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A central open question of computational neuroscience is to identify the
data structures and algorithms that are used in mammalian cortex to sup-
port successive acts of the basic cognitive tasks of memorization and as-
sociation. This letter addresses the simultaneous challenges of realizing
these two distinct tasks with the same data structure, and doing so while
respecting the following four basic quantitative parameters of cortex:
the neuron number, the synapse number, the synapse strengths, and the
switching times. Previous work has not succeeded in reconciling these op-
posing constraints, the low values of synapse strengths that are typically
observed experimentally having contributed a particular obstacle. In this
article, we describe a computational scheme that supports both memory
formation and association and is feasible on networks of model neurons
that respect the widely observed values of the four quantitative param-
eters. Our scheme allows for both disjoint and shared representations.
The algorithms are simple, and in one version both memorization and
association require just one step of vicinal or neighborly influence. The
issues of interference among the different circuits that are established, of
robustness to noise, and of the stability of the hierarchical memorization
process are addressed. A calculus therefore is implied for analyzing the
capabilities of particular neural systems and subsystems, in terms of their
basic numerical parameters.

1 Introduction

We consider four quantitative parameters of a neural system that together
constrain its computational capabilities: the number of neurons, the num-
ber of neurons with which each neuron synapses, the strength of synaptic
connections, and the speed of response of a neuron. The typical values that
these parameters are believed to have in mammalian cortex appear to im-
pose extremely severe constraints. We believe that it is for this reason that
computationally explicit mechanisms for realizing multiple cognitive tasks
simultaneously on models having these typical cortical parameters have
not been previously offered.
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Estimates of these four cortical parameters are known for several systems.
The number of neurons in mouse cortex has been estimated to be 1.6 x
107, while the corresponding estimate is in the region of 10'° for humans
(Braitenberg & Schuz, 1998). There also exist estimates of the number of
neurons in different parts of cortex and in related structures such as the
hippocampus and olfactory bulb.

The number of neurons with which each neuron synapses, which we
shall call the degree, is a little harder to measure. However, it is considered
that the effect of multiple synapsing between pairs of neurons is small and
therefore that this degree is close to the total number of synapses per neuron,
which has been estimated to be 7800 in mouse cortex and in the 24,000 to
80,000 range in humans (Abeles, 1991).

The third parameter, the synapse strength, presents a still more com-
plex set of issues. The most basic question here is how many of a neu-
ron’s neighbors need to be sending an action potential in order to create
an action potential in the neuron. Equivalently, the contribution of each
synapse, the excitatory presynaptic potential, can be measured in millivolts
and the fraction that this constitutes of the threshold voltage that needs to
be overcome evaluated. While some moderately strong synapses have been
recorded (Thomson, Deuchars, & West, 1993; Markram & Tdodyks, 1996a;
Ali, Deuchars, Pawelzik, & Thomson, 1998), the average value is believed
to be weak. The effective fraction of the threshold that each neighbor con-
tributes, has been estimated (Abeles, 1991) to be in the range 0.003 to 0.2. In
other words, it is physiologically quite possible that cognitive computations
are characterized by a very small and hard-to-observe fraction of synapses
that contribute above this range, perhaps even up to the threshold fraction
of 1.0. However, there is no experimental confirmation of this to date, and
for that reason, this article addresses the possibility that at least some neural
systems work entirely with synapses whose strengths are some orders of
magnitude smaller.

The time it takes for a neuron to complete a cycle of causing an action
potential in response to action potentials in its presynaptic neurons has been
estimated as being in the 1 to 10 millisecond range. Since mammals can
perform significant cognitive tasks in 100 to 200 milliseconds, algorithms
that take a few dozen parallel steps must suffice.

The central technical contribution of this article is to show that two ba-
sic computational problems, memory formation and association, can be
implemented consistently in model neural systems that respect all of the
above-mentioned numerical parameters. The first basic function, JOIN, im-
plements memory formation of a new item in terms of two established items:
if two items A and B are already represented in the neural system, the task
of JOIN is to modify the circuit so that at subsequent times, there is the rep-
resentation of a new item C that will fire if and only if the representations of
both A and B are firing. Further, the representation of C is an “equal citizen”
with those of A and B for the purposes of subsequent calls of JOIN. JOIN
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is intended as the basic form of memorization of an item and incorporates
the idea that such memorization has to be indexed in terms of the internal
representations of items already represented. The second function, LINK,
implements association. If two “items” A and B are already represented in
the neural system in the sense that certain inputs can cause either of these
to fire, the task of LINK is to modify the circuit so that at subsequent times,
whenever the representation of item A fires, the modified circuit will cause
the representation of item B to fire also.

Implicit in the definitions of both JOIN and LINK is the additional re-
quirement that there be no deleterious interference or side effects. This
means that the circuit modifications do not impair the functioning of previ-
ously established circuits; that when the newly created circuit executes, no
unintended other items fire; and that the intended action of the new circuit
cannot be realized in consequence of some unintended condition.

We note that for some neural systems, such as the hippocampus and
the olfactory bulb, the question of what items, whether representing loca-
tion or odors, for example, are being represented has been the subject of
some experimental study already. Also for such systems, our four cortical
parameters can be measured. We therefore expect that our analysis offers
both explanatory and predictive value for understanding such systems. For
the parts of cortex that process higher-level functions, the corresponding
experimental evidence is more elusive.

In order that our results apply to a wide range of neural systems, we
describe computational results for systems within a broad range of real-
istic parameters. We show that for wide ranges of values of the neuron
count between 10° and 10, and of values of the synapse count or degree
between 16 and 10°, there is a range of values of the synapse strength be-
tween .001 and .125 for which both JOIN and LINK can be implemented.
Furthermore, this latter range usually includes synaptic strengths that are
at the small end of the range. Tables 1 through 4 summarize these data and
show, given the values of the neuron count and degree of a neural sys-
tem, the maximum synapse strength that is sufficient for JOIN and LINK in
both disjoint and shared representations. The implied algorithms for LINK
take just one step and for JOIN either two steps (see Tables 1 and 2) or
also just one step (see Tables 3 and 4). The simplicity of these basic al-
gorithms leaves room for more complex functions to be built on top of
them.

We also describe a general relationship among the parameters that holds
under some stated assumptions for systems that use the mechanisms de-
scribed. This relationship (x) states that kn exceeds rd, but only by at most
a fixed small constant factor, where 1/k is the maximum collective strength
of the synapses to any one neuron from any one of its presynaptic neurons,
n is the number of neurons, r is the number of neurons that represent a sin-
gle item, and d is the number of neurons from which each neuron receives
synapses.
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The essential novel contribution of this article is to show that random
graphs have some unexpected powers. In particular, for parameters that
have been observed in biology, they allow a method of assigning memory
to a new item and also allow for paths, and algorithms for establishing the
paths, for realizing associations between items.

There is a long history of studies of random connectivity for neural
network models, notably Beurle (1955), Griffith (1963, 1971), Braitenberg
(1978), Feldman (1982), and Abeles (1991). In common with such previous
studies, ours assumes random interconnections and does not apply to sys-
tems where, for example, the connections are strictly topographic. The other
component of our approach that also has some history is the study of lo-
cal representations in neural networks, including Barlow (1972), Feldman
(1982), Feldman and Ballard (1982), Shastri and Ajjanagadde (1993), and
Shastri (2001). The question of how multiple cognitive functions can be re-
alized simultaneously using local representations and random connections
has been pursued by Valiant (1988, 1994).

Our central subject matter is the difficulty of computing flexibly on sparse
networks where nodes are further frustrated in having influence on others
by the weakness of the synapses. This difficulty has been recognized most
explicitly in the work of Griffith (1963) and Abeles (1991). Griffith suggests
communication via chains that consist of sets of k nodes chained together
so that each member of each set of k nodes is connected to each member of
the next set in the chain. If the synaptic strength of each synapse is 1/k, then
a signal can be maintained along the chain. Abeles suggests a more general
structure, which he calls a synfire chain, in which each set has 1 > k nodes
and each node is connected to k of the /i nodes in the next set. He shows that
for some small values of k, such chains can be found somewhere in suitably
dense such networks.

The goals of this article impose multiple constraints for which these pre-
vious proposals are not sufficient. For example, for realizing associations,
we want that between any pair of items, there is a potential chain of com-
munication. In other words, these chains have to exist from anywhere to
anywhere in the network rather than just somewhere in the network. A
second constraint is that we want explicit computational mechanisms for
enabling the chain to be invoked to perform the association, and the passive
existence of the chain in the network is not enough. A third requirement is
that for memory formation, we need connectivity of an item to two others.

Some readers may choose to view this article as one that solves a com-
munication or wiring problem, and not a computational one. This view is
partlyjustified since once it is established that the networks have sufficiently
flexible interaction capabilities, the mechanisms required at the neurons are
computationally very simple. For readers who wish to investigate more rig-
orously what simple means here, we have supplied a section that goes into
more details. The model of computation used there is the neuroidal model
(Valiant, 1994), which was designed to capture the communication capa-
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bilities and limitations of cortex as simply as possible. It assumes only the
simplest timing and state change mechanisms for neurons so that there can
be no doubt that neurons are capable of doing at least that much. Demon-
strating that some previously mysterious task can be implemented even
on this simple model therefore has explanatory power for actual neural
systems.

The neuroidal model was designed to be more generally programmable
than its predecessors and hence to offer the challenge of designing explicit
computational mechanisms for explicitly defined and possibly multiple cog-
nitive tasks. The contribution of this article may be viewed as that of exhibit-
ing a wide range of new solutions to that model. The previous solutions
given for the current tasks were under the direct action hypothesis—the
hypothesis that synapses could become so strong that a single presynaptic
neuron was enough to cause an action potential in the postsynaptic neuron.
Whether this hypothesis holds for neural systems that perform the relevant
cognitive tasks is currently unresolved. In contrast, the mechanisms de-
scribed here are in line with synaptic strength values that have been widely
observed and generally accepted.

This letter pursues a computer science perspective. In that field, it is
generally found, on the positive side, that once one algorithm has been
discovered for solving a computational problem within specified resource
bounds, many others often follow. On the other hand, on the negative side,
it is found that the resource bounds on computation can be very severe.
For example, for the NP-complete problem of satisfiability (Cook, 1971; Pa-
padimitriou 1994) of boolean formulas with #n occurrences of literals, no
algorithm for solving all instances of it in 2f") steps is known for any func-
tion f(n) growing more slowly than linear in #. If a device were found that
could solve this problem faster, then a considerable mystery would be cre-
ated: the device would be using some mechanism that is not understood.
Neuroscience has mysteries of the same computational nature and needs
to resolve them. This letter aims at making one of these mysteries concrete
and to resolve it.

2 Graph Theory

We consider a random graph G with n vertices (Bollobas, 2001). From each
vertex, there is a directed edge to each other vertex with probability p, so that
the expected number of nodes to which a node is connected is d = p(n — 1).
In this model, a vertex corresponds to a neuron, and a directed edge from
one vertex to another models the synapse between the presynaptic neuron
and the postsynaptic neuron. Such a model makes sense for neural circuits
that are richly interconnected. A variant of the model is that of a bipartite
graph where the vertex set can be partitioned into two subsets V1 and V>,
such that every edge is directed from a V7 vertex to a V; vertex. This would
be appropriate for modeling the connections from one area of cortex to a
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second, possibly distant, area. The analyses we give for JOIN and LINK
apply equally to both variants. We shall use d = pn in the analysis, which
is exact for the bipartite case, and a good approximation for the other case
for large n.

In general, to obtain rigorous results about random graphs, we take the
view that for the fixed nodes under consideration, the edges are present or
not, each with probability p independent of each other. It is convenient for
analysis to view the edges as being generated in that manner afresh rather
than as fixed at some previous time.

We assume that the maximum synaptic strength is 1/k of the threshold,
for some integer k. In the graph theoretic properties, we shall therefore al-
ways need to find atleast k presynaptic neighbors to model the k presynaptic
neurons that need to be active to make the neuron in question active.

Finally, we shall model the representation of an item in cortex by a set of
about r neurons, where r is the replication factor. In general, such an item will
be considered to be recognized if essentially all the constituent neurons are
active. In general, different items will be represented by different numbers of
neurons, though of the same order of magnitude. We donot try to ensure that
they are all represented by exactly r. However, once an item is represented
by some 7’ neurons, then it makes sense to assert that if no more than r'/2
of its members are firing, then the item has not been recognized.

We call a representation disjoint or shared, respectively, depending on
whether the sets that represent two distinct items need, or need not, be
disjoint. In disjoint representations, clearly, no more than n/r items can be
represented, while shared representations allow for many more, in princi-

ple.

2.1 Memory Formation for Disjoint Representations. The JOIN prop-
erty is the following. Given values of #, d, and k, which are the empirical
parameters of the neural system, we need to show that the following holds.
Given two subsets of nodes A and B of size r, the number of nodes to which there are
at least k edges directed from A nodes and also at least k edges directed from B nodes
has expected value of r. The vertices that are so connected will represent the
new item C. The above-mentioned property ensures that the representation
of C will be made to fire by causing the representation of either one of A
or B to fire. The required network is illustrated in Figure 1. We want C to
be an equal citizen as much as possible with A and B for the purposes of
further calls of JOIN. We ensure this by requiring that the expected number
of nodes that represent C is the same as the number of those that represent
A and B.

In general, we denote by B(r, p, k) the probability that in r tosses of a coin
that comes up heads with probability p and tails with probability 1 —p, there
will be k or more heads. This quantity is equal to the sum for j ranging from
k to r of the value of 7 (1, p, j) = (r!/(j1(r — j)!)pf(l — p)r_j. For constructing
our tables, we compute such terms to double precision using an expansion
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Figure 1: Graph-theoretic structure needed for the two-step algorithm for dis-
joint representations for the memorization of the conjunction of items at A and
B. For shared representations, the sets A and B may intersect. For the one-step
algorithm, there is a bound k,, on the total number of edges coming from A and
B rather than bounds on A and B separately.

for the logarithm of the factorial or gamma function (Abramowitz & Stegun,
1964).

We now consider the JOIN property italicized above. For each vertex u
in the network, the probability that it has at least k edges directed toward
it from the r nodes of A is B(r, p, k), since each vertex of A can be regarded
as a coin toss with probability p of heads (i.e., of being connected to #) and
we want at least k successes. The same holds for the nodes of B. Hence
the probability of a node being connected in this way to both A and B is
P = (B(r, p, k))?, and hence the expected number of vertices so connected is
n times this quantity. The stated requirement on the JOIN property therefore
is that the following be satisfied:

n(B(r,p, k)* =r. @2.1)

This raises the important issue of stability. Even if the numbers of nodes
assigned to A and B are both exactly 7, this process will assign r nodes
to C only in expectation. How stable is this process if such memorization
operations are performed in sequence, with previously memorized items
forming the A and B items of the next memorization operation? Fortunately,
itis easy to see that this process gets more and more stable as r increases. The
argument for relationship 2.1 showed that the number of nodes assigned to
C is a random variable with a binomial distribution defined as the number
of successes in #n trials where the probability of success in each trial is p'.
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This distribution therefore has mean np’, as already observed, and variance
np’ (1 — p'). The point is that this variance is close to the mean r = np’ if p’ is
small relative to 1, and then the standard deviation, which is the square root
of the variance, is approximately ./r. Hence, the standard deviation as a
fraction of the mean decreases as 1/./r as the mean np’ = r increases. For the
ranges of values that occur typically in this article, such as r equal to 103, 10%,
or even much larger, this ./r standard deviation will be a small fraction of
r, and hence one can expect the memorization process to be stable for many
stages. Thus, for stability, the large k large r cases considered in this article
are much more favorable than the k = 1 case considered in Valiant (1994)
with r = 50. For the latter situation, some analysis and suggested ways of
coping with the more limited stability were offered in Valiant (1994) and
Gerbessiotis (2003).

If fewer than a half of the representatives of an item are firing, we regard
that item as not being recognized. As a side-effect condition, we therefore
want that if no more than a half of one of A or Bis active, then the probability
that more than a half of C is active is negligible. Since we cannot control the
size of C exactly, we ensure the condition that at most half of C be active by
insisting that at most a much smaller fraction of r, such as /10, be active.
The intention is that r/10 will be smaller than a half of C even allowing for
the variations in the size of C after several stages of memory allocation. This
gives

B, B(r/2,p, k)B(r, p, k), r/10) ~ 0. (2.2)

The second side-effect condition we impose is related to the notion of capac-
ity, or the number of items that can be stored. To guarantee large capacity,
we need an assurance that the A A B nodes allocated will not be caused
to fire if a different conjunction is activated. The bad case is if the second
conjunction involves one of A or B, say A, and another item D different from
B. If the node sets allocated to A A B and not to A A D is of size at least 2r/3,
then we will consider there to be no interference since if A A B is of size at
most 4r/3, then the firing of A A D will cause fewer than half of the nodes
of A A B to fire.

The probability that a node receives k inputs from B and k from A, but
fewer than k from D, is p’ = (1 — B(r, p, k)) (B(r, p, k))?, and we want that the
number of nodes that are so allocated to A A B but not to A AD to be at least
2r/3. Hence, we want

B, p',2r/3) ~ 1. (2.3)

2.2 Association for Disjoint Representations. We now turn to the LINK
property, which ensures that B can be caused to fire by A via an intermediate
set of “relay” neurons: Given two sets A and B of r nodes, for each B vertex u with
high probability, the following occurs: the number of (relay) vertices from which
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k

Figure 2: Graph-theoretic structure needed for the algorithm for establishing
an association of the item at A to the item at B.

there is a directed edge to u and to which there are at least k edges directed from A
nodes is at least k. We shall call this probability Y. This property ensures that
each neuron u that represents B will be caused to fire with high probability
if the A representation fires. This property is illustrated in Figure 2.

For the LINK property, we note that the probability of a vertex having
at least k connections from A and also having a connection to B vertex u
is pB(r, p, k). We need the number of such nodes to be at least k with high
probability, or in other words that

Y = B, pB(r,p, k), k) ~ 1. (2.4)

Asaside-effect condition, weneed thatif at most half of A fire, then with high
probability, fewer than half of B should fire. We approximate this quantity
by assuming independence for the various u:

B(r, B(n, pB(r/2,p, k), k), r/2) ~ 0. (2.5)

As a second side-effect condition, we consider the probability that a third
item C for which no association with B has been set up by a LINK operation
will cause B to fire because some relay nodes are shared with A. Further, we
make this more challenging by allowing there to have been t, rather than
just one, association with B previously set up, say from Ay, ..., A;. Now, the
probability thatanode will actas arelay node from A; toa fixednodeuin Bis
pB(r, p, k). For t such previous associations, the probability thatanode acts as
arelay foratleastone of the A;isp’ = p(1—(1—B(r, p, k))"). If we require that
these nodes be valid relay nodes from item C also, then this probability gets
multiplied by another factor of B(r, p, k) since C is disjoint from Ay, ..., A;.
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Then the side-effect requirement becomes that p” = B(n, p’B(r, p, k), k), the
probability of there being at least k relay nodes for u is so small that it is
unlikely that a large fraction, say at least r/2, of the B nodes are caused to
fire by C. We approximate this quantity also by making the assumption of
independence for the various u:

B, p",r/2) ~ 0. (2.6)

2.3 Memory Formation for Shared Representations. By shared repre-
sentation, we mean a representation where each neuron can represent more
than one item. There is no longer a distinction between nodes that have and
those that have not been allocated. The items each node will be assigned
by JOIN are already determined by the network connections without any
training process being necessary. The actual meaning of the items that will
be memorized at a node will, of course, depend on the meanings assigned
by a different process, such as the hard wiring of certain sensory functions
to some input nodes.

The model here is that an item is represented by r neurons, randomly
chosen. The expected intersection of two such sets then is of size r*/n. We
can recompute the relations corresponding to equations 2.1 to 2.6 under
this assumption. For simplicity, we shall consider only the case in which for
JOIN, the neurons of A and B are in one area, and those of C in another,
and for LINK the neurons of A, B and the relay nodes are in three different
areas, respectively. Then, if for simplicity we make the assumption that the
intersection is of size exactly 7, the closest integer to 2/1, then relation 2.1
for JOIN becomes:

B, p. k) + Zicox [T p, DB — 7, p k=)l =, (2.1)

where i in the summation indexes the number of connections from the in-
tersection of A and B. We need to show that c; is close to one.
Equation 2.1" we adapt from equation 2.2 to be the following;:

B, p'. r/10) ~ 0, 2.2')

wherep’ =B, p, k) + (o, k-)[T (', p, DB —v, p, k—))B@r/2—71, p, k—
i)]), where i in the summation indexes the number of connections from a
neuron that is in both A and B, and ¥ = #?/n.

We adapt equation 2.3’ from equation 2.3 by considering the case that the
intersections AN B, AND, and BN D all have their expected sizes ' = 72 /n,
and that A N B N D has its expected size " = r*/n?. For a fixed node in C,
we shall denote the numbers of connections to these four intersections by
i+m, j+m, [+ m, and m, respectively, in the summation below. Then the
probability of a node being allocated to A A B and not to A A D is lower
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bounded by the following quantity p’, where r* =+ —1":

=0T (", po D) S(j=0k—i T ", ps D E=0k-i=pT (", p. D)
2 m=0:k—i—j—1 T (", p, m)
[Bor—2r++¢" ,pk—i—j—mB@r—2r++",pk—j—1—m)
A-=Br=2r+71",pk—i—1—m))].

(Note that to allow for terms in which the intersection of A and B have
more than k connections to the C node, we need to interpret the first term
T (", p,i) in the above expression for the particular value i = k to mean
B(@", p, k).) Then the relationship we need is

B, p',2r/3) ~ 1. 2.3)

2.4 Association for Shared Representations. Equations 2.4’ and 2.5 in
the shared coding are identical to equations 2.4 and 2.5 since we are assum-
ing here, for simplicity, that in an implementation of LINK between A and
B, the neurons representing A, B, and the relay nodes are from three disjoint
sets.

Equation 2.6’ will correspond to equation 2.6 in the special case of t = 1.
For a fixed node in B, the probability of a node u being a relay node to it and
having k edges coming from both A and Cis

.....

The probability that there are at least k of these is p” = B(n, p’, k). We want
the probability that at least half of the members of B have such sets of at
least k relay nodes to be small. We approximate this quantity by assuming
independence for the various u:

B(r,p",r/2) ~ 0. (2.6")

2.5 One-step Memory Formation for Shared Representations. The al-
gorithm for memorization implied above requires A and B to be active at
different time instants and therefore requires the memorization process to
take two steps. Here we shall discuss a process by which memorization can
be achieved in one step. For brevity, we shall consider one-step only for the
shared representation case. The results are presented in Tables 3 and 4.

The main advantage of these one-step algorithms is that the algorithms
become even simpler and assume even less about the timing mechanism of
the model of computation. But one small complication arises: the number of
inputs needed to fire a node in the memorization algorithm is now different
from that needed in the association algorithm. Instead of having a single
parameter k, we shall have two parameters, k, and k,, respectively. It turns
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out that k,, = 2k, works. This means that we can fix the parameter k of the
neurons to be k;;, and then use a weight in the memorization algorithm that
is only half as strong as the maximum value allowed.

We now consider the JOIN property. For each vertex u that is a potential
representative of C, the probability that it has at least k;, edges directed
toward it from the nodes of A UB is now p' = BQ2r — ', p, ky), provided
the intersection of A and B is of size exactly /, the integer closest to the
expectation r2/n. This is because each vertex of A U B may be regarded as
a coin toss with probability p of coming up heads (i.e., of being connected
to u), and we want at least k;, successes. Hence, the expected number of
vertices so connected is n times this quantity. The stated requirement on the
JOIN property therefore is that the following be satisfied:

nBQ@r—7v,p, km) — 1. (2.17)

Alternatively one could impose some specific probability distribution on
the choice of A and B and compute an analog of equation 2.1” that is precise
for that distribution and does not need the assumption that the intersections
are of size exactly .

If fewer than half of the representatives of an item are firing, we regard
that item as not being recognized. As a side-effect condition, we therefore
want that if no more than half of one of A or B is active, then the proba-
bility that more than half of C is active is negligible. In exact analogy with
equations 2.2 and 2.2, we have that

B(n, B(3r/2, p. ky), r/10) ~ 0. 2.2

Here, 3r/2 upper bounds the number of firing nodes in A U B if at most r/2
are firing in A and all are firing in B, say.

As a second side-effect condition, we again need an assurance that the
A A Bnodes allocated will not be caused to fire if a different conjunction is
activated. Again, a bad case is if the second conjunction is A A D where D
is different from B. If the node set allocated to A A B and not to A A D is at
least of size 2r/3, we will consider there to be no interference since if A A B
is of size less than 4r/3 then the firing of A A D will cause fewer than half of
the nodes of A A B to fire.

If A, B, and D were disjoint sets of r nodes, then the probability that a
node receives ky, inputs from A UB but fewer than k = k;, from AUD would
be

P = Zee0k-1)Z (. p, B, p, ky — ) (A — B, p, ki — 9)),

where s denotes the number of nodes in A that are connected to that node.
We want the number of nodes that are so allocated to A ABbutnotto AAD
to be at least 2r/3. Hence we would want that

Bn,p',2r/3) ~ 1. (2.37)
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In the event that A, B, and D are not disjoint but randomly chosen sets of r
elements, we need equation 2.3” but with a value of p’ computed as follows.
We assume that the intersections ANB, AND, and BND all have their expected
sizes ¥ = 1?/n, and that A N B N D has its expected size 1’ = r*/n*. For a
fixed node in C, we shall denote the number of connections to these four
intersections by i +m, j + m, [ + m, and m, respectively, in the summation
below. Then the probability of a node being allocated to A A B and not to
A ADislower-bounded by the following quantity p’, where r* = ¥'—+" and
=r——2r+v"

P = S0k T (", p. ) Z(icoi—s—1)T (" . D) Z(jmoih—izs—1) T (", . )
m=0k—i—j-s—1) L ("', p, M) L(1=0:k—i—j—m—-s—1) T (", p, )
[(B(r#,p,km —s—i—j—1—m))

A1 -=B* pky—s—i—j—1—m)].

Here s indexes the number of connections from nodes that are in A but not
in B or D.

2.6 One-Step Association with Shared Representations. For the LINK
property we simply have relations 2.4, 2.5, and 2.6" with k replaced by k;:

Y = B(n, pB(r,p, ka), ka) ~ 1, (2.4”)

B(r, B(n, pB(r/2, p, ka), ka), 1/2) ~ 0, (2.5”)
and

B, p",r/2) ~ 0, (2.6”)
where

p’'=Bn,p' k), and
P =pB, p. k) + Zgmo. k-0 [T T, p, B — 7, p ks — )?]).

yeeey

Since equation 2.6” guarantees only that one previous association to item
C will not lead to false associations with C, we also use equation 2.6 to
compute an estimate of the maximum number of previous associations that
still allow resistance to such false associations.

3 Graph-Theoretic Results

In Tables 1 and 2 we summarize the solutions we have found. For each com-
bination of , d, and k, the table entry gives a value of r that satisfies all six
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conditions 2.1 to 2.6 to high precision, as well as their equivalents, condi-
tions2.1,2.2/,2.3/,and 2.6/, for shared representations. (There are essentially
only eightequations since equations 2.2’ and 2.6/, subsume equations 2.2 and
2.6, respectively.) For example consider a neural system with n = 1,000,000
neurons where each one is connected to 8192 others on the average and the
maximum synaptic strengths are 1/64 of the threshold amount. The entry
8491 found in Table 1 gives the value of r that solves the 10 constraints. It
means that if each item is represented by about 8491 neurons, then the graph
has the capability of realizing JOIN and LINK using the algorithms to be
outlined in later sections. The central positive result of this article is the existence
of entries in the tables for combinations of neuron numbers, synapse strengths, and
synapse numbers that are widely observed in neural systems. We expect that the
analysis that underlies the tables offers a basis for a calculus for understand-
ing the algorithms and data structures used in specific systems, such as the
hippocampus or the olfactory bulb.

In interpreting the tables the following comments are in order. The solu-
tions were found by solving equation 2.1 using binary search, and discarding
any solutions that failed to solve the remaining relations. As a further com-
ment, we note that equation 2.1 and some of the others are defined only for
integer values of 7, and in our search we therefore imposed the constraint of
allowing only such integer values. The values of r are therefore the integer
values for which the value of the left-hand side of equation 2.1 is as close as
possible to . We detail the exact integer values as a reminder of this. For all
the entries shown, the difference between the two sides of equation 2.1 is at
most 1%, except for those labeled *, where a difference of 10% is allowed.

The following are some further observations: The case of k = 1 in equa-
tion 2.4 is known (Valiant, 1994) to give an asymptotic valueof Y ~ 1—-1/e =
.63 ....Ingeneral, values k = 1, 2, and 4 violate at least one of either equation
2.2 or 2.5. Most of the entries support equation 2.6 only up to t = 1, except
for some entries with k = 8 or 16 and with some of the higher values of 4.
Finally, corresponding entries for different values of the neuron count # are
in the ratio of the values of .

We note that for the k = 1 case, the analysis in Valiant (1994) relates to the
analysis here in the following way. It is observed there that in general for
any r and #, the graph density that supports JOIN is too sparse to support
LINK with a Y value close to 1. The suggested solution there is to use a
graph that is dense enough to support LINK and to have it ignore a random
fraction of the connections when implementing JOIN so as to effectively
use a sparser graph regime for that purpose. On a separate issue, the earlier
analysis did not have any equivalents of the relations 2.2 and 2.5 above. For
disjoint representations, where the intention is that in each situation, either
all or none of the representatives of an item fires, these conditions might be
argued to be too onerous.

Tables 3 and 4 summarize the solutions we have found that support the
one-step algorithm. We note that in general, corresponding values of r are a
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Table 1: Value of the Replication Factor r That Is the Closest Integer Solution to
Equation 2.1 for the Given Values of the Neuron Count 7, the Degree d, and the
Inverse Synaptic Strength k.

k=8 k=16 k=32

k=64

k=128 k=256 k=512 k=1024

n = 100,000 neurons
d=128

d =256 1981
d =512 899
d=1024 412
d = 2048

d = 4096

d = 8192

d =16,384

d = 32,768

d = 65,536

n = 1,000,000 neurons
d =128

d =256 19,803
d =512 8979
d=1024 4105
d = 2048 1888
d = 4096 873
d = 8192 406
d=16,384 190
d = 32,768

d = 65,536

d =131,072

d =262,144

d = 524,288

n = 10,000,000 neurons
d=128

d =256 198,025
d =512 89,777
d=1024 41,033
d = 2048 18,868
d = 4096 8717
d = 8192 4043
d=16,384 1882
d=32,768 879
d = 65,536

d =131,072

d =262,144

d = 524,288

d =1,048,576

5025
2338
1098

519
*247
*119

50,235
23,365
10,957
5168
2449
1165
"557
7268
A*130

502,339
233,636
109,547
51,660
24,467
11,628
5542
72649
1269
7610
7295

5420
2582
1238

597
*290
*143

54,181
25,796
12,353
5940
2866
1388
675
330
~*163

541,791
257,940
123,498
59,368
28,628
13,839
6704
~3255
71584
~773

2749
1337
654
*322
*162

27,460
13,330
6491
3169
1552
763
N*378
A*190

274,571
133,265
64,866
31,643
15,464
A7570
73712
1824

2865
1407
*695 1458
N*347 - MH727
28,607
14,015
6883 14,497
73388 7161
A*1672 3545

A*830 1761
"*415

286,021

140,098
68,761 144,886
33,802 71,516

716,640 735,342
78202 "17,484
4049 78660

*1496
"*753

14,836
77360
73660
A*1827

148,248
73,463
36,437
18,089

774,842

Notes: Equation 2.1 is accurate to ratio 1072 (but only 10~ if marked by *) and Equation
2.4t0107°. Equations2.2,2.3,2.5,2.6,2.2/,2.3',and 2.6’ are accurate to 10~°. For unmarked
entries these accuracies are achieved even if the noise rates are 1074 for equations 2.2, 2.3,
2.5, and 2.2; 107> for 2.6 and 2.3’; and 107° for 2.6'. For entries marked with a *, this
accuracy is achieved with the lower noise rate 107 for all seven equations. Equation 2.1/
is satisfied with constant 1 < ¢; < 1.1.
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Table 3: The Value of the Replication Factor  That Is the Closest Integer Solution
to Equation 2.1” for the Given Values of the Neuron Count #, the Degree d, and
the Inverse Synaptic Strength k, where k,, = 2k and k, = k.

k=8 k=16 k=32 k=64 k=128 k=256 k=512 k=1024

n = 100,000 neurons

d=128

d = 256

d=>512 2134 5170

d=1024 1000 2436

d =2048 473* 1164 2653

d = 4096 562* 1284* 2809

d = 8192 628* 1372* 2922

d=16,384 678* 1438*

d=32,768 339* 716* 1488*

d = 65,536

n = 1,000,000 neurons

d =128

d =256

d=>512

d=1024 3571 9974 24327

d =2048 4707 11,603 26,487

d = 4096 2233 5576 12,792 28,027

d=8192 1065 2692 6219 13,650 29,122

d=16,384 1305 3037 6688 14,265 29,899

d = 32,768 636* 1488* 3290 7028 14,706

d = 65,536 733 1625* 3477 7274

d =131,072 364* 807* 1728* 3614 7454
d =262,144 406* 865 1806 3717*
d = 524,288

n = 10,000,000 neurons

d =128

d =256

d=>512

d=1024 35,693 99,248

d =2048 16,451 46,807 115,310

d = 4096 22,307 55,487 126,970

d=8192 10,619 26,877 61,909

d=16,384 5069 13,005 30,302 66,577

d = 32,768 6307 14,815 32,814 69,939

d = 65,536 7258 16,155 34,635 72,347

d =131,072 3562 7967 17,131 35,946
d=262,144 3936 8487 17,838 36,887
d = 524,288 8867 18,350
d =1,048,576

Notes: Equation 2.1” is accurate to ratio 1072 (but only 10~ if marked by *) and equation
2.4" t0 107°. Equations 2.2”,2.3",2.5”, and 2.6” are accurate to 10~°. These accuracies are
achieved even if the noise rates for equations 2.2”,2.3",2.5”, and 2.6” are 1074,1074,1074,
and 1072, respectively.
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little smaller in these tables than in Tables 1 and 2. With regard to equation
2.6, our findings, which are not detailed here, are as follows. While the
parameters of Tables 1 and 2 support maximum values of ¢t = 1 usually,
the smaller values of r in Tables 3 and 4 (where equation 2.6 is only an
approximation) lead to rather larger values of t, scattered in the range 1 to
7. Further, it turns out that instead of using k,, = 2k;, as we do in these
tables, we can find similar results for slightly smaller coefficients, such as
ky = 1.95k,, or k,, = 1.9k,, and these give even smaller values of r and larger
values of .

4 The Computational Model and Algorithms

As explained earlier, our goal is not only to show that the connectivity of
the networks we consider are sufficient to provide the minimum communi-
cation bandwidth needed for realizing memorization and association, but
also to show that algorithms are possible that modify the network so as
to be able to execute instances of these tasks. In particular, each of these
two tasks and for each representation, one needs two algorithms—one for
creating the circuit, say for associating A to B in the first place, and one for
subsequently executing the task, namely, causing B to fire when A fires.

For describing such algorithms, we need a model of computation. We
employ the neuroidal model because it is programmable and well suited to
describing algorithms (Valiant, 1994). As mentioned earlier, the neuroidal
model is designed to be so simple that there is no debate that real neurons
have at least as much power. It is not designed to capture all the features of
real neurons.

Our algorithms are described for a variant of the neuroidal model that
allows synapses to have memory in addition to weights. This has some bio-
logical support (Markram & Tsodyks, 1996b) and allows for somewhat more
natural programming, even though temporary values of synaptic weights
may be used instead, in principle, to simulate such states (Valiant, 1994).
A brief summary of the model is as follows. A neuroidal net consists of a
weighted directed graph G with a model neuron or neuroid at each node.
A neuroid is a threshold element with some additional internal memory,
which can be in one of a set of modes. The mode s; of node i at an instant
will specify the threshold T;, and may also have further components such
as a member g; of a finite set of states Q. In particular, a mode is either firing
or nonfiring and f; has value 1 or 0 accordingly. The weight of an edge from
node j to node i is wj; and models the strength of a synapse for which j
is presynaptic and i is postsynaptic. Each synapse can also have a state g;;,
which with wj; forms a component of the mode s;;. The only way a neuroid
can be influenced by other neuroids is through the quantity w; which equals
the sum of the weights wj; over all nodes j presynaptic to i that are in firing
modes. Each neuroid executes an algorithm that is local to itself and can be
formally defined in terms of mode update functions § and A, for the neuroid
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itself and each synapse, respectively:
8(si, wi) = s, and
A(si, wi, jis fj) = Sj;.

These relations express the values of the modes of the neuroid and
synapses at one step in terms of the values at the previous step of the vari-
ables on which they are permitted to depend. Thus, the mode of a neuroid
can depend only on its mode at the previous step and on the sum w; of
weights of synapses incoming from firing nodes. The mode of one of its
synapses can depend only on the mode of the same synapse, on the mode
of the neuroid, on the firing status of the presynaptic neuroid, and on the
sum w; of weights of synapses incoming from firing presynaptic neuroids.
The model assumes a timing mechanism that has two components. Each
transition has a period. We assume here that all transitions have a period of
1, except for threshold transitions, those that are triggered by w; > T;, which
work on a faster timescale. There is a global synchronization mechanism
such that, for example, if some external input is to cause the representations
of two items A and B to fire simultaneously, then the nodes partaking in
these representations will be caused to fire synchronously enough that the
algorithms that will be caused to execute can keep in lockstep for the du-
ration of these local algorithms. These durations will be typically no more
than 10, and for the purposes of this article, just two steps.

By a disjoint representation, we mean a representation where each neu-
roid can represent at most one item, though one item may be represented
by many neuroids. The specific disjoint representation that our algorithms
support has been called a positive representation (Valiant, 1994). The gener-
alization that allows a node to represent more than one item, as needed
for the shared representations of the next section, we call a positive shared
representation.

The neuroidal model allows for negative weights, which may be needed,
for example, for inductive learning. However, the algorithms we describe
here for JOIN and LINK do not use negative weights.

We shall start with the algorithms needed for the disjoint two-step scheme
implied by relations 2.1 to 2.6. The algorithms for implementing JOIN and
LINK are very similar to those that were described for the same tasks for
unit weights (Valiant, 1994, algorithms 7.2 and 8.1). It is clear, however, that
once graph-theoretic properties such as equations 2.1 to 2.6 are guaranteed,
then a rich variety of variants of these algorithms also suffices. We shall
describe these algorithms informally here.

The following algorithm for creating JOIN needs the nodes of A and B
to be caused to fire at distinct time steps. The nodes that are candidates for
C = AAB(1) areinitially in “unallocated” state q1, (2) have a fixed threshold
T, (3) have each synapse in initial state qq1, and (4) have all the presynaptic
weights initially at the value T/k.
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The algorithm acting locally on each candidate C node will act over
two steps. The first step is prompted by the firing of A and the second
by the firing of B one time unit later. Following these two prompts, each
candidate C node initially in state ql that has at least k connections from
A and also at least k connections from B will be in state q2, indicating
that it has become a C node and assigned to store something. Incoming
weights from nodes other than A or B will be made zero. An incoming
weight from A will equal T/x if there are x > k of them, and those from
B will equal T/y if there are y > k of them. A candidate node that does
not receive two successive prompts will return to the initial unassigned
condition.

The algorithmic mechanism that realizes this outcome is the following.
First, note thatanode that does become a C node needs to make the incoming
synapses have one of the three weight values depending on whether it comes
from A or B or neither. The trick is that after the A prompt, the synapses from
A will memorize the value T/x for an x > k as its weight, and memorize the
fact that it is in this transitory condition by having the synapse state have
the temporary value qq2. Also, the node will memorize the fact that it is in
a transitory state in which k connections from A have been found by going
to state g3. At the B prompt, if at a candidate node in state q3 some y > k
synapses come from firing nodes, then these synapses can be updated to
have value T/y. At the same time, the A synapses, in state qq2, can go on to
take on the values T/x, and the remaining synapses the value 0. However,
if no such k connections from B nodes are found at this second step, then
the whole neuroid returns to its initial condition.

The reader can verify that the circuit constructed as described can execute
the created conjunction using a very similar two-step process if at any later
time A and B are presented at successive time instants. However, many
variations are possible. For example, if the weights are set to T/2x and T/2y
instead of T/x and T/y, then simultaneous presentation of A and B will
work for recognition. Thus, one-step execution is possible even with two-
step creation.

We observe here that in general, there is a chance that the set of neuroids
identified to represent a conjunction are mostly previously taken, and the
new ones that can be assigned form only a small fraction of . Condition 2.2
ensures that this effect is initially limited. The situation here is akin to that
of a hashing scheme in which as the memory fills up, fewer and fewer new
places are available (Valiant, 1994).

We now go on to discuss an algorithm for creating LINK. We consider A
to be represented in one area from which there are directed edges to an area
of relay neuroids, from which in turn there are directed edges to a third area
containing B. Initially, the relay neuroids have threshold T, and all weights
on incoming edges weight T/k, and on outgoing edges weight 0. The relay
neuroids never change, except for firing. The neuroids in B are in state gl
initially.
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The algorithm for creating LINK has one step in which the representa-
tions of A and B are caused to fire at the first prompt. For the nodes in B
that are in state q1 and are caused to fire, each incoming edge from a firing
node is given weight T/k.

The algorithm for executing LINK is even simpler. It requires simple
threshold firing at both the relay level and in the B nodes.

We now go on to discuss the shared representation expressed by relations
2.1" to 2.6'. The algorithm given for creating and executing LINK in the
disjoint case described above applies unchanged to the shared case also. For
JOIN, the creation algorithm given has to be modified so that no distinction is
made any more between allocated and unallocated nodes. Now no creation
process is necessary. Execution can be realized by the following modification
of the creation algorithm for the disjoint case: (1) the final state is made the
same as the initial state q1, rather than a new state q2, and (2) no synaptic
weights are changed at all. The evaluation algorithm is unchanged.

The descriptions of the two algorithms above assume bipartite graphs,
in which A and B will be in different areas for the case of LINK and C in a
different area from A and B in the case of JOIN. To adapt the algorithms to
general graphs, small modifications are needed to allow for the node sets
having nonzero intersections.

For the shared representation one-step algorithm, there is again no cre-
ation process. Evaluation requires again only threshold firing. For LINK,
there is no difference between the one-step and two-step cases.

5 Capacity and Interference

The intention of our representations is that when all or most of the nodes
representing an item fire, then the item is considered recognized. For ex-
ample, the activation of sufficiently many neurons in a representation in a
motor area of cortex would cause a certain muscle movement.

This style of representation gives rise to a pair of related concerns: How
many items can be represented in the system? What exactly does it mean
for an item to be represented if unforeseen interference from other activities
in the circuit can occur?

First, we note that these concerns occur in a fundamentally novel way in
our approach as compared with some previous theories. In a traditional as-
sociative memory, for example, there is just one kind of execution, retrieval,
and we can assume that nothing else is going on simultaneously with an
instance of it. Hence, the notion of capacity, the number of items that can be
stored, is analyzable in a clean manner (Graham & Willshaw, 1997).

In this letter, we have two kinds of tasks, memorization and associa-
tion. We also have diverse environments arising from different histories
of past circuit creations. Further, we may want some robustness to other
simultaneous activities in the circuit, and our longer-term aim may be to
support further tasks. These factors make possible a large number of poten-
tial sources of interference, which we define to be the effect on the execution
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of an algorithm of network conditions that arise from sources not specific
to that execution.

Our guarantee that the circuit acts correctly is only with respect to some
specified set of noninterference conditions such as relations 2.2, 2.3, 2.5, or
2.6 and a robustness condition that, as described in the section to follow,
upper-bounds the total number of nodes that are active in the whole circuit.
No guarantees are implied for situations that are outside these constraints.
For example, if the circuit has a “seizure” so that half of the nodes extraneous
to the task at hand fire, then this is a pathological condition for which no
guarantees are offered.

A second observation is that our guarantees are only probabilistic and,
at least in this article, only as computed by some numerical calculations of
limited precision. In particular, in order to bound the probability of error
in the various relations, we have computed the tails of the Bernouilli dis-
tribution B(n, p, k) by adding the individual nonnegligible terms 7 (u, p, i),
using double-precision calculations. Since the number of terms grows with
n, our accuracy was limited to about 10~ for the largest values of 1 that we
considered.

In principle, the calculations may be performed to arbitrary accuracy in
the following sense. One could compute for what minimum integer x is the
probability of error less than 10~ for each relation.

Doing such detailed calculations is beyond the scope of this article. It
will suffice here to observe that certainly in some cases within the tables of
parameters that we consider, the errors are much smaller than the claimed
107, in fact, less than 1071%% in one extremity. As an example, we give a
simple analytic upper bound on the error for relation 2.2

B, B@3r/2, p, kn), r/10) ~ 0
under the assumption 2.1”,
nBQRr—7v,p,km) ~r

where, further, k,, = 2k. Now, for generic variables n,k,p, and b, if k =
(1+bmpand 0 <b <1, then

B, p, k) < exp(—=b*np/3)

can be derived from Chernoff’s bound (Angluin & Valiant, 1979), where
“exp” denotes exponentiation to the base e = 2.71.. .. From this bound, it
follows that

B(3r/2,p, 2k) < exp(—(2k/(Bmp/2) — 1)*(3p/2)/3).

Now in all cases in the tables, rp < k (a fact that also follows from equa-
tion 2.1” if we assume 7’ to be negligible and r/n to be small enough to
ensure that k,, = 2k exceeds the mean). It then follows by substitution
that B(3r/2, p, 2k) < exp(—1p/18). So if we choose values from the tables

<
with n = 10°, p > 180, and r > 107, say, then equation 2.2” becomes
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B(10%, exp(—10), 10%) ~ 0. Applying the general bound on B given above a
second time gives that the errorin equation 2.2” isat most B (10%,1074, 10%) <
B(10°,107%,2%10%) < exp(—105/3) < 107100 Thus, at one extremity of our
range of parameters, the errors for the one relation 2.2” are indeed extremely
small.

Our point is that while for conceptually simpler models, the notion of
capacity, a single value for the number of items that can be represented,
makes sense, for more complex models a more appropriate way of express-
ing the same notion is that of upper-bounding the probability of various
kind of interference in any execution of the task. For example, relation 2.2
does not give an absolute guarantee of the relevant interference’s not hap-
pening. It says that if A and B have total size 3r/2 and the graph is regarded
as randomly generated with respect to those sets, then the probability of the
unwanted interference is very small (e.g., 107¢ or 10719%). This we interpret
to say, roughly, in the fixed network, that if A is fixed and of size r and B is
a random set of r/2 nodes, then the interference effect will occur with such
small probability.

6 Robustness to Noise

The discussion on capacity referred to specific interactions in the network. A
more generic source of interference that can be analyzed is that due to some
fixed fraction of neurons being active in the network that are extraneous
to the task being executed. The main question is the fraction of extraneous
neurons that can be active without interfering with the intended effects of
the task at hand. We shall call that fraction the noise rate o

In general, we can refine each of our noninterference constraints to allow
for the expected number s = on of extraneous nodes being additionally
active. We have restricted the entries in Tables 1 and 2 to those where non-
interference relations 2.2, 2.3, 2.5, 2.6, 2.2’, 2.3/, and 2.6/, held even with
perturbations corresponding to noise rates o in the range from 10~* to 107°.
In all seven relations, we replaced the relevant quantities r or r/2, when they
referred to the input neurons of the task, by r+on or r/2+on, as appropriate.
In particular, for the respective relations, the replacements were done for
the following neuron sets: equations 2.2 and 2.2": A, B; equations 2.3 and
2.3": A, B, D; equation 2.5: A; and equations 2.6 and 2.6": A1, B. In Tables 3
and 4, the entries are restricted in an exactly analogous way. We note that
with the exception of equations 2.3,2.3/, and 2.3”, it is clear that with a lower
noise rate, it is easier to satisfy these equations.

Estimates of the noise rates that can be tolerated can be made in a num-
ber of other senses also. For example, we could assume that all situations,
including both circuit creations and executions, are subject to some noise
rate, and solve equation 2.1 under that assumption. We also note that we
have sought noise rates that can be supported by a very wide range of the
parameters. Higher rates can be tolerated for individual parameter combi-
nations.
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7 Predictions

The entries in our tables are all solutions to equations 2.1, 2.1/, or 2.1".
Remarkably, there is the following simple interdependence among r, d, k,
and n:

rd < kn < cord, (*)

where for each entry in Tables 1 to 4, c; is a modest constant. In fact, for all
entries in the tables with k > 64, it is the case that ¢ is smaller than 1.35.
For entries with k = 32, k = 16, and k = 8, it is smaller than 1.6, 2.1, and
3.0, respectively. This relationship can be explained as follows. Equation
2.1 is of the form f(B(r, p, k)) = r/n, where f is a fixed function, here the
squaring function. For const k, the expectation rp of the associated binomial
distribution will stay a constant as r goes up by factor of 10 and p goes down
by factor of 10, or, equivalently, as 1 goes up by a factor of 10 for constant 4.
(Note that this explains why the corresponding entries in the tables for the
various values of n are approximately in the ratio of the magnitudes of n.)
Since, in general, r/n is small, solutions of equation 2.1 will correspond to
having combinations of r, p, k that correspond to a point somewhat above
the expectation. In other words, k will be somewhat above 1 = rd/n. Since
the binomial distribution falls off exponentially above, the mean k will not
be much larger than rn/d, from which we deduce that kd is a little larger
than rn. It is easy to see that the same argument also holds for relation 2.1”
if ky, = 2k.

This simple relation can be taken as a prediction for systems that allocate
memory in the style of our memorization mechanism, provided the number
of representatives for a concept at the lower level, that is, A and B, is the
same as at the next level, C. This is an attractive assumption for a memory
system that treats all memorized concepts as “equal citizens.” It may not
be true for all systems. For example, in various levels of a vision or other
sensory system, there may be amplification or reduction in the number of
neurons that represent an item between the various levels, and in that case
appropriate modifications of equations 2.1 or 2.1” need to be solved instead.

Finally, we note thatanode in our formalism may be simulating a unit that
consists of more than one biological neuron. For example, the suggestion
that local connections between different layers in cortex may have the effect
of increasing the effective degree of a node in the long-range connection
network is analyzed in detail in Valiant (1994).

8 Discussion

We have shown that networks of model neurons having the four parameters
of neuron count, synapse count, strength of synapses, and switching time
all within ranges widely observed in biology, can realize the two basic tasks
of memory formation and association. We have given tables of values for
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these parameters that are consistent with the quantitative constraints that
we have identified as being sufficient for the realization of these two tasks.
Our positive result is that entries exist for realistic combinations of these
numerical parameters. Further, the algorithms needed for creating and exe-
cuting the circuits for these tasks are of the simplest kind, requiring as little
as one step of vicinal or neighborly interaction.

The two basic tasks that we have considered here have been the basis for
implementing a broader variety of cognitive tasks, including memorization
of conjunctions and disjunctions, handling relations, and inductive learning,
under the direct-action hypothesis of strong synapses (Valiant, 1994). For the
less restrictive setting of the current article, any such broader implications
that may follow have yet to be worked out. In particular, if items have a
shared representation and these are to be the targets of inductive learning,
then special challenges arise. If multiple concepts are being learned and the
examples for them are intermingled in time, then having a single synapse
take part in the learning of more than one concept would appear to be
problematic.

This work offers apparently the first explanation of how the basic cogni-
tive tasks that we consider here can be performed at all by neural systems
that have synaptic strengths that are as weak as those that are typically ob-
served experimentally. It is probable that different neural systems exploit
different combinations of the numerical parameters, and do so in differ-
ent ways. It is possible, and even probable, for example, that higher-order
cognitive tasks require disjoint representations and stronger synapses. Our
methodology offers a calculus for investigating such phenomena.
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