in brain networks regarding  
the trade-off between an abundance of highly clustered (short- 
distance) connections and specific (long-distance) ‘shortcuts’ that 

enable efficient communication44,45. Indeed, global network measures 
capture important characteristics related to overall signaling capacity 
or clustered organization. Nevertheless, exclusive reliance on global 
measures when performing comparisons of networks across indi­
viduals, participant cohorts or time points may only provide limited 
insight. For example, differences in small-worldness, clustering or 
efficiency arising in group comparisons may be due to any number of 
differences in network topology. Such differences in global measures  
become more informative when they are supplemented by more 
detailed analyses that pinpoint specific network elements—for  
example, through the use of more fine-grained local measures of  
network topology—as well as with the application of statistically 
sound tools for network comparison46.

In summary, despite unsolved issues in the construction of brain 
networks from anatomical and/or functional data, descriptive  
studies have offered insights into basic principles of brain organi­
zation. A major contribution of descriptive network models is that 
they allow the objective identification and quantification of local 
and global network attributes, thus paving the way for characteriz­
ing networks across individuals, developmental stages and disease 
states. Descriptive network models profit from continuous dialog 
with empirical data: as models, they make predictions about the 
functioning of neural systems that must come under the scrutiny of 
further empirical observation. Even in cases where network models 
may be viewed as confirmatory of known aspects of brain function 
and physiology, such models take an important additional step by 
establishing links between observed brain responses and features of 
network topology. In so doing, network models place anatomical and 
physiological attributes of neurons and brain regions in the context of 
fundamental rules and principles of network science.

Networks unify localized and distributed brain function
The struggle between localized and distributed accounts of  
brain function has been a major theme in the history of cognitive 
neuroscience. While extensive evidence points to the existence of 
functionally specialized and anatomically segregated areas and cir­
cuits, there is a growing body of work demonstrating the importance 
of connections and integrative processes for coherent cognitive and 
behavioral outcomes. By addressing how connectivity mediates both 
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Figure 2  Network hubs and modules.  
(a) Examples of network hubs coming from  
studies of structural brain networks. Despite  
differences in acquisition sites, imaging  
protocols, parcellations, edge metrics and  
network measures, there is broad agreement  
across studies in identifying parts of the  
medial parietal cortex, cingulate cortex,  
superior frontal cortex, prefrontal cortex and 
temporal cortex as network hubs. Panels show 
maps of node degree and betweenness, with high 
centrality indicated by hot colors (red, orange). 
Adapted from refs. 25 (top left), 26 (top right) 
and 27 (bottom). (b) An example of a partition  
of the cerebral cortex into network communities  
(modules) based on functional connectivity  
derived from resting-state fMRI. Top, the  
topographic distribution of major resting-state  
networks. Bottom, the same spring-embedded  
network layout as at top, but with the nodes  
color-coded according to their participation  
coefficient. Notably, participations coefficients for visual, somato-motor and default mode networks are low, indicating a less central placement of their 
constituent network nodes. In contrast, nodes belonging to the fronto-parietal and cingulo-opercular networks have high participation coefficients, which is 
suggestive of a role as functional network hubs. Adapted from ref. 89; see also ref. 33.
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segregation and integration, network approaches not only reconcile 
these seemingly opposing perspectives, they also suggest that their 
coexistence is fundamental for brain function47.

One of the main underpinnings of the network approach is  
that it places great importance on patterns of connectivity for  
creating functional differences between network elements48. Studies  
of large-scale structural brain networks have shown consistent  
relationships between the topology of projections and physiologi­
cal responses of brain regions49,50. Along the same lines, similarities 
in connectivity profiles have been widely deployed in approaches  
to cortical parcellation14,15,17. Going beyond predicting functional 
similarities on the basis of connection profiles or ‘fingerprints’,  
network models also make predictions about which nodes and  
edges are central for network communication or most strongly  
influence system dynamics; that is, they allow the identification  
of structural network elements that are specialized for carrying out 
integrative function.

Important links between network architecture and functional  
specialization have come from comparisons of resting-state fMRI 
and patterns of regional task-related coactivation. Comparative 
studies have shown that RSNs measured in the resting brain strongly 
resemble sets of regions that are coactivated across a wide range of 
cognitive and behavioral tasks51. Further studies showed that most 
RSNs are associated with specific behavioral or cognitive domains 
and that these associations are strongest for unimodal networks and 
more diffuse for networks involved in higher cognitive processes52.  
In related approaches, network communities corresponding to  
specific cognitive domains were also found in a matrix expressing 
the similarity of regional activation profiles across a large set of task-
related activation studies53, and individual regions as well as networks 
were found to be associated with distinct ‘functional fingerprints’54 
(Fig. 3). Jointly, these findings demonstrate robust relationships 
between network architecture and functional specialization as estab­
lished in fMRI activation studies. These findings are consistent with 
the idea that the topography of RSNs reflects a history of coactivation 
and common recruitment during task-evoked activity14.

Network approaches have also been applied to data sets acquired 
with electroencephalographic (EEG) and magnetoencephalographic 
(MEG) recordings. The high temporal resolution of these techniques  

offers a unique opportunity for linking changes in network inter­
actions to transitions between cognitive states. MEG studies have 
revealed fast reconfigurations of functional brain networks in senso­
rimotor coordination55, and specific topological attributes of MEG 
networks were found to be correlated with task performance in  
working memory56. Other studies have shown that MEG and EEG 
cortical networks display distinct patterns of organization in different 
frequency bands, with network attributes expressed at frequencies 
related to task condition57. Greater cognitive effort was found to be 
associated with MEG functional networks that were less clustered  
and less modular, owing to the emergence of functional connections 
linking distributed brain regions58. Integrative processes across  
distributed regions and networks have also been studied using 
band-limited power correlations in resting MEG recordings, which 
can be mapped to temporal fluctuations in anatomically distinct 
RSNs59. Changes in interactions among several RSNs were found to 
involve functional connectivity with a specific set of network nodes,  
especially the posterior cingulate cortex and precuneus60, lending 
further support to the idea that integrative processes have a distinct 
anatomical substrate.
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Figure 3  Diversity of regional activation patterns. (a) Top, regional diversity 
profiles (functional fingerprints) for the dorsal anterior cingulate cortex 
(dACC) and the right-hemispheric anterior insula (R AI). Cognitive or 
behavioral task domains are arranged around a circle. The green line refers 
to the involvement of the region in each domain, according to a large 
database52 of task-based fMRI activation studies; red and blue lines  
indicate upper and lower bounds of the estimate. Task domains:  
Exe, execution-action; Ima, imagination-action; Inh, inhibition-action; MotL, 
motor learning-action; Obs, observation-action; Pre, preparation-action;  
Att, attention-cognition; LanS, language semantics-cognition; LanO, 
language other-cognition; MemW, working memory-cognition; Mem, 
memory-cognition; Rea, reasoning-cognition; Ang, anger-emotion; Dis, 
disgust-emotion; Fear, fear-emotion; Hap, happiness-emotion; Sad, sadness-
emotion; Aud, audition-perception; Som, somesthesis-perception; Vis, vision-
perception. Bottom, a map of functional diversity across the cortical surface, 
computed as the Shannon entropy across task domains. Higher entropy 
indicates greater diversity. Color bar represents Shannon entropy values. 
Adapted from ref. 54. (b) Spring-embedded network layout of a functional 
coactivation network compiled from the same fMRI database52 used in a. 
Modules of the coactivation network, several of which correspond to known 
resting-state networks (see Fig. 2), are color-coded. In addition, square  
nodes indicate members of a highly interconnected rich club (see Fig. 4)  
embedded within the coactivation network. Note the strong involvement of 
the frontoparietal network in the rich club. Adapted from ref. 53.
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Several recent studies have deployed network analysis to identify 
neural substrates of multimodal integration. One approach, called 
stepwise functional connectivity analysis61, tracks paths from uni­
modal (visual, auditory, motor) cortex to increasingly multimodal 
(higher order cognitive) regions. Paths were found to converge on  
a single multimodal network, including portions of the superior  
parietal cortex, anterior insula, dorsal anterior cingulate and dorsola­
teral prefrontal cortex. The topological arrangement of this network 
is consistent with a central role in interconnecting and integrating 
activity across otherwise unconnected subdivisions of unimodal  
cortex. Another approach attempts to identify patterns in the  
temporal evolution of network communities over the course of  
sensorimotor learning62. Regional differences in the stability of  
module assignments suggested that, as learning progresses, unimodal 
(visual, motor) cortices maintain their module memberships (and 
hence functional associations), whereas the module memberships  
of multimodal association areas are substantially more labile  
and subject to change. These results point to a mode of functional 
organization combining a stable (unimodal) temporal core with a 
more variable (multimodal) periphery63, the latter essential for 
modulating task- and learning-dependent interactions among net­
work communities. A convergent set of results identified temporal 
signatures of functional integration across RSNs in a restricted set of 
multimodal association areas64.

Other studies have suggested a putative structural network basis for 
integrative processing. In the human brain, regions with high degree 
tend to be highly connected among one other, forming a coherent sub­
network (‘rich club’)65 (Fig. 4), also found in nonhuman primates66.  

Combined structural and functional network analysis demonstrated 
that this subnetwork spans all RSNs, suggesting that it is central to 
cross-RSN network communication67. Similar topological arrange­
ments were found in cat cortex68 and macaque cortex, with hubs  
cross-linking all structural66 and functional modules69. Taken 
together, these applications of network models to structural  
and functional connectivity data suggest that integration in  
large-scale brain networks is supported by a set of specialized brain 
regions that transiently orchestrate interactions between functional 
modules or RSNs.

In summary, network models have been instrumental in revealing 
how patterns of structural and functional connections promote the 
interplay between segregated and integrated processing. A core theme 
is that of network communities or modules associated with specific 
domains of behavior and cognition that become functionally linked 
in resting and task-evoked brain activity. Building on established 
models of brain activation, network models add important insights 
by revealing patterns of interactions and by allowing the application 
of quantitative measures of network topology. Network models offer 
a theoretical framework that naturally encompasses both local and 
global processes and thus resolves the long-standing conflict between 
localized and distributed processing.

Networks are important for models of brain dynamics
Going beyond their utility as descriptive tools to characterize brain 
organization, network models, specifically structural networks, are  
an important ingredient of computational models that can simulate 
and predict observed brain activity. Indeed, the mechanistic role of  
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Rich-club nodes are widely dispersed across all main anatomical subdivisions of cortex. (c) Connection matrix of structural connections acquired with 
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connectivity), expressed as proportions across RSNs. Adapted from ref. 67.
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structural brain networks for shaping brain dynamics is a key  
rationale for mapping the human connectome. Informed by compre­
hensive data on structural brain connectivity, computational network 
models offer unique tools for establishing links between structure and 
function, a key challenge in many complex biological systems.

Typical examples of such computational network models are  
instantiated as sets of state equations that specify the biophysics of 
neuronal elements or populations—for example, their membrane 
conductances or mean firing levels—and sets of coupling terms that 
specify which neuronal elements are structurally linked; for example, 
an anatomical connection matrix. The dynamics generated by such 
models consists of neural time series that can be represented as func­
tional networks and analyzed using the same tools and approaches 
applied to empirical data. A main purpose of the modeling approach 
is to explain and predict empirically observed brain dynamics, with 
the model serving as a test bed for identifying essential ingredients 
in model form and parameters. If models are relatively simple, a large 
number of such models can be tested and rigorous criteria of model 
selection can be applied.

All such models rest on the assumption that structural connectivity  
shapes brain dynamics and hence functional connectivity. Several 
lines of empirical evidence support this view. Combined analyses 
of structural and functional networks obtained from resting brain 
fMRI have shown that the presence and strength of structural con­
nectivity between two nodes is correlated with the strength of their 
mutual functional connectivity38. Functional connectivity between 
structurally unconnected node pairs can be partially predicted by 
indirect structural paths38,70. Distributed components of several 
RSNs have been shown to be linked by anatomical connections35,36, 

and variations in the strengths of such connections are reflected in 
variations of functional connectivity71. Direct intervention—for 
example, through callosotomy—has shown that the integrity of  
anatomical pathways is essential for maintaining interhemispheric 
functional connectivity72 and that spared connections may contribute  
to compensatory processes73. Importantly, the crucial role of  
structural networks in shaping functional connectivity has been  
demonstrated not only at the large scale of whole-brain networks but 
also at mesoscopic74 and microscopic scales75.

Building on a long tradition of structurally based dynamic brain 
models, structural network data from nonhuman primates and 
humans has been used to design anatomically and physiologically 
realistic models of spontaneous, resting brain activity (Fig. 5). The 
role of structural connections in shaping the spatiotemporal patterns 
observed in resting-state functional connectivity was demonstrated 
in a model of macaque cerebral cortex76, later shown to exhibit  
substantial agreement with empirical data70. When informed by a 
human structural connectivity matrix, a similar model was able to 
generate patterns of functional connectivity that matched empirical 
observations38. Other models emphasized the roles of conduction 
delays and noise for generating realistic resting brain dynamics77. 
Extensions of this modeling framework include forecasting the  
functional effects of brain lesions78, modeling the progression of 
degenerative brain disease79 and deriving analytic models to predict 
functional connectivity80–82.

An important contribution of computational network models 
relates to the nature of temporal fluctuations in the topology of 
functional networks. While models demonstrated robust relation­
ships between structural and functional networks that emerge over 
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among 39 regions of macaque cerebral cortex, derived from a standard parcellation of the macaque cortical surface (see ref. 100 for full region names). 
Empirical data represent averages of multiple fMRI sessions across two monkeys. Simulated data are derived from a computational network model of 
spontaneous neural dynamics implemented on the structural connectivity shown in b. Functional connectivity is expressed as the Pearson correlation among 
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plot of empirical versus simulated functional connectivity, indicating a significant relationship (R = 0.55, P < 0.001). a–c adapted from ref. 70. (d) Seed 
plots of structural connectivity (SC), empirical functional connectivity and simulated functional connectivity, for a dynamic network model of human  
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long-time averages (several minutes) of observation, functional  
networks obtained on shorter time scales were found to be consider­
ably more variable76, giving rise to the idea that functional networks 
form a ‘dynamic repertoire’ that is constantly rehearsed in the resting 
state. Nonstationarity in functional couplings has since been found 
in empirical data83 and is becoming a new focus of investigation  
in resting-state fMRI. While the origin of these fluctuations in  
empirically measured functional connectivity is still largely unknown, 
the appearance of similar temporal patterns in computational models 
may indicate that multistability and critical behavior arising from 
system dynamics are important.

An important topic not extensively covered in this review concerns 
the role of network models for mapping causal dependencies among 
neural events, summarized as networks of ‘effective connectivity’84. 
Detecting patterns of effective connectivity involves the formulation 
of appropriate neural models that combine biophysically based nodal 
dynamics and an anatomically based coupling structure, followed by 
model inversion and inference85. By taking into account information 
on patterns of structural brain connectivity to reduce the dimension­
ality of the problem, such models are becoming increasingly capable  
in estimating large-scale (potentially whole-brain) networks of  
effective connectivity86.

As this brief survey has shown, network models are important  
not only as descriptive tools but also as important ingredients in 
computational (generative) models of complex brain dynamics.  
The models suggest that the topology of structural connections, 
in conjunction with the biophysics of neural elements, provides a 
structural basis for observed neural response patterns. Such models  
also have clear limitations, as a full account of neural responses must 
include additional factors, such as neuromodulation, exogenous  
perturbations due to sensory input or task state, and coupling of  
brain to environment. Nevertheless, network models are indispen­
sable for providing mechanistic accounts of how neural elements 
activate and organize into functional networks.

Future challenges and opportunities
Some challenges facing network approaches to cognitive neuroscience 
have already been discussed, including those involving data acquisi­
tion and network definition. Other challenges involve interpreting 
network measures across the two domains of brain structure and 
function, relating network attributes more directly to neural compu­
tation, integrating networks across spatial scales and tracking network 
dynamics across time. Implicit in all these challenges are opportu­
nities for moving beyond current formulations and applications of 
network models.

Network measures can be subject to intrinsic computational or 
mathematical limitations. For example, a widely used measure 
of modularity is prone to a spatial resolution limit that biases the 
scale of detected network communities87. Overcoming this limita­
tion, more sophisticated multiscale methods for extracting network  
modules have been proposed88, and such methods are beginning to 
be applied in brain network studies63,81. It should also be noted that 
many network measures make implicit assumptions about what it is 
that they express about a given real-world system. For example, net­
work paths are conceptually straightforward in structural networks 
but may be problematic in correlation (functional) networks owing 
to the nature of the edge metric. In another example, the use of node 
degree as an index of centrality in functional networks may be subject 
to measurement bias, as it tends to co-vary with the size of network 
communities89. Finally, lesioning of functional networks to assess 
robustness or vulnerability may give unreliable results because the 

primary effect of any real-world lesion is the disruption of a struc­
tural network, followed by system-wide compensatory effects and  
readjustments of functional couplings involving functional connec­
tions between regions remote to the lesion site73,78,90.

Much work remains in the area of relating network models  
more explicitly to cognition and neural computation. Large-scale  
network analysis of structural and functional connectivity offers  
only limited insight into the mechanisms by which neuronal  
systems compute—that is, the rules underlying the transformation 
and encoding of neural response patterns in both local and distributed 
circuits. This limitation partially reflects the strong focus of many 
network studies on task-free or resting brain functional connectivity. 
Future work is needed to broaden the range of applications of network 
models to stimulus-driven and task-evoked functional connectivity. 
Examples of network models applied to specific cognitive operations 
include mapping of large-scale networks involved in interhemispheric 
coordination91, memory recollection92 and visual attention93. A series 
of studies employing connectivity-based analyses has focused on  
the central role of prefrontal cortex94 and the fronto-parietal  
network95 as flexible hub regions in cognitive control. Closer links  
to neural computation will also emerge as network models are 
extended to the meso- and microscale, revealing links between  
network topology and computation in local neuronal populations  
and microcircuits. The latter development has been impeded by a lack 
of precisely measured microscale connectional data, a limitation that 
will likely soon be overcome.

Another challenge relates to tracking networks across time.  
The challenge encompasses slow changes across the lifespan and 
changes due to experience or plasticity, as well as rapid spontaneous 
fluctuations and evoked reconfigurations in the course of behavior. 
On slow time scales, developmental growth models96 and genera­
tive models80 are beginning to identify some of the key ingredients 
that shape the spatial arrangement and topology of networks. On  
fast time scales, EEG and MEG studies have long demonstrated 
moment-to-moment reconfigurations of large-scale networks during 
rest and task conditions, and such network dynamics have recently 
come into sharper focus in fMRI also. Analysis and modeling of 
networks whose topology changes through time is an active area 
of research in network science97,98, and initial applications of these 
advanced network methods to the brain include community detection 
based on network dynamics99.

A final challenge relates to the growing need to map neural activity 
and connectivity across multiple spatial and temporal scales. Network 
models are well positioned to address this challenge, as one of their 
main advantages is their applicability across scales, ranging from 
neuronal and synaptic networks at the micrometer and millisecond 
scales all the way to whole-brain networks imaged at much coarser 
resolutions. This naturally encourages the construction of network 
models along nested spatial and temporal dimensions. Furthermore, 
computational network models are important for establishing links 
between fast neural activity measured at finer scales and slow bulk 
activation measured at coarser scales, informed by comprehensive 
and co-registered multiscale data. In humans, given the limitations of 
present-day neuroimaging technology, new methods for noninvasive 
tracing of connections and recording of neural activity are urgently 
needed, a grand challenge that is poised to take center stage in future 
brain mapping initiatives.

As these and other challenges for network models are beginning to 
be addressed, one of the areas that will benefit the most is concerned 
with characterizing biological substrates of brain and mental disorders.  
The appeal of network approaches for diagnosing, monitoring and 
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managing disease states of the brain has several origins. First, con­
vergent findings across many studies suggest that most, perhaps all, 
brain diseases are associated with specific disturbances of network 
connectivity, and the detection of such disturbances may enable the 
development of diagnostic tools or biomarkers. Second, the place­
ment of brain connectivity as an ‘intermediate phenotype’ positioned 
between genetics and behavior renders it an attractive target for stud­
ies that link networked systems across levels, from molecules to neu­
rons and brain systems, and into the social environment. Finally, the 
availability of comprehensive data sets on brain networks, as well as 
data on brain metabolism and gene expression, opens possibilities 
of asking an entirely new set of questions regarding the interaction 
of connectivity with brain physiology and genomics, including its 
dysregulation as a possible trigger of brain disorders.

Conclusions
The application of network models in cognitive neuroscience has 
provided insights into anatomical and functional brain organization,  
revealed the importance of connectivity in functional specializat­
ion and integrative processing, and shown how the architecture of  
structural links among neural elements shapes their functional 
interactions. Methodological and interpretational limitations exist 
as a result of uncertainties in data recording and network definition. 
Bearing in mind these limitations, a major appeal of network models  
is that they establish a firm link from neuroscience to a rapidly expand­
ing theoretical framework for understanding complex networked  
systems. Given the natural fit of network approaches with the  
structure and function of nervous systems and the rapid prolif­
eration of brain network data across the discipline, sophisticated  
and neurobiologically based network models will likely become  
indispensable tools for deeper understanding of the neural substrates 
of cognition.
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