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a b s t r a c t

Electrophysiological studies in animals may provide a great insight into developing brain-like models
of spatial cognition for robots. These studies suggest that the spatial ability of animals requires proper
functioning of the hippocampus and the entorhinal cortex (EC). The involvement of the hippocampus in
spatial cognition has been extensively studied, both in animal as well as in theoretical studies, such as in
the brain-based models by Edelman and colleagues. In this work, we extend these earlier models, with a
particular focus on the spatial coding properties of the EC and how it functions as an interface between the
hippocampus and the neocortex, as proposed by previous work. By realizing the cognitive memory and
mapping functions of the hippocampus and the EC, respectively, we develop a neurobiologically-inspired
system to enable a mobile robot to perform task-based navigation in a maze environment.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The autonomous capabilities of robots and learning systems,
for example, autonomous navigation through brain cognitive
functions, have attracted increasing interest (Edelman, 2007;
Fleischer & Edelman, 2009; Shim, Ranjit, Tian, Yuan, & Tang, 2015;
Wyeth & Milford, 2009). Navigating in a complex world is an
effortless task for humans, yet it is still a challenging problem in
the robotics area (Dissanayake, Newman, Clark, Durrant-Whyte, &
Csorba, 2001; Shim, Tian, Yuan, Tang, & Li, 2014; Tian et al., 2013).
Many models such as Kalman filters (Thrun, Burgard, & Fox, 2005)
and Particle filters (Montemerlo & Thrun, 2003) are used to build
a practical and robust Simultaneous Localization And Mapping
(SLAM) algorithm. SLAM is a cartographicmethodprovidingmetric
map and current location for the navigation system.

Animals such as rat and primates have an inborn ability to form
spatial representations in a highly dynamic and extensive envi-
ronment, while simultaneously navigating it. Neurophysiological
studies suggest that the hippocampus, together with the entorhi-
nal cortex (EC), plays an important role inmemory and spatial cog-
nition (Cheu, Yu, Tan, & Tang, 2012; Frank, Brown, &Wilson, 2000;
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Tang, Li, & Yan, 2010). In 1971, O’Keefe found the ‘‘place cell’’ prop-
erty of the hippocampus in rodent experiments (O’Keefe & Dostro-
vsky, 1971). A ‘‘place cell’’ has a high firing rate when the rodent
is in a particular location within its environment (O’Keefe & Nadel,
1978).

At a macroscopic level, highly processed neocortical informa-
tion from all sensory inputs converges onto the medial temporal
lobe (MTL) where the hippocampus resides (Lavenex & Amaral,
2000). These processed signals enter the hippocampus via the EC.
Within the hippocampus, there are connections from the EC to all
fields of the hippocampal formation, including the dentate gyrus
(DG), CA3 and CA1 (Amaral, Ishizuka, & Claiborne, 1990; Bernard &
Wheal, 1994; Treves & Rolls, 1994).

With regards to hippocampal models, Barrera and Weitzenfeld
(2006) proposed a neural structure to mimic the ‘‘place field’’
property of the hippocampus and guide a robot in searching
for a goal. More recent work shows that the dorsocaudal
medial entorhinal cortex (dMEC) is considered to have a neural
representation of the layout of the environment (Fyhn, Molden,
Witter, Moser, & Moser, 2004; O’Keefe & Nadel, 1978). The
key units are identified as ‘‘grid cells’’ (Hafting, Fyhn, Molden,
Moser, & Moser, 2005). McNaughton, Battaglia, Jensen, Moser,
and Moser (2006) suggested an attractor network structure to
demonstrate the path integration for the cognitive map in dMEC.
Similarly,Wyeth andMilford (2009) implemented a 3-dimensional
continuous attractor network (CAN) to simulate the map-like
structure in the EC. In our recent neuro-robotic experimental
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studies, we have revealed that cognitive map building is a process
integrating responses from both the grid cells and the place cells
in the EC-Hippocampal area (Yuan, Tian, Shim, Tang, & Li, 2015),
and that the enhanced visual features play an important role in
hippocampal spatial responses, and thus in spatial cognition in a
simulated robotic platform (Huang, Tang, & Tian, 2014).

Based on the connection properties of subregions in the hip-
pocampus, Edelman and colleagues (Edelman, 2007; Fleischer &
Edelman, 2009; Krichmar, Nitz, Gally, & Edelman, 2004) developed
a brain-based device (BBD) to understand the mechanisms of how
the vertebrate nervous system gives rise to cognition and behav-
ior. Many interesting properties such as ‘‘place cells’’ and ‘‘episodic
memory’’ in the hippocampus have been realized with this model.
In the BBD model, the EC functions as interface between the neo-
cortex and the hippocampus. However, focus on the coding of goal
location – an important feature of the EC – is not that high in pre-
vious studies.

In this paper, inspired by previous work on explaining the rat’s
navigation and on brain-inspired navigation models, we develop a
brain-like cognitive model and apply it to robotic spatial cognitive
tasks. In our system, the general architecture is inherited from the
BBD model developed by Edelman’s group (Edelman, 2007). As
opposed to their previous studies, we focus on the realization of
the spatial mapping property of the EC area, and how this can be
used to encode task goal locations. All the connections in ourmodel
from the hippocampus to other cortical areas are connected via
the EC. Treves and Rolls (1994) initially proposed this structure,
which was then further supported in Lavenex and Amaral’s work
(Lavenex & Amaral, 2000). Their studies suggest that the EC does
not merely act as a relay for the flow of information from cortical
areas to the hippocampal complex, but participates actively in the
memory processes, especially in spatial memory (Fyhn et al., 2004;
Lavenex & Amaral, 2000). One important feature of these previous
works is that the EC is considered as a neuralmapping of the spatial
environment. In the navigation taskswith thismodel, when a robot
recognizes an image it has seen before – using information stored
in the CA1 region of the hippocampus – the associated location
information stored in the EC is retrieved concurrently, since both
these fields are connected. Hence, with this neural system, the
robot can use its mapping and navigation abilities to perform
cognitive tasks. These tasks are encoded such that the user can
specify both solitary aswell asmultiple tasks to our trainedmodel.

2. Methodology

2.1. System structure

2.1.1. Neural structure
Inspired by the BBD model, the schematic of our neural struc-

ture is shown in Fig. 1. Overall, the neural architecture includes
three layers: the Neocortex, the EC and the Hippocampus.

The neocortex in our brain-inspired model contains three
cortical regions: IT, ANT and Mhdg, which correspond to the
inferotemporal cortex, the anterior nucleus of thalamus and a
motor cortical area (Fleischer & Edelman, 2009). The inputs to
the neocortex, which feed in information from the environment,
come from a camera and a compass. The visual information is
divided into two regions: V1shape and V1color, which represent
the shape and color information, respectively. The corresponding
value is calculated through an HMAX algorithm (Riesenhuber &
Poggio, 1999) (described in detail in Section 2.1.3) and a color
filter, respectively. The compass value is used to model the head
direction (HD) neural area; 360 neurons are used to encode a
heading direction between 0 and 359°. Each neuron has a cosine
Fig. 1. Schematic of the regional and functional neuroanatomy of the brain-
based neural system. Ellipses denote different neural areas; boxes denote different
devices; arrows denote projections from one area to another. Inputs to the neural
system come from a camera and a compass; the image information is projected
to the inferotemporal cortex (IT) through an HMAX process and a color filter; the
orientation information is projected to the anterior nucleus of thalamus (ANT). The
entorhinal cortex (EC) functions as the interface between the hippocampus and
the neocortex, consisting of two parts — ECII&III and ECV. The output from ECV
goes to a motor cortical area (Mhdg), which maps onto a motor that dictates the
movement of the robot. Inside the hippocampus, there are cortical areas including
the dentate gyrus (DG), CA3 and CA1. A theta rhythm (TR) signal is used to inhibit
the hippocampal area, to keep activity levels stable. In this neuron design, each
cortical region has a twin inhibition component to maintain stability. To simplify
the figure, these inhibition components are not shown. The detailed parameters
of these inhibition components are given in Appendix A. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

tuning curve to respond to a preferred heading. The tuning curve
is described as follows:

HDi = cos


i
360

2π − HDC

11

(1)

where HDi is the ith neuron’s activity with a preferred direction of
i degrees; HDC is the compass input in radius. The head direction
neurons are mapped to the anterior nucleus of thalamus (ANT)
and to the motor neuron area. The output of this cortical area is
to the Mhdg, which dictates the moving direction of the robot.
It consists of 60 neurons correspond to heading from 0 to 359°,
i.e. each neuron corresponds to a moving range of 6°. The motor
neuron with the strongest activity will determine the direction of
movement.

The EC is the main interface between the hippocampus and the
neocortex. It receives highly processed inputs from every sensory
module. The EC is responsible for the pre-processing of the input
signals. Biologically, the superficial layers, including layers II and
III, project to the hippocampus. Layer II primarily projects to the
DG and CA3 cortical areas in the hippocampus. Layer III primarily
projects to the CA1 area in the hippocampus. The deep layer,
layer V, receives one of three outputs from the hippocampus and
reciprocates connections from cortical areas that project to the
superficial EC (Hargreaves, Rao, Lee, & Knierim, 2005). To simplify
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Fig. 2. HMAX model for the object recognition (Riesenhuber & Poggio, 1999). The
circuitry consists of a hierarchy of layers of visual processing that use two different
types of pooling method: weighted sum (WSUM) and maximum (MAX). The first
layer S1 performs a linear-oriented filter and normalization to the input image. In
the next layer C1, outputs of S1 with same orientation that are located close to each
other are selected by a maximum operation. In the stage S2, outputs from C1 in
locations that are close by are combined to form more complex features. The C2
layer is similar to C1 layer: by pooling together outputs of S2 that are near each
other and have the same type using a maximum operation. The output of the C2
layer is mapped to the IT as in a ventral cortical pathway.

our model, we combine layer II and layer III together as the input
layer; layer V is designed as the goal location encoder of the spatial
environment.

The EC connects inputs from all the sensory regions to all fields
of the hippocampal formation, including DG, CA3 and CA1 through
perforant pathways. The DG connects with CA3 through mossy
fibers. The CA3 connects with CA1 through schaffer collaterals, and
the CA1 connects back to the EC output (ECV in our model). There
are also strong recurrent connections within CA3.

In Fig. 1, most of the neural regions in the neocortex, EC
and hippocampus are designed with a corresponding inhibition
component (ITi, ANTi, Mhdgi, ECII&IIIi, ECVi, DGi, CA3i and CA1i).
These inhibition components have the same neuron size as their
excitation parts (IT, ANT, Mhdg, ECII&III, ECV, DG, CA3 and CA1).
They receive inputs from the excitation regions. In return, they
inhibit these regions to maintain their stability. For brevity, these
inhibition components are not included in Fig. 1. The detailed
connections between all regions is given in Appendix A.

2.1.2. Information flow
The system interacts with the environment through various

sensors. In this design, the sensors include a camera and a compass
which function as eyes, and magnetite in the ethmoid bone,
respectively. These sensory signals are encoded to neural signals
in the neocortex. Then, these signals are combined together in the
EC. The neuronal activities of the EC forma corresponding response
to the current environment. In the hippocampus, this pattern of
response is memorized and can be retrieved when a hint input is
later provided.

When the memory is recalled, it activates the corresponding
response in the EC output layer. The memory is decoded here.
For example, in a navigation application, the memory information
stored in the hippocampus can be translated into a location that
the robot has memorized before. In this case, the decoding of the
EC output layer functions as a map corresponding to the spatial
environment. The map information in the EC output layer projects
to the motor cortical area according to the desired task. The motor
cortical area decodes the neural commands from the EC output
layer and sends these to the corresponding actuators that move
the robot.
Fig. 3. The mapping of locations in the plus-maze to ECV neurons; i.e. the East
location corresponds to neuron (1, 1), North corresponds to (1, 2),West corresponds
to (2, 1) and South corresponds to (2, 2).

2.1.3. Hierarchical vision architecture
Visual information in the visual cortex is considered to be

processed through ventral visual pathway (Ungerleider & Haxby,
1994) running from theprimary visual cortex (V1) over extrastriate
visual areas V2 and V4 to the inferotemporal cortex (IT). It is
classically modeled as a hierarchically-layered structure. Here,
we adopt the HMAX hierarchical vision architecture which is a
computational model of object recognition in the visual cortex. As
shown in Fig. 2, the HMAXmodel consists of four layers with linear
and non-linear operations. The first layer, namely S1, performs
a linear-oriented filter and normalization to the input image. In
the next layer (C1), outputs of S1 with same orientation which
are near each other are selected by a maximum operation. In the
next stage (S2), outputs from C1 which are near each other are
combined to form more complex features. The C2 layer is similar
to C1 layer: those nearby outputs of S2 having the same type
are pooled together by a maximum operation. The information in
C2 becomes more invariant to position and scale, but preserves
feature selectivity, which may correspond roughly to the V4 area
in the visual cortex (Riesenhuber & Poggio, 1999). The output of
the C2 layer is mapped to the inferotemporal cortex (IT), as in the
ventral cortical pathway (HMAX → IT).

2.1.4. Neural structure of EC
The EC in our model represents a neural mapping of the

spatial environment. To test this property, each neuron in ECV is
mapped to a spatial location. In our experiments in a plus-maze
environment, each arm of the plus maze is mapped to a neuron
group in ECV, as shown in Fig. 3. Due to the simplicity of the
environment, only four neurons are required to represent the plus-
maze environment.

2.1.5. Task encoding and learning method
Similar to how the ECV region encodes locations, there is

another neural region called the Task region. It is connected to
neurons in the EC as a one-to-one mapping. Each Task neuron
represents a request to the robot tomove to the associated location
in ECV, and ismade to fire either when the user wishes to associate
a location in ECVwith a set of inputwhile training, orwhen the user
wishes to give these encoded locations as goals to a trained robot.
For both these purposes, different strengths of input are used to
the Task region.While training, a larger value is used, to potentiate
the corresponding ECV neuron enough, so that it associates that
neuronwith the given input to the system.During testing, a smaller
value of input to the Task neuron is given; this, combined with the
right sensory input to the system, potentiates the corresponding
ECVneuron to a greater extent. Further details on this neural region
are described in Appendix A, section B.
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(A) Rectangular []3 × 3. (B) Doughnut θ1 × 2. (C) Nontopo.

Fig. 4. Different connection types between neural regions. The right side of each connection shows the field being connected to, while the left side shows the target neuronal
units that are connected. (A) Neurons connected are described by a rectangle centered on the current neuron, with a specified width and height. (B) Neurons connected are
described by concentric circles centered on the current neuron, with specified inner and outer radii. (C) Neurons connected are chosen at random.
2.2. Properties of the simulated neural system

2.2.1. Neural dynamics
In our neural system, all neuronal units are described by

a mean firing rate model. The mean firing rate range of each
neuronal unit varies from 0 (no firing) to 1 (maximal firing). The
state of a neuronal unit is calculated based on its current state
and contributions from other neuronal units. The postsynaptic
influence on unit i is calculated based on the equation:

Post i(t) =

M
j=1

[wijsj(t)] (2)

where sj(t) is the activity of unit j; wij is the connection strength
from unit j to unit i; M is the number of connections to unit i.

The new activity is determined by the following activation
function:

si(t + 1) = Φ(tanh(giPost i(t) + ωsi(t))) (3)

Φ(x) =


0 x < δ

fire
i

x otherwise
(4)

where gi is the scaling factor; ω controls the persistence of unit
activity from the previous state; δfire

i is the firing threshold.

2.2.2. Neural connections
Theways inwhich different neural regions connect together are

divided into three types. The first type is ‘‘rectangular’’ with a given
height and width ‘‘h × w’’ as shown in Fig. 4(A). The second type is
‘‘doughnut’’ with an inner and outer radius ‘‘Θr1 × r2’’, excluding
the center as shown in Fig. 4(B). The third type is called ‘‘nontopo’’
in which any pair of presynaptic and postsynaptic neurons have an
equal probability of being connected as shown in Fig. 4(C).

2.2.3. Neural plasticity
In learning and memory systems, synaptic plasticity is one

of the key ways in which the neural network learns and stores
memory (Martin, Grimwood, & Morris, 2000). Experimental data
from the visual cortex led to a synaptic modification rule, namely
the BCM rule. The rule has two main features: (1) synapses
between neuronal units with strongly correlated firing rates are
potentiated; (2) a synaptic modification threshold for each neuron
which controls the direction of weight modification. In this paper,
the synaptic plasticity is based on a modified BCM learning rule
(Fleischer & Krichmar, 2007):

1wij(t + 1) = ηsi(t)sj(t)BCM(si(t)) (5)

BCM(s) =


−k1s s ≤

Θ

2
k1(s − Θ)

Θ

2
> s ≤ Θ

k2 tanh(6(s − Θ))/6 otherwise

(6)

where si(t) and sj(t) are activities of postsynaptic and presynaptic
units, respectively; η is the learning rate; k1 and k2 are the two
inclinations. The thresholdΘ is adjusted based on the postsynaptic
activity:

1Θ = 0.25(s2i (t) − Θ). (7)

2.2.4. Theta rhythm inhibition
In the system structure, a theta rhythm (TR) signal is used to

inhibit neural regions to keep activity level stable (TR → ECII&III,
ECV, DG, CA3, CA1). The TR activity follows a half cycle of sinusoidal
wave:

TR(n) = sin

mod

nπ
N

, π


(8)

where n is the time step;N is the number of steps that are required
for the hippocampus to reach a stable state for a new input.

2.2.5. Parameter values
All parameters used in the above equations are listed out in

Appendix A. The Task region, not being a regular neural region, has
different parameters, given in Appendix B.

2.3. Key features of the system

2.3.1. Learning visual inputs
In our cognitive neural system, the HMAX model and color

filter are employed to generate the key information of the input
images. The EC processes this vision information and passes it to
the hippocampal regions, including DG, CA3 and CA1. As discussed
in earlier work in this field (Kesner, Lee, & Gilbert, 2004), DG plays
the role of capturing the abstract information fromEC area through
a competitive computation mechanism. To have this function,
the self-inhibition of DG is very strong (as shown by parameter
values for connections between DG and its inhibitory region, in
Table 2 under Appendix A). It inhibits more surrounding neurons
in comparison to the self-inhibition in CA3 and CA1 areas. Due to
this competitive learning process, the key information from the EC
remains in theDG. TheCA3 serves to store thememory information
in the hippocampus. In our design, a strong recurrent connection
is included in the CA3 region (Table 2 under Appendix A). This
enables the CA3 to form a stable pattern for a given input. The
stabilized response of CA3 will then activate the corresponding
pattern in CA1. The stabilized pattern in CA1 is associated with the
sensory inputs.

Fig. 5 shows a result of an auto-association experiment
performed in a previous work (Huang et al., 2014). When training,
the desired result is directly fed into the output region (ECV), so
that the plastic connectionswithin themodel learn to associate the
input and desired output. One cycle of training consists of showing
the input image for one theta cycle (as determined by N in Eq. (8)),
which allows the response of the neural regions to stabilize.
After two such cycles of training, the plastic connections within
the hippocampal regions and to the output neuronal region are
sufficiently modified, so the neural system, on being presented
with the input image again, can recall the output pattern by itself
and show it in the output neuronal area.
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Fig. 5. Auto-associative property of the model. First two cycles are training for input image ‘A’, the next two cycles are training for input ‘C’. Each cycle extends to the length
of one theta cycle, to stabilize the neural responses to the input provided. In the testing stage image ‘A’ and ‘C’ are input to the system in alternate cycles. It is observed that
the system is able, to some extent, to recall the learned patterns. Top to bottom: Each panel shows the input image, the mean firing rates of IT, ECII&III, DG, CA3, CA1 and
ECV (Output) over one theta cycle for a single trial of the task.
2.3.2. Place-dependent property of CA1
According to Edelman’s model (Edelman, 2007; Fleischer &

Edelman, 2009), the CA1 region in the hippocampus shows a
place-dependent response, i.e. certain neurons fire at certain robot
locations. This place-dependent response was verified in an earlier
work (Huang et al., 2014) by implementing the model in a mobile
robot which is placed in a simulated plus-maze environment. A
unique shape image is placed at the end of each arm of the maze
to enable the robot to differentiate between different arms. When
the robot moves to the end of themaze arm and looks at the image
shown on the wall, the neuron activity in CA1 area shows different
patterns for eachmaze arm. This place-dependent response is later
seen in the current model as well (Section 3.1).

2.4. Experimental setup

Continuing the previous modeling studies on cognitive func-
tions in spatial navigation, we are intrigued to answer the follow-
ing questions:

1. In general, do the biologically-inspired models, in particular,
the place-dependent response and neuralmapping capabilities,
enable any form of embodied cognitive navigation, i.e., can a
robot embodied by these cognitive functions interact with its
environment?

2. Can these neuro-cognitive models give rise to autonomous and
adaptive behavior in the robot, similar to that of animals?

We developed a robotic hardware platform called NECO
(Neuro-Cognitive Robot) based on the developed neural model
and verified its cognitive navigation performance in a physical
environment. We also used the simulated robotic platform
developed in Huang et al. (2014) to further analyze the neuronal
responses of our EC-Hippocampal model.

2.4.1. Experimental environment and task description
In the hardware implementation of the model, the task was

to navigate a plus-maze and go to the desired arm using the
NECO robot, both shown in Fig. 6 (Hardware details of the robotic
platform are given in Appendix C). The maze is similar to the
experiment performed with Darwin XI (Fleischer, Gally, Edelman,
& Krichmar, 2007; Fleischer & Krichmar, 2007), which imitated
the environment used in the studies of rodent hippocampal place
activity Ferbinteanu and Shapiro (2003). At the start of each trial,
the robot started from any arm of the maze, chosen at random.
The robot had tomake a choice of direction at the intersection, and
traverse the chosen arm to the end. To provide visual cues for the
robot, the wall at the end of each maze arm had a picture of an
object on it, viz. an apple (labeled Apple), a piece of cheese (labeled
Cheese), and a milk carton (labeled Milk).

Initially, to train the model, the robot was taken through to the
end of three of the arms, until all neural regions showed sufficient
activity. At the same time, they were given the expected values of
ECV through the Task neurons, so that they could associate these
values with the activities in the neural regions. After this, they
were given tasks of navigating to the various learned objects. A task
was assigned to the robot by providing an input in the appropriate
neuron of the Task neural region. This was also extended to
multiple tasks within the same trial, wherein many Task neurons
were activated at once. Initially, single tasks were given to the
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Fig. 6. The neuro-cognitive robot, NECO and an aerial view of the plus-maze environment. The maze has four arms with different shapes at each end to provide visual cues
(shown here as Milk at the top of the image, Cheese on the left of the image and Apple at the bottom of the image). The camera and compass mounted on the robot head
provide the vision and orientation inputs for the robot; the IR sensors on the base of robot are only used to detect the intersection.
Fig. 7. Place-dependent patterns of CA1 and ECV at different locations during the learning phase. (A) The robot traverses the maze by navigating to the intersection, facing
one of the arms and reaching the end of that arm—the arrow indicates the facing direction; (B) Each panel shows the mean firing rate of CA1 over one theta cycle after
reaching the end of each arm. Different patterns for each arm correspond to a place-dependent response; (C) The neural response (mean firing rate) of ECV over one theta
cycle after reaching the end of each arm. Each cell in ECV corresponds to the end of an arm, as shown earlier in Fig. 3.
robot; later, two tasks were given at the same time to test the
multiple-task capabilities of the system.

2.4.2. Software simulation environment
To verify the working of the model and analyze neuronal

activities, the neural model was first tested in a simulated robot.
The simulation environment is developed in Webots, which is
a dynamic simulation software based on Open Dynamic Engine
(ODE). All the required real-world sensors such as the camera,
compass, distance sensors, and DC motors to provide motion, can
be modeled easily in this environment.
3. Experimental results and discussion

With the model described earlier, the mobile robot platform
was able to achieve the cognitive navigation tasks assigned. The
experimental results of the maze navigation can be found in our
recorded video on Youtube:

‘‘http://www.youtube.com/watch?v=iwI73cyBRac ’’.
The robot started off with visiting each maze arm in turn from

left to right, where it saw, in order, pictures of Apple, Cheese
and Milk. When learning each image, a Task neuron is seen to be
activated, so that the corresponding ECV neuron is given a strong

http://www.youtube.com/watch?v=iwI73cyBRac
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Fig. 8. Simulation results of neural mapping in plus-maze environment, after the robot traverses the length of each arm during training as well as testing. Top to bottom:
Each panel shows the robot location in plus-maze, the mean firing rates of ECII&III, DG, CA3, CA1 and ECV over a theta cycle after reaching the end of each arm of the maze.
During the training phase, when the robot has reached the end of an arm, a strong input is given to the appropriate neuron in the Task region, such that the corresponding
neuron in ECV is strongly potentiated (represented here as a red shade). During the testing phase, when the robot has traversed an arm, a weak input from the appropriate
Task neuron, along with the sensory information provided on reaching the end of the arm, is enough to potentiate the previously-learnt ECV neuron. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
input. In this experiment, Task neuron (1, 1) represents Apple, Task
neuron (1, 2) represent Cheese, and Task neuron (2, 1) represents
Milk.

After training of all images was done, the testing phase began.
The first task given was to find Milk; this was done by providing
input to the specified Task neuron (viz. (2, 1)). At the intersection,
the robot looked once in all directions, to get input from each arm,
and built up activity in the motor cortical area, Mhdg. In this case,
the neural region in Mhdg corresponding to the Milk direction
(right) was potentiated themost (owing to the connections formed
between place-dependent activity in CA1, and EC V, which sends
output to Mhdg). Hence, the robot chose to visit that direction and
find Milk successfully. Similarly, the robot was asked to find Apple
and Cheese in succession, and did so successfully.

The multiple-task phase was then started. The robot was asked
to find Apple and Milk, by potentiating Task neurons (1, 1)
and (2, 1). Two of the three arms it looked at contained both tar-
gets; between these, the robot chose Milk, as the Mhdg value in
that direction happened to be higher. After visiting Milk, it was re-
moved from the Task region, so as not to re-visit the same loca-
tion again. The robot, now having only Apple left to visit, was able
to navigate there using the same procedure. This experiment was
repeated for other two-task combinations, namely Apple–Cheese,
and Cheese–Milk.

The result shows that the robot was able to remember the
locations it had previously visited, and go to themwhen requested.
3.1. Place-dependent response of CA1

In the learning phase of the experiment, when the robot moves
to the end of a maze arm from the center, and looks at the image
shown on the wall, the neuron activities in the CA1 area converge
and reach a stable pattern after a single theta cycle (to stabilize
the input). The neural activity pattern is different for each maze
arm. This place-related pattern is shown in Fig. 7(B). In this place
field response, about 57 neurons in total in CA1 area out of 400
neurons are fired when reaching all four different locations. The
ratio is similar to the experimental results of Darwin XI (Fleischer
& Krichmar, 2007). Since the CA1 area shows different patterns
when the robot is placed in different arms, it is verified to have a
place-dependent response, as posited earlier in Section 2.3.2. This
property helps the robot to build a spatial encoding of the map in
ECV area (as shown in Fig. 7(C)).

3.2. Spatial mapping property of EC

After training, the neurons in ECVwere activated by the current
location of the robot in the environment. Fig. 8 is the simulation
result of neuralmapping in the ECV to the plus-maze environment.
During training, the ECV receives strong input from the Task region.
This helps it associate the sensory input to the system, encoded as
the place-dependent response of the CA1 region, with the coded
location, via strengthening of the appropriate plastic connections
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Fig. 9. Simulation results of the multi-task experiment, after the robot has traversed the length of each arm, for two different multiple-task scenarios. Top to bottom: Each
panel shows the robot location in plus-maze, the mean firing rates of ECII&III, DG, CA3, CA1, ECV and Task regions over a theta cycle after reaching the end of each arm of the
maze. It can be observed that the ECV region does not fire unless the corresponding neuron in the Task region has any input; in this case, it potentiates the ECV region enough
to fire, which subsequently influences the Mhdg input (not shown here) to move in that direction. It should be noted that these are readings taken through the course of
each multi-task experiment, and not indicative of the sequence of actions taken by the robot in finishing the task; this is merely to illustrate the difference between neural
activities when multiple tasks are set for the robot.
from CA1 to itself. During the testing phase, the place-dependent
response from CA1, combined with a weak input from the Task
region, causes the ECV to have greater activity at that neuron.

Here, the odometric information and Task region are not shown.
With the motion information, the robot can estimate the current
location according to the initial point and associate it with the
sensory inputs. This helps it explore the environment and build the
map automatically for navigation.

3.3. Multi-task capability

The simulation results of the multi-task experiment are shown
in Fig. 9. Similar to the previous single-task scenario, when the
trained robot receives an input which matches the given task
(i.e. the input from the Task region), the corresponding neuron in
ECV would have an increased firing rate. This increase in activity
would, in turn, boost the input to the Mhdg area, and allow the
robot to make a decision to move to the desired target.

In the video for the third task starting at approximately 2:35
(find Cheese–Milk), it was observed that on the first try, the robot
moves towards Cheese, even though both Milk and Cheese can be
reached. Though both regions show higher activity in Mhdg, there
are some random variations that may occur during the learning
phase of any of the constituent regions. All other things being
equal, these influence the robot to prefer one target to the other.

While currently it is hard to predict the order of target visitation
because of these factors, we hope in the future to better study this
and learn how to better predict the behavior of the model.

4. Conclusion

The hippocampus and the entorhinal cortex play important
roles in spatial navigation. In this paper, we have presented
our brain-inspired neural architecture for spatial navigation. The
model includes three main layers — the neocortex, the entorhinal
cortex, and the hippocampus, together with a hierarchical vision
architecture and other sensory input cortical regions, and a motor
output cortical region. This system allows us to track all the neural
activities for different experiments. In the experiments, the place-
dependent response and neural mapping property are shown to
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Table 1
Information about the neural areas.

Area Size g δfire ω

V1color 6 × 8 1 0 0
V1shape 16 × 16 1 0 0
HD 1 × 360 1 0 0
IT 30 × 30 1 0.2 0.1
ITi 30 × 30 1 0.1 0.1
ANT 15 × 15 1 0.2 0.1
ANTi 15 × 15 1 0.1 0.1
Mhdg 1 × 60 1 0.1 0
Mhdgi 1 × 60 1 0 0
ECII&III 30 × 30 1 0.1 0.5
ECII&IIIi 30 × 30 1 0.02 0
ECV 2 × 2 1 0.1 0.5
ECVi 2 × 2 1 0.02 0
DG 30 × 30 0.75 0.1 0.5
DGi 30 × 30 1 0.02 0
CA3 15 × 15 0.75 0.05 0.5
CA3i 15 × 15 1 0.02 0
CA1 30 × 30 0.75 0.1 0.5
CA1i 30 × 30 1 0.02 0

Fig. 10. Hardware structure of NECO.

be realized in the CA1 area of the hippocampus, and the entorhinal
cortex, respectively. The robot is found to be able to remember the
location of the goal that it had previously learnt. This exploratory
study shows how the behavior of the hippocampus, in combination
with a task-setting paradigm, can be used to contribute to
navigation and spatial memory tasks in mobile robots.

Understanding how the cognitive functions of the brain arise
from its basic physiological components is an enticing and chal-
lenging scientific frontier for many years, which requires not only
the neural coding of internal cognitive constructs and the neural
mechanisms of learning and memory, but also the representation
of the external world (Burgess, 2014). The discoveries of place cells
and grid cells have become a great achievement to answer this
quest. Given this inspiration, this work and our other ongoing ef-
forts (Hu, Tang, Tan, & Li, 2016; Yuan et al., 2015) are targeted
at the cross disciplinary research of robotic cognition, which will
contribute to decoding the neural representation of cognitivemod-
els exposed to the external world, and also to establishing new
mapping and navigation models for robotics (Pfeifer, Lungarella,
& Iida, 2007).
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Appendix A. Parameters of the simulated neural system

The simulated nervous system is modeled on the anatomy
and physiology of the mammalian nervous system but, obviously,
with far fewer neurons and a much less complex architecture.
Each neural region contains neuronal units that can be either
excitatory or inhibitory. In total, the simulated nervous system
contained 19 neural areas, 9084 neuronal units, and approx 0.2
million synaptic connections. Specific parameters relating to each
area and to patterns of connectivity are given in Tables 2 and 3. All
these parameter values were initially taken from previous models
(Huang et al., 2014), and tuned until they performed well for the
current experiments.

In Table 1, the number of neuronal units and topology is shown
in the size column. The other columns are physiological parameters
for each neural area as defined in the simulation equations above.
Roughly described, the parameters are scaling factor, g , firing
rate threshold, δfire, and persistence factor, ω. This table includes
inhibitory areas mentioned in Fig. 1.

Non-plastic connections between neural areas in the simulated
nervous system are given in Table 2. A presynaptic neuronal unit
connects to a postsynaptic neuronal unit with a given probability
(P) and a given projection topology, as described in Section 2.2.2.
The initial connection strengths are set with a basic strength
and a variation range. A negative value of connection strength
denotes inhibitory connections. φ denotes the persistence of the
synapse. Some connections are special cases where the pre- and
postsynaptic regions have different sizes, for example in the
connection V1shape → IT, where IT is about double the size of
V1shape. In these cases, the number of connecting neurons are
scaled by the relative sizes of the regions. In the above case, one
neuron in V1shape is connected to 4 neurons in IT, since it doubles
in size along both width and height.

Plastic connections between neural areas in the simulated
nervous system are shown in Table 3. A nonzero value of η, the
learning rate parameter, signals a plastic connection that changes
according to the modified BCM rule with parameters k1 and k2 in
Eq. (6).

The number of steps required for reaching a stable state for a
new input, N (as mentioned in Eq. (8)) was chosen to be 13.

Appendix B. Task region parameters

The Task region does not follow the regular neural dynamics
of all other regions, since it is only introduced to provide
training/testing boosts to the ECV. Its size is 2 × 2. It has a one-to-
one mapping with ECV i.e. equivalent to a rectangular connection
of size []1 × 1. It has a non-plastic connection of strength of 1 and
probability 1. The input to Task is kept at 0.8 during training, and
0.3 for testing.

Appendix C. Hardware implementation details

Fig. 10 shows the details of the NECO mobile robotic platform
used in our experiments. The robotic unit was 0.35 m in diameter
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Table 2
Non-plastic connections between neural areas.

Projection direction Projection topology P Basic strength Variation φ

V1color → IT nontopo 0.05 0.05 0.02 1
V1shape → IT []1 × 1 0.5 0.6 0.2 1
HD → ANT []1 × 6 1 0.04 0.02 1
IT → ECII&III []1 × 1 1 0.2 0.1 1
IT → ITi Θ1 × 2 1 0.06 0.02 1
ITi → IT []1 × 1 1 −0.5 0.14 1
ANT → ECII&II []1 × 1 1 0.3 0.1 1
ANT → ANTi Θ1 × 2 0.25 0.01 0.01 1
ANTi → ANT []1 × 1 1 −0.5 0.14 1
ECII&III → ECV nontopo 0.001 0.04 0.04 1
ECII&III → ECII&IIIi Θ1 × 2 0.1 0.45 0.15 1
ECII&IIIi → ECII&III []1 × 1 1 −1.2 0.3 1
ECV → ECII&III nontopo 0.001 0.04 0.04 1
ECV → Mhdg nontopo 1 0.1 0.1 1
ECV → ECVi Θ1 × 2 1 0.45 0.15 1
ECVi → ECV []1 × 1 1 −1.2 0.3 1
Mhdg → Mhdgi Θ1 × 2 1 0.45 0.15 1
Mhdgi → Mhdg []1 × 1 1 −1.2 0.3 1
DG → DGi Θ1 × 4 0.3 0.45 0.15 1
DGi → DG []1 × 1 1 −1.2 0.3 1
CA3 → CA3i Θ1 × 2 0.1 0.45 0.15 1
CA3i → CA3 []1 × 1 1 −1.2 0.3 1
CA1 → CA1i Θ1 × 4 0.3 0.45 0.15 1
CA1i → CA1 []1 × 1 1 −1.2 0.3 1
TR → ECII&III nontopo 0.05 −0.02 0.01 1
TR → DG nontopo 0.05 −0.02 0.01 1
TR → CA3 nontopo 0.05 −0.02 0.01 1
TR → CA1 nontopo 0.05 −0.02 0.01 1
TR → ECV nontopo 0.05 −0.02 0.01 1
Table 3
Plastic connections between neural areas.

Projection direction Projection type P B. S. Var. φ η k1 k2

ECII&III → DG []3 × 3 0.2 0.45 0.15 0.25 0.05 0.9 0.45
ECII&III → CA3 []3 × 3 0.04 0.15 0.05 0.25 0.05 0.9 0.45
ECII&III → CA1 []3 × 3 0.04 0.3 0.1 0.25 0.05 0.9 0.45
DG → CA3 []3 × 3 0.06 0.45 0.15 0.25 0.05 0.9 0.45
CA3 → CA3 nontopo 0.01 0.02 0.01 0.25 0.05 0.9 0.45
CA3 → CA1 []3 × 3 0.1 0.45 0.15 0.25 0.05 0.9 0.45
CA1 → ECV nontopo 0.1 0.1 0.05 0.25 0.05 0.9 0.45
and 0.6 m in height. The processor of the robot was PC/104 with
2.26 GHz CPU speed. A stereo camera was mounted on a pan–tilt
unit to provide visual input to the neural system. A magnetic
compass provided heading input, and IR sensors were mounted
on the front, left and right sides of the base to detect the maze
intersection and walls.
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