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The manner in which groups of neurons represent events in the external world is a central question in neuroscience. Estimation of the
information encoded by small groups of neurons has shown that in many neural systems, cells carry mildly redundant information. These
measures average over all the activity patterns of a neural population. Here, we analyze the population code of the salamander and guinea
pig retinas by quantifying the information conveyed by specific multicell activity patterns. Synchronous spikes, even though they are
relatively rare and highly informative, convey less information than the sum of either spike alone, making them redundant coding
symbols. Instead, patterns of spiking in one cell and silence in others, which are relatively common and often overlooked as special coding
symbols, were found to be mostly synergistic. Our results reflect that the mild average redundancy between ganglion cells that was
previously reported is actually the result of redundant and synergistic multicell patterns, whose contributions partially cancel each other
when taking the average over all patterns. We further show that similar coding properties emerge in a generic model of neural responses,
suggesting that this form of combinatorial coding, in which specific compound patterns carry synergistic or redundant information, may
exist in other neural circuits.

Introduction
While much of our understanding of the brain is derived from
studies of single neurons, it is clear that neural systems generally
rely on populations of neurons to represent stimuli and to direct
motor outputs. Different views of how correlated firing patterns
represent information collectively have been proposed, even
within the same brain region (Zohary et al., 1994; Meister et al.,
1995; Vaadia et al., 1995; Dan et al., 1998; Abbott and Dayan,
1999; Nirenberg et al., 2001; Shamir and Sompolinsky, 2004;
Averbeck et al., 2006). In one view, the unreliability of single
neurons requires that many neurons encode the same informa-
tion, and only by averaging over large groups can encoded infor-
mation be extracted reliably (Shadlen and Newsome, 1994).
Another hypothesis is that the information conveyed by multi-
neuronal spiking patterns is simply the sum of information that
each of the cells conveys on its own; this view is related to ideas of
redundancy reduction (Barlow, 1961), decorrelation (Atick, 1992)
and independent component analysis (Bell and Sejnowski, 1997; van
Hateren and van der Schaaf, 1998), which have been suggested as
design principles for the neural code. Finally, there is the possibility
of pattern-based coding (Meister, 1996), in which specific multineu-
ronal activity patterns convey different or more information than
the sum of contributions from the individual neurons.

To assess these different coding schemes, the average amount
of information that small groups of cells convey about natural
and artificial stimuli has been compared to the sum of single cell
contributions. Typically, cell pairs exhibit weak redundancy—in
the retina (Puchalla et al., 2005), visual cortex (Gawne and Rich-
mond, 1993; Reich et al., 2001), somatosensory cortex (Petersen
et al., 2001), auditory pathway (Chechik et al., 2006), motor cor-
tex (Narayanan et al., 2005), and frontal cortex (Gat and Tishby,
1999). However, synergistic response patterns may simply be rare
events that have only a small effect on the average mutual infor-
mation. In particular, synchronized spiking has been shown to be
correlated with specific stimulus features or motor outputs (Abe-
les, 1991; Meister et al., 1995; Vaadia et al., 1995; Riehle et al.,
1997; Schnitzer and Meister, 2003), and has therefore been sug-
gested as a special symbol in the population code of many neural
circuits.

Here, we quantify combinatorial coding by calculating the
information conveyed by specific multicell activity patterns,
rather than the mutual information between stimuli and re-
sponses, which is an average over all multicell patterns
(Brenner et al., 2000). This is a natural framework in which to
analyze a population code, because specific firing patterns are
the actual neural symbols that downstream circuits encounter
in real time. We find significant redundancy in synchronous
spiking patterns, whereas combinations of spiking and silence
are most often synergistic. Averaging over specific patterns,
their synergy and redundancy contributions partially cancel,
explaining why on average cells were found to be typically only
weakly redundant (Puchalla et al., 2005). We study the stim-
ulus features that correspond to multineuronal firing patterns
and relate synergy to the functional properties of individual
neurons.
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Materials and Methods
Electrophysiological recording. Eyes were dissected from the tiger sala-
mander (Ambystoma tigrinum) or guinea pig (Cavia porcellus) of both
males and females and cut into pieces that left the retina and pigment
epithelium intact. These pieces were placed with the ganglion cells facing
a multielectrode array and were perfused with oxygenated Ringer’s at
room temperature (salamander) or Ames’ medium at 36°C (guinea pig).
Stable recordings of over 12 h were achieved under these conditions.
Extracellular voltages were recorded by a MultiChannel Systems MEA 60
microelectrode array and streamed to disk for offline analysis. Spike
waveforms were sorted using the spike size and shape in a 2.5 ms window.
Only well isolated spike waveforms were used: we required that spike
trains had fewer than 0.5% of the interspike interval �2 ms and that
fewer than 1% of the spikes were found within �0.2 ms of spikes from
other cells. This study is based on measurements of 8210 (902) cell pairs
between 369 (61) cells recorded from 5 (4) retinas in the salamander
(guinea pig) with multiple movie clips. There were between 9 and 40 cells
recorded per movie clip; some of the same cells were recorded during
multiple clips.

Visual stimulation. Natural movie clips were acquired using a Canon
Optura Pi video camera at 30 frames per second. Movies were taken of
woodland scenes and included several qualitatively different kinds of
motion: objects moving in a scene, optic flow, and simulated saccades.
Checkerboard flicker consisted of 55 �m square regions on the retina
that were randomly chosen to be either black or white every 33 ms. In
spatially uniform flicker, light intensities were chosen randomly every 33
ms from a Gaussian distribution with a SD equal to 18% of the mean. All
visual stimuli were displayed on an NEC FP1370 monitor and projected
onto the retina using standard optics. The mean light level was 12
mW/m 2 at the retina.

Functional classification. Salamander ganglion cells were divided into 3
broad classes using the time course of their spike-triggered average (STA)
as well as their responses to diffuse steps of light. Fast OFF cells (�75% of
population) had short latency responses to both the onset and offset of
light. Slow OFF cells (�10%) had longer latency responses and only
responded at the offset of light. ON cells (�15%) only responded at the
onset of light. These definitions correspond to those previously made
using random flicker stimulation—“fast OFF,” “weak OFF,” “ON”
(Schnitzer and Meister, 2003)—as well as using flashes—“ON/OFF,”
“OFF,” “ON” (Burkhardt et al., 1998). Fast OFF cells were resolved into
6 subtypes using an information theoretic method of functional classifi-
cation (Schneidman et al., 2002); this method is sensitive to the entire
response function of a neuron, rather than just its spike-triggered aver-
age. Cells of the same subtype had nearly identical STAs; different sub-
types had characteristic shifts in their response latency as well as the
degree to which their STAs were biphasic versus monophasic.

Information carried by a neural symbol. We first estimated the time-
dependent rate at which each neural symbol � occurs, r�(t), by binning
the spike train in time windows �t and counting the number of events in
each window across all stimulus trials. We then estimated the informa-
tion in single cell “symbols”—spike (“1”) or silence (“0”) in a bin of size
�t using Equation 1; compound neural symbols were defined as joint
spiking 1 V 1 or spiking and silence 1 V 0, within a time window that is
different from �t. To correct for undersampling and bias, a jackknife
approach was used, in which we estimated the information in subsets of
the data and extrapolated to an infinite number of repeats (Strong et al.,
1998). We have omitted information values of symbols when the symbol
rate was too low to give a reliable estimate of the information (for com-
parison, the maximum information is given by the entropy of the spike
train, which is �log2 r��t). Finally, we took the limit �t3 0, which gives
the information per event (Brenner et al., 2000).

An alternative approach measures the information conveyed by indi-
vidual occurrences of an event (DeWeese and Meister, 1999). Our defi-
nition instead measures the average information conveyed by the specific
time at which a single event occurs. As discussed in (Brenner et al., 2000),
these two measures are consistent, and Equation 1 can be derived in
many ways, including as a limit of the information per event defined in
(DeWeese and Meister, 1999). We emphasize that Equation 1 is an exact

measure of the information carried by the arrival time of a single event
and makes no assumptions about the correlations between events. In
Figure 2 (see below), we defined stimulus uncertainty by convolving the
stimulus with the symbol-triggered average, compiling the distribution
of such values whenever the symbol occurred, and calculating the vari-
ance of that distribution.

We also compared the estimate from Equation 1 to the information in
the spike train, estimated by the “direct method” (Strong et al., 1998), as
described by Puchalla et al. (2005). Then, the information in the timing
of individual spikes was calculated as in Equation 1 of this paper for the
same cells. A comparison revealed that for most cells, the information as
estimated by Equation 1 was quite similar to the information estimated
by full direct sampling. On average, Equation 1 gave a value that was
9.8 � 12% (SD) less than the full direct method. This result indicates that
correlation between events makes a relatively small contribution to the
mutual information in this dataset.

Pola et al. (2003) proposed another decomposition of the information
conveyed by a population of neurons into terms that depend on the
nature of correlation among cells. This measure is complementary to the
measure we define here. This measure answers the question of what
contributions to the joint information are made by signal correlations,
noise correlations, and an interaction between signal and noise correla-
tions, but does not isolate contributions to particular population re-
sponses. Synergy per symbol answers the question of how much
information a specific compound neural symbol conveys, but does not
isolate contributions from signal versus noise correlations. Butts (2003)
and Bezzi (2007) have introduced alternative measures that quantify the
information that responses convey about specific stimuli rather than the
information that specific responses convey about all the stimuli. Again,
these measures are complimentary to synergy per symbol.

Potential for synergy in compound neural symbols. We estimated how syn-
ergistic the joint spiking symbol 1 V 1 could have been, given the firing rates
of its constituent cells, r1A(t) and r1B(t). The basic constraint is that at every
time point, the 1 V 1 symbol rate could have been anywhere between the
minimal value rAB

min(t) � max{0, rlA(t) � rlB(t) � 1/�t}, where �t is size of
the time bin, and the maximal value rAB

max(t) � min{rlA(t), rlB(t)}. Notice
that this allows a range of possible average firing rates for the synchro-
nous symbol. Because information per symbol is higher for larger mod-
ulations of the symbol rate, the maximum information will be obtained if
at each time the rate takes either its minimal or maximal value; different
mean symbol rates can be obtained by distributing different time points
between their minimal and maximal symbol rates. Our procedure was to
first fix the average firing rate of the synchronous symbol, r�AB, and then
adjust the time-dependent firing rate in such a way as to maximize the
mutual information. Then we repeat this procedure for all possible values
of r�AB.

We start from a value of r�AB given by rAB
min(t) and add the smallest

possible increment consistent with a finite number of trials in the exper-
imental data. This increment, 1/N�t, is added to the firing rate of one of
the time bins, where N is number of repeated presentations of the stim-
ulus. This quantity corresponds to adding one synchronous spike pair to
only 1 of the N stimulus trials. We choose the time bin such that this
additional spike pair results in the largest increase in information carried
by the 1 V 1 symbol. Then, we seek pairs of bins for which raising the rate
in one bin and reducing the rate in the other bin by the same amount (i.e.,
keeping r�AB constant) would further increase the information. We stop
when no such pair is found, thus achieving a locally optimal solution for
distributing synchronous spike pairs across time to achieve the maximal
possible information. We repeat this procedure for each possible value of
r�AB (in steps of 1/N�t) and find the largest 1 V 1 information over all the
possible values of r�AB. The potential for synergy in the 1 V 1 symbol is
given by the difference between this maximum possible information for
the 1 V 1 symbol and each cell’s individual information. We note that our
greedy algorithm gives a lower bound on the synergy that the two cell’s
firing rates could achieve.

Model of ganglion cell light responses. A common formalism for describ-
ing the input-function of a retinal ganglion cell is the classical recep-
tive field model, as originally elaborated by (Rodieck and Stone,
1965). There can be significant differences between real ganglion cell
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light responses and the classical receptive
field model, especially for more naturalistic
stimuli (Barlow and Levick, 1965; Shapley
and Victor, 1979a,b; Smirnakis et al., 1997;
Olveczky et al., 2003; Hosoya et al., 2005;
Ishikane et al., 2005; Schwartz et al., 2007a,b;
Gollisch and Meister, 2010). However, the
wide spread use of the classical receptive field
model and its simple form makes it a good
starting point for understanding how com-
mon stimulation of neurons can result in
synergy/redundancy of compound firing
symbols.

To implement this model, each ganglion
cell, i, has a receptive field given by a unit vector
v�i in the space of all visual stimuli. This pre-
ferred direction has an overlap with all stimuli s�
defined by the angle �i � v�i � s�. The spiking
probability of each cell in response to a stimu-
lus, P(1i � s�), is given by a sigmoidal function:
1

2
�1 � tanh��i�v�i � s�	 � �i	
, where �i is a

bias term, controlling the threshold of the neu-
ron, and �i is the slope of the sigmoid, control-
ling how deterministic the cell’s response is
(the firing probability will be either zero or one
with a very sharp threshold for high �). We
added more noise in the form of a background
firing rate, implemented by adding 	i to the
spiking probability (and truncating to the
range [0,1]).

To estimate the synergy or redundancy of
pairs and triplets of cells, we created a set of 100
neurons with preferred directions in stimulus
space, v̂, ranging from 0 to 2
 in equal jumps.
Next, we created a stimulus ensemble with a uniform distribution over
the direction of the stimulus vectors, ŝ, and a length of unity, �s�� � 1. This
ensemble was randomly sampled with 50,000 stimuli. The responses of
all pairs and triplets of cells were then averaged over this set of stimuli.
Finally, values of synergy were averaged over all pairs and triplets of
neurons. For this calculation, the joint spiking probability of cells A and
B is equal to P(1A�s�)P(1B�s�). The information per symbol values and
synergy values were calculated as for the retinal ganglion cells.

Results
Simultaneous recordings were made from many ganglion cells in
the salamander and guinea pig retinas using a multielectrode
array, while artificial and natural movies were presented on a
computer monitor (see Materials and Methods). Movie clips
20 –30 s long were repeated many times (100 –150) to sample
both the diversity and variability of ganglion cell firing patterns.
An example of the spike trains recorded from two cells is shown
in Figure 1A.

The information conveyed by individual neural symbols
The common application of information theory to neural cod-
ing questions has focused on the mutual information I(S;�)
between a set of stimuli, S, and a set of possible neural re-
sponses, �. This measures the average degree of correlation
between all stimuli and all of the responses. Rather than asking
only about the average contribution of the neural symbols,
one can instead define the information carried by any specific
neural symbol (de Ruyter van Steveninck and Bialek, 1988;
DeWeese and Meister, 1999). Brenner et al. (2000) proposed
that one can exactly define the information conveyed by the
arrival time of not just spikes, but also spike patterns. They

then analyzed the synergy or redundancy of compound spik-
ing symbols by comparing the information conveyed by the
spike pattern to the sum of the information conveyed by each
spike. A similar idea can be applied to patterns of spikes across
cells rather than across time for the same cell. (For a more
complete discussion of other measures of event information,
see Materials and Methods). As shown in detail by Brenner et
al. (2000), the information carried by a neural symbol �,
whose time-dependent rate of occurrence is given by r�(t), is:

I�S;�	 �
1

T �
0

T

r��t	

r��
log2

r��t	

r��
dt, (1)

where r�� is the time average of r�(t) over the entire duration of the
stimulus ensemble T. Note that the time average serves the pur-
pose of averaging over the stimulus ensemble.

The symbol rate r�(t) measures the probability per unit time
of the symbol occurring; it is estimated in the same way as we
estimate time-dependent spike rates, by forming a peristimulus
time histogram (PSTH) using repeated trials of the stimulus. As
with the conventional time-dependent firing rate for single
spikes, modulations in this symbol rate reflect reproducible lock-
ing of the events � to dynamic features in the stimulus. Neuronal
symbols that occur with a rate that is strongly modulated by the
stimulus convey more information per symbol than those with a
weakly modulated rate. Notice that equation 1 depends only on
the variation in the time-varying symbol rate, r�(t), compared
with the average symbol rate, r��. Using this relationship, we esti-

Figure 1. Information carried by single spikes and synchronous spike pairs. A, Typical response segment of ganglion cells to
repeated presentations of a natural movie. Top and bottom panels show the spikes of two single cells (blue); middle panel shows
the events of synchronized spiking of these cells within �10 ms (red). B, Poststimulus time histograms of the spike rasters in A. C,
D, Information conveyed by single spikes (blue; every dot stands for one ganglion cell) and synchronized spike pairs (red; every dot
stand for one cell pair) as a function of symbol rate for the (salamander, guinea pig). Data points shown from 2 different natural
movies. Solid line marks the upper bound for information transmission given by the entropy of the spike train, �log2 r��t, where
r�� is the average firing rate for symbol � and the temporal resolution is taken to be 20 ms (Rieke et al., 1997); dashed lines are 40%
and 70% of this maximum for the salamander and 25%/70% for the guinea pig.
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mated the information carried by different ganglion cell firing
patterns (see Materials and Methods).

The simplest neural symbol is the single spike, denoted as 1.
Over the whole set of natural movies, the average information
conveyed by a single spike in the salamander was �I(1A;S)� � 3.6 �
1.0 bits (mean � SD across the population; n � 204 cells) and in
the guinea pig was 2.2 � 1.2 bits (n � 59 cells). No clear depen-
dence on the particular movie clip was observed.

For synchronous spiking among pairs of neurons, we defined
the compound symbol 1A V 1B denoting all the spikes of cell A
that had a spike of cell B within �10 ms (Fig. 1A). This narrow
temporal window for synchrony matches the time scale over
which excess synchronous pairs have been observed (Meister et
al., 1995). Notice that the time window to define compound
symbols is different from the time bin used in computing the
information conveyed by the symbols (see Materials and
Methods).

The information that synchronous spiking conveyed about
natural movies was significantly higher than for single spikes,
�I(1A V 1B;S)�{A,B} � 5.3 � 1.0 bits (Fig. 1C; n � 2887 pairs). In
particular, for all cell pairs the symbol 1A V 1B was at least as
informative, and usually much more informative than either

1A or 1B alone (data not shown). Chang-
ing the temporal window used to define
synchrony between �5 ms and �50 ms
had a negligible effect on the symbol’s
information. Interestingly, the 1 V 1
symbols obeyed a similar relation to that
of the single spikes: given our time res-
olution of 20 ms, nearly all symbols con-
veyed an information between 40% and
70% of the maximum possible informa-
tion determined by that symbol’s aver-
age event rate (Fig. 1C) (Rieke et al.,
1997). Similar behavior was found for
the guinea pig (Fig. 1 D), but with some-
what higher firing rates (4.2 � 1.2 Hz vs
1.2 � 0.8 Hz) and lower coding effi-
ciency (33 � 5% vs 55 � 11%).

Synergy and redundancy in compound
neural symbols and the relation to
combinatorial codes
To quantify how compound neural sym-
bols encode information, we compared
the information transmitted by multineu-
ronal firing patterns as a whole to the sum
of information values conveyed by each of
the components of the compound sym-
bol. In the case of two neurons, we define:

�I��A � �B;S	 � I��A � �B;S	

� I��A;S	 � I��B;S	. (2)

If �I is zero, then the components of the
compound symbol contribute indepen-
dent information about the visual stimu-
lus and downstream neural circuits can
read the information conveyed by each
neural symbol without regard to the re-
sponses of other neuron(s). In this case
the information that is carried by each of
the symbols simply adds up when we ob-
serve the compound symbol. If the com-

pound symbol is synergistic (�I � 0), then the joint pattern of the
cells carries more information that the sum of information car-
ried by the symbols of each cell alone. If compound neural sym-
bols carry different information than what one would naively
expect from the individual events, then the neurons are using a
combinatorial code.

We emphasize that synergy at the level of a particular neural
symbol may have different properties than the average synergy
between cells, which quantifies the information coding of the
cells over all their joint activity patterns. In particular, it is possi-
ble for specific compound symbols to be synergistic (�I � 0) due
solely to correlations induced by the stimulus, and without any
“noise correlations.” Thus, the cells can be conditionally inde-
pendent given the stimulus and still their joint activity pattern
could convey more information about the stimulus than the sum
of the constituent symbols on their own. (We further demon-
strate this case and analyze the potential sources of symbol syn-
ergy using a model in Fig. 5, below). This is not the case for
average synergy (Schneidman et al., 2003), which requires noise
correlations, namely that the cells would not be conditionally
independent given the stimulus.

Figure 2. Synergy of synchronous spike pairs. A, Synergy of synchronous spike pairs as a function of the distance between the
receptive field center of these cells (every dot stands for one cell pair). Top, For salamander, natural movie data are collected over
3 different movies (green); checkerboard movie data are collected over 2 different movies (red). Bottom, For guinea pig, natural
movie data are collected over 1 movie (purple). B, Distribution of synergies for 1 V 1 symbols in salamander for natural movies
(green, 2556 cell pairs), checkerboard movies (red, 382 pairs) and uniform flicker (blue, 749 pairs); synergies for 1 V 1 symbols in
guinea pig for natural movies (purple, 766 pairs). C, Actual synergy for 1 V 1 symbols plotted versus the potential synergy derived
from the PSTH of each cell (see Materials and Methods) for natural movies (green) and uniform flicker (blue). Error bars omitted for
clarity. D, Distribution of stimulus uncertainty for 1 V 1 symbols divided by the uncertainty for single spikes. Uncertainty is defined
as the variance of the symbol-triggered stimulus distribution (see Results); a decrease in the variance then corresponds to an
increase in the certainty of the stimulus.
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Synchronous spiking is mostly redundant
For natural movies, we found that synchronous spikes were sig-
nificantly less informative than expected from summing the in-
formation contributed by each individual spike. The redundancy
of synchronous spikes ranged up to �I � �4.1 bits in salamander
(�47% of the constituent symbol information) and �2.7 bits in
guinea pig (�22%). For cells spaced �200 �m apart, which have
overlapping receptive field centers, �I � �1.1 � 0.84 bits (SD,
n � 2887 pairs) for salamander and �0.41 � 0.72 bits (SD, n �
766 pairs) for guinea pig. No clear differences were found be-
tween movie clips (n � 9 clips). Synchronized firing tended to
produce more negative �I values between nearby cells than far-
away cells (Fig. 2A). We found a small fraction of cell pairs with
synergy for synchronous spike pairs; in almost all cases, one cell
was ON-type and the other was OFF-type (data not shown).

To further interpret these results, we performed a similar
analysis for artificial stimuli. In spatially uniform flicker, where
all ganglion cells see the same input, the largest values of redun-
dancy were similar to those found with naturalistic stimulation,
but many more cell pairs had high values of redundancy (Fig.
2B). This makes sense because the strong spatial correlations in
natural images will cause ganglion cells with highly overlapping
receptive fields to experience roughly, but not exactly, the same
visual input. In checkerboard flicker, where spatial correlations
only extend up to the size of square regions (55 �m), synchro-
nous spike pairs were less redundant, �I � �0.94 � 0.89 bits for
cells spaced by �200 �m (Fig. 2B, SD, n � 567 pairs). Together
these results suggest that the degree of redundancy for synchro-
nous spike pairs is largely determined by the properties of the
stimulus.

The simple correlation structure of artificial movies also al-
lows us to relate neural events to the visual stimulus (de Ruyter
van Steveninck and Bialek, 1988). Using spatially uniform flicker,
we typically found that the symbol-triggered average stimulus
(STA) for 1 V 1 symbols was intermediate between the STAs of its
component spikes. However, the stimuli preceding a synchro-
nous spike pair clustered more tightly around the STA than for
single spikes. Figure 2D shows that the variance along the direc-
tion in stimulus space defined by the STA was consistently
smaller for 1 V 1 symbols than for single spikes (see Materials and
Methods). These results indicate that the extra information con-
veyed by 1 V 1 symbols compared with single spikes is due, in
part, to increased certainty that the stimulus is similar to the STA.
Of course, synchronous spikes are likely to be selective for mul-
tiple stimulus features, so that this analysis of the variance along
the direction of the STA may not be a complete characterization
(Fairhall et al., 2006).

The fact that most of the 1 V 1 symbols were less informative
than their sum needs to be put in context: how much information
can a synchronous spike pair possibly convey? Intuitively, if two
neurons each are very precisely locked to the stimulus, then there
is little scope for synchronous spikes to say anything different
from that said by the single neurons. We explored the potential
for synergy between two neurons by using an iterative algorithm
for finding the most informative synchronous spike train given
the firing rate of each individual neuron (see Materials and Meth-
ods). Figure 2C compares the potential synergy for 1 V 1 symbols
with their actual value. Under naturalistic stimulation, cell pairs
had considerable room for synergy but instead were mostly re-
dundant (green). Under spatially uniform flicker, we could not
always find a possible combination of spikes into synchronous
pairs that was synergistic (blue), but all synchronous spike pairs
we significantly more redundant than they could have been.

Combinations of spiking and silence are mostly synergistic
In a combinatorial code, the joint event of spiking in some neu-
rons and silence (nonspiking) in other neurons may carry differ-
ent information than what one would naively expect from the
individual events. Silence alone is not highly informative: the
information content of the symbol 0 is 0.011 � 0.015 bits for 20
ms of silence and 0.074 � 0.079 bits for 100 ms of silence (SD,
natural movies, salamander, n � 204 cells). However, the symbol
1A V 0B, where cell A fires a spike and cell B does not spike within
50 ms of cell A’s spike, often was found to be synergistic (�I � 0)
both for natural and for artificial movies (Fig. 3A). Importantly,
for every ganglion cell, there is another cell whose silence adds
synergistically to the spiking cell (Fig. 3A). Synergy from silence
tended to increase when the temporal window used to define
silence increased; we chose 50 ms because this corresponds to the
typical duration of IPSPs (Gibson et al., 1999; Pouille and Scan-
ziani, 2004), consistent with a plausible mechanism for detecting
combinations of spiking and silence (see Fig. 6).

Synergy from silence becomes even more apparent for firing
patterns with one spiking cell and several silent cells: for natural
movies, 1 V 0 V 0 symbols were more synergistic than 1 V 0, and
1 V 0 V 0 V 0 symbols were even more so, with synergy exceeding
2 bits in some cases (Fig. 3B). Here, synergy from silence is a
generalization of Equation 2: for instance: �I(1 V 0 V 0;S) �
I(1 V 0 V 0;S) � I(1;S) � I(0 V 0;S). The synergy for 1 V 0 V 0 V 0
symbols was 0.50 � 0.46 bits (SD, n � 6438 quadruplets) for
salamander and 0.23 � 0.33 bits (SD, n � 2455 quadruplets) for
guinea pig. The synergistic contribution from the silence of 3
neurons is roughly equal to the sum of the synergies from the
silence of each neuron combined pairwise with the spiking neu-
ron: �I (1A V 0B V 0C V 0D;S) 
 �I(1A V 0B;S) � �I(1A V 0C;S) �
�I(1A V 0D;S) (Fig. 3C,D).

Figure 3. Synergy from silence. A, Distribution of synergy values of the 1 V 0 symbol for
natural movies (top, 5497 cell pairs), checkerboard movies (middle, 688 pairs) and uniform
flicker (683 pairs). Top panel also shows the distribution of maximum 1 V 0 synergies for each
cell found by pairing it with its most informative silent partner (black). B, Distribution of synergy
values of 1 V 0 V 0 (top) and 1 V 0 V 0 V 0 symbols (middle) for salamander and 1 V 0 V 0 V 0
(bottom) for guinea pig under naturalistic stimulation. C, D, Synergy of 1 V 0 V 0 V 0 symbols
compared to the sum of synergy values of the corresponding three synergies of 1 V 0 symbols for
(salamander, guinea pig) under naturalistic stimulation. Error bars omitted for clarity.
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To understand how compound events of spiking and silence
encode information, and their synergistic nature, it is instructive
to look at examples of such coding symbols under random flicker
stimulation. Synergy results when the silence from the second
neuron (cell B) effectively “vetoes” a subset of the firing events
produced by the spiking cell (cell A), while leaving other events
essentially unchanged (Fig. 4A). Because this vetoing operation is
stimulus specific, the STA of the 1 V 0 symbol is modified com-
pared with the STA of cell A alone (Fig. 4B). In fact, the modified
visual message represented by a 1 V 0 symbol was often different
from any of the STAs of individual neurons (Fig. 4B).

Synergy from silence depends critically on the identity of the two
neurons: if they are functionally very similar, then the requirement
of silence from cell B indiscriminately attenuates all of the firing
events produced by cell A (Fig. 4C). Now, the 1 V 0 symbol encodes
roughly the same average visual message as the single spike (Fig. 4D),
but this compound symbol has many fewer events than either indi-
vidual spike. In fact, this combination can even result in a loss of
information relative to that conveyed by a single spike (Fig. 4C).
Information loss occurs when the difference between the most

sharply locked firing events and the typical
events decreases, as can be seen in Figure 4C.
These results demonstrate that synergy
from silence is not a generic consequence of
the decreased event rate for 1 V 0 symbols
relative to single spikes, but instead depends
on the detailed pattern of firing exhibited by
the compound symbol.

The lack of synergy from silence for
functionally very similar neurons was
found to be systematic: the values of �I for
cells of the same functional subtype (see
Materials and Methods) were found to be
scattered close to zero (Fig. 4E, orange).
Interestingly, the symbol-triggered stimu-
lus variance for 1 V 0 symbols formed
from cells of the same functional type was
slightly but significantly greater than the
stimulus variance for single spikes: vari-
ance ratio � 1.06 � 0.018 (SEM, n � 71
pairs). This result is the opposite of what
was found for synchronous spikes and in-
dicates the information loss here results,
in part, from decreased certainty that the
stimulus is similar to the STA. We found
also that 1 V 0 symbols formed from cells
with very different function, such as pairs
of ON and OFF cells, were not synergistic
(Fig. 4E, green). This is expected, because
such cells have no signal correlation and
no noise correlation (Puchalla et al., 2005;
Segev et al., 2006). Instead, 1 V 0 symbols
formed from similar but different neu-
rons—same broad functional type (e.g.,
fast OFF) but different subtype (Sch-
neidman et al., 2002)— usually were syn-
ergistic under spatially uniform
stimulation (Fig. 4E, pink). The symbol-
triggered stimulus variance of the 1 V 0
symbols for cells of a “similar” type was
higher than for single spike by a ratio of
1.13 � 0.012 (SEM, n � 222 pairs). Thus,
the synergy of these symbols was domi-

nated by differences in the symbol-triggered average.
We can test these ideas more systematically by comparing the

synergy of a given 1 V 0 symbol with the difference in the symbol-
triggered average between the single spike from cell A, 1A, and the
compound symbol, 1A V 0B, conditioned on silence from cell B
(Fig. 4F). We measured this difference using the normalized,
scalar product between the two symbol-triggered stimulus vec-
tors (with values ranging from �1 to �1). Overlaps close to �1
indicate that the condition of silence from cell B had almost no
effect on the feature encoded by the compound symbol. We
found that all overlap values for these data were positive, indicating
that the condition of silence from cell B never changed the polarity of
the stimulus feature encoded by the compound symbol. We also
found a strong negative correlation between synergy and feature
overlap, indicating that greater values of synergy corresponded to
cases where the symbol-triggered average changed the most by the
condition that cell B was silent. This correlation was strong enough
to account for most of the variation in synergy values (r2 � �0.76).

Compound neural symbols formed from cells of the same
functional type (Fig. 4F, orange) tended to have lower synergy at a

Figure 4. Origins of synergy from silence. A, Example of information gain from silence. Firing rate of two cells is shown (cell A,
blue; cell B, black) along with the combination of cell A firing and cell B silent (bottom, pink). B, Symbol-triggered average for cell
A (blue) and A not B (pink) against the other 20 cells recorded under uniform flicker (gray). C, Example of information loss from
silence. Firing rate of two cells is shown (cell A, blue; cell B, black) along with the combination of cell A firing and cell B silent
(bottom, orange). D, Symbol-triggered average for cell A (blue) and A not B (orange) against the other 20 cells recorded under
uniform flicker (gray). E, Synergy from silence plotted versus the overlap between the symbol-triggered average of 1A symbol
versus the 1A V 0B symbol. Overlap is measured as the normalized, scalar product between the two symbol-triggered stimulus
vectors, with values ranging from �1 to �1. F, Histogram of 1 V 0 synergies for cell pairs of the same function type (orange),
different broad type (green), and similar functional type (pink). See Materials and Methods for details of functional classification.
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given overlap than symbols formed from similar cell types. Spiking
and silence from two cells of different functional types resulted in the
smallest changes in the symbol-triggered average as well as some of
the lowest values of synergy. In addition, cell pairs with some synergy
but no change in the symbol-triggered average all came from cases
where an ON cell was spiking and an OFF cell was silent, and cell
pairs with substantial change in the symbol-triggered average but no
synergy (or even mild redundancy) all came from cases where a slow
OFF cell was spiking and a fast OFF cell was silent.

Synergy and redundancy in a neural model of
combinatorial coding
To better understand the origin of synergistic and redundant
coding at the level of compound neural symbols and the form of
combinatorial coding they imply, we constructed a simple model
of retinal processing. We assumed that ganglion cell light re-
sponses were described by what is called the LN model, where the
visual stimulus is first filtered by the classical receptive field and
then passed through a sigmoidal threshold function that trun-
cates negative values to produce a time-varying firing rate (see
Materials and Methods). Multiple ganglion cells had different
receptive fields and were assumed to be correlated only through
their receptive field overlap (also known as conditional indepen-
dence or lack of “noise correlation”).

For this model of ganglion cell light responses, the classical
receptive field can be thought of as a vector in the high dimen-
sional space of all possible visual stimuli (Fig. 5A). The firing rate
of each neuron depends only on the overlap between the stimulus
and its receptive field, which can be described by an angle �
between the stimulus and the neuron’s “preferred direction” in
stimulus space (Fig. 5B). This overlap angle summarizes both the
spatial and temporal integration of the classical receptive field.
We chose the simple case of a uniform distribution of overlap
angles for the population of ganglion cells, allowing us to calcu-
late the information that single cells, pairs and triplets convey
about the visual stimulus. While the gain of neurons might also
be different, we assumed for simplicity that cells had the same,
fixed gain, as changes in the angle � allowed us to sample the full
range of independence versus redundancy between two cells.

Similar to our experimental results, we found that 1 V 1 sym-
bols tend to be either redundant or nearly independent (Fig. 5D,
left). On the other hand, 1 V 0 symbols had many synergistic
combinations and some weakly redundant ones (Fig. 5D, right).
These results closely resemble the pattern of synergy from silence
for different cell types: cells with nearly identical function (�� �
0) were weakly redundant, ON/OFF pairs (large ��) were inde-
pendent, and cells that were similar but different (intermediate
��) almost all exhibited synergy from silence. Changing the neu-
rons’ selectivity or noise level (see Materials and Methods) gave
qualitatively similar results (Fig. 5E–G). For triplets, we found
that synchronized spiking 1 V 1 V 1was always redundant,
whereas 1 V 0 V 0 patterns demonstrated strong synergistic com-
binations and some weakly redundant ones (Fig. 5H, I)—in
striking resemblance to the results for real ganglion cells. We
emphasize that this model does not include stimulus-dependent
correlations between cells (also called noise correlations), show-
ing that the combinatorial coding can result from stimulus-
induced correlations alone.

Discussion
There have been many different proposals for how to study pop-
ulation neural codes. Here we have studied the information con-
veyed by specific population symbols, using the retina as a model

system. This approach complements other kinds of neural coding
analysis, by measuring the information carried by specific multi-
neuron activity patterns, and can thus provide insights or per-
spective not easily attained from other frameworks. Unlike many
previous studies that have focused on synchronous spiking be-
tween neurons, we found that combinations of spiking and si-
lence are often the synergistic symbols. This result suggests that
more attention should be paid to the silence of neurons in the
context of the responses of their neighboring cells, as such silence
can significantly enhance the information encoded by a neural
population and may enable important discriminations among
stimuli (Steuber et al., 2007; Osborne et al., 2008). Furthermore,
recent work has shown that weak correlations among many pairs

Figure 5. Synergy per symbol in a simple neural population model. A, Stimuli are vectors in
the space of all possible stimuli, here depicted in two dimensions. The preferred stimulus of a
neuron is described by the direction of a unit vector in stimulus-space (pink arrow), defining a
spiking probability along this direction (gray scale). All cells in the model are identical except for
their preferred direction. B, The spiking probability of the neuron from A shown as a function of
the overlap between the stimulus and the cell’s preferred direction, �. C, For two cells, the
symmetry of the model implies that the joint information is only a function of the angle be-
tween the preferred directions of the cells, ��. D, Synergy for 1 V 1 symbols (left column) and
1 V 0 symbols (right column) shown as a function of the angle between cell’s preferred stimuli,
��. Model parameters are � � 8, � � 5, without additive background noise 	 � 0 (see
Materials and Methods). E, Same as in D, but with a higher spiking threshold (� � 8), which
results in more selective spiking. F, Same as in D, but with model parameters � � 4, � � 2,
and 	� 0, corresponding to a lower selectivity and a noisier response. G, Same as in F, but with
an additive noise 	 � 0.02. H, Synergy for the triplet symbol 1 V 1 V 1 shown as a function of
the angle between cell 1 and cells 2 (x-axis), and the angle between cells 2 and cell 3 ( y-axis).
Same model parameters as in D. I, Same model as H, but for the triplet symbol 1 V 0 V 0.
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of neurons can add up to have strong effects on larger popula-
tions (Schneidman et al., 2006; Shlens et al., 2006, 2009; Tang et
al., 2008; Yu et al., 2008; Marre et al., 2009), indicating that neural
circuits may have greater scope for forming population codes
than previously appreciated.

The combinatorial coding that we found in the retina com-
bines elements of all three hypotheses about population codes,
but in ways that are different from those previously thought
(Meister et al., 1995; Meister, 1996; Schnitzer and Meister, 2003).
Redundancy was found in the synchronous events. At the same
time, synchronous spikes encoded more information than either
constituent spike alone. Some of this additional information re-
sulted from increased certainty about the visual stimulus (de
Ruyter van Steveninck and Bialek, 1988; Gabbiani et al., 1996)—a
form of averaging over spikes to achieve higher fidelity. Ganglion
cells of different broad functional types were found to be largely
independent. Perhaps most surprisingly, synergy was found in
combinations of spiking and silence, rather than in synchronous
spikes. Why might the retina’s population code be structured in
this fashion? Redundancy can benefit a neural code by increasing
the robustness of representation and by tagging patterns of neural
activity to be learned (Barlow, 2001; Ganmor et al., 2011a). At the
same time, synergistic compound symbols constitute a huge vo-
cabulary of different visual features multiplexed onto optic nerve
fibers and represented at the fastest response time of the circuit.

A combinatorial retinal code that relies on synergy from si-
lence has great flexibility. Because most ganglion cells respond
sparsely to natural stimuli, synchronous spike pairs are relatively
rare (Fig. 1C,D), but combinations of spiking and silence are
quite common. Because the receptive fields of ganglion cells over-
lap extensively— covering visual space �60 times over in the
salamander (Segev et al., 2004) and also in the guinea pig (our
unpublished data)—a single neuron can form combinatorial fir-
ing patterns with many nearby ganglion cells. How can the brain
select interesting population symbols to recognize? Since almost
all 1 V 0 V 0 V 0 symbols are synergistic, such symbols could
simply be chosen at random. However, if combinations of spik-
ing and silence from ganglion cells of the same functional type
were avoided, the brain could significantly enhance the chance
that remaining combinations were highly synergistic. Generic
learning rules, such as spike-timing-dependent plasticity, may
also allow the brain to focus in further on the most informative
retinal firing patterns.

How might the central brain recognize combinations of spik-
ing and silence? One possible mechanism involves a simple cir-

cuit with feedforward inhibition along
with monosynaptic excitation (Fig. 6).
Networks of inhibitory interneurons
clearly allow cortical circuits to synchro-
nize and oscillate (Traub et al., 1998;
Beierlein et al., 2000), but interneurons
possess extreme functional diversity
(Parra et al., 1998; Gupta et al., 2000), sug-
gesting detailed roles in information pro-
cessing (Miles, 2000; Beierlein et al.,
2003). In particular, many subtypes ex-
hibit very fast and reliable transmission
with relatively little spike frequency adap-
tation or synaptic depression (Gibson et
al., 1999; Martina et al., 2000). These
properties are ideal for vetoing excitation
(Swadlow, 2003; Gabernet et al., 2005),
thereby detecting combinations of spiking

and silence in the input to a cortical circuit.
Our model of the tuning properties underlying combinatorial

coding (Fig. 5) suggests that elaborate circuit mechanisms or strong
noise correlations are not required. Receptive field overlap is suffi-
cient to give rise to such a combinatorial code. Following on the
work of Barlow and Attneave and later Atick and Redlich, it has been
common to think of the activity of nearby retinal ganglion cells are
independent and for this independence to constitute a fundamental
design principle of the retina (Attneave, 1954; Barlow, 1961; Atick,
1992; Atick and Redlich, 1992). However, direct measurements
show that nearby cells have strongly overlapping receptive fields and
different feature selectivity that give rise to complex patterns of sig-
nificant signal correlation as well as noise correlation (Puchalla et al.,
2005; Segev et al., 2006). The signal correlation between pairs of
ganglion cells depends on their shared circuitry, just as does their
noise correlation. Therefore, we suggest that this pattern of signal
correlation may be a design principle of the retina. Such signal cor-
relation then can give rise to the synergy and redundancy that we see
among groups of ganglion cells.

Recent work has shown that weak correlations among many
pairs of neurons can add up to have strong effects on larger pop-
ulations (Schneidman et al., 2006; Shlens et al., 2006, 2009; Tang
et al., 2008; Yu et al., 2008; Marre et al., 2009; Ganmor et al.,
2011b), indicating that neural circuits may have greater scope for
forming population codes than previously appreciated. Similarly,
we found that synergy from silence was greatly enhanced for
1 V 0 V 0 V 0 symbols compared to 1 V 0 symbols.

The simple nature of this model in Figure 5 implies that combi-
natorial coding is not highly specific to the processing carried out in
the retina, suggesting that similar results may be found in other
neural circuits (Osborne et al., 2008). As the methods we have used
to analyze the retinal code can readily be extended to other neural
systems, this approach promises to yield new insights into the nature
of population neural codes elsewhere in the brain.
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