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Abstract We show how a general quantitative the-
ory of neural computation can be used to explain two
recent experimental findings in neuroscience. The first
of these findings is that in human medial temporal lobe
there exist neurons that correspond to identifiable con-
cepts, such as a particular actress. Further, even when
such concepts are preselected by the experimenter, such
neurons can be found with paradoxical ease, after exam-
ining relatively few neurons. We offer a quantitative
computational explanation of this phenomenon, where
apparently none existed before. Second, for the locust
olfactory system estimates of the four parameters of
neuron numbers, synapse numbers, synapse strengths,
and the numbers of neurons that represent an odor
are now available. We show here that these numbers
are related as predicted by the general theory. More
generally, we identify two useful regimes for neural
computation with distinct ranges of these quantitative
parameters.

1 Introduction

A central problem of neuroscience is to provide explicit
mechanistic explanations for the basic tasks of cogni-
tion such as memorization and association. The meth-
odology of computer science suggests that a solution to
this problem would consist of three parts: a concrete
model of neural computation, explicit specifications of
the cognitive tasks that are to be realized, and explicit
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algorithms that can be demonstrably executed on this
model to realize the tasks. Also, one expects that the
outcome will include a coherent class of scalable algo-
rithms that demonstrably work for large ranges of such
resource parameters as the number of neurons.

A theoretical investigation using this methodology
can be expected to uncover how the brain actually works
if the brain is computationally so constrained that there
are few solutions consistent with those constraints. We
take this observation as our methodology.

It appears that the brain is indeed highly constrained
in how a neuron can have a purposeful effect on an arbi-
trary other neuron: In a system of n neurons each one
typically receives inputs from a much smaller number d
of other neurons. For example estimates of n = 1.6×107

and d = 7, 800 have been given for the mouse
(Braitenberg and Schüz 1998) and of n = 1010 and
d = 2.4 × 104 − 8 × 104 for humans (Abeles 1991). Also,
it is believed that even when a neuron does receive an
input directly from another, the mean strength of such
an influence is weak. A recent estimate for rat visual
cortex (Song et al. 2005) gave the mean value for the
excitatory postsynaptic potential (EPSP) of a synapse
to be 0.77 mV. This compares with a typical estimate
of the threshold voltage of 20 mV, and implies a rough
estimate of k = 26 for the mean number of presynaptic
neurons that are needed to cause a postsynaptic action
potential. An earlier estimate (Abeles 1991) of the gen-
eral range of k was 5–300. A further constraint is that
the brain can perform significant tasks in 100–200 ms,
which allows perhaps only 10–20 and certainly fewer
than 100 basic steps (Feldman and Ballard 1982). Basic
algorithms need to work in very few steps.

The model of computation used in this paper is
characterized by the above defined three parameters
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(n, d, k), by the requirement that basic algorithms run
in a handful of steps, and by the restriction that the com-
putational transitions of a neuron be simple enough that
there is little doubt that actual neurons, in all their com-
plexity, are capable of performing them. Graph models
based on n and d have been considered widely be-
fore (Griffith 1963; Braitenberg 1978; Feldman 1982;
Palm 1982) and sometimes in conjunction with the third
physical parameter of synaptic strength (Griffith 1963;
Abeles 1991). In general, we seek detailed quantitative
explanations of how networks with given parameters
can support algorithms that can perform sequences of
intended actions as required, without unintended inter-
ference among these actions. Also, unlike previous au-
thors, we use a hierarchical notion of memory allocation,
which would appear to be more useful for building up
complex data structures that reflect the complexities of
knowledge, rather than being merely sufficient to sup-
port data lookup. The specific model and theory we use
appears in (Valiant 2005), where it is discussed more
fully. For completeness we restate here the most rele-
vant aspects of the theory before we move on to discuss
the particular experimental findings (Quian Quiroga et
al. 2005; Jortner et al. 2006) that we seek to explain.

We emphasize that our assumptions are extremely
mild. In particular there is no assumption about the
nature of the firing mechanisms, which may be gov-
erned by various nonlinearities. The assumption that
some value of k exists asserts merely that some mini-
mum total presynaptic activity is required to cause an
action potential in a neuron.

2 Representation

Before we discuss tasks we need to take a specific posi-
tion on the representation of information. We define
two representations: positive shared and positive dis-
joint. They have in common the properties that:

1. Every real world “item” corresponds to the firing
of a set of r neurons,

2. The items are memorized in a hierarchical fashion,
so that a new item C when first stored will be stored
as a conjunction of two items already memorized,
say, A and B.

3. The representation may be graded so that the rec-
ognition of the item corresponds to a large enough
fraction but not necessarily all of the corresponding
neurons firing.

The representation is called disjoint if each neuron
corresponds to at most one item, and shared if it can
correspond to more than one.

By an item we mean anything that correlates to the
real world. It can be a smell, a particular person, a place,
a time, a general concept, a small visual feature, an event,
or any conjunction of instances of these. In some neu-
ral systems it is well established that neural activity in
individual cells have identifiable real world correlates.
Examples of these are place cells in the hippocampus
(O’Keefe and Dostrovsky 1971; O’Keefe et al. 1998).
and face cells in inferotemporal cortex (Gross et al.
1969, 1972). Determining the exact scope of the item
that an actual neuron represents is much more problem-
atic but can be attempted by presenting enough stimuli.
Some remarkable recordings from human medial tem-
poral lobe by Quian Quiroga et al. (2005) provide con-
vincing evidence for the existence of cells that recognize
items of some specificity, such as a particular actor or
building, and are invariant to a broad variety of views
of them. On the other hand, there exist other parts of
cortex, such as in the prefrontal areas, in which no sim-
ilar identification between individual neurons and their
functions has yet been found, and many neurons appear
to be silent.

The issue of neural representations has been widely
discussed (Barlow 1972; Page 2000). Our representation
can be viewed as particularly specific and simple. In gen-
eral, the larger r the denser the representation, where
the sparse/dense distinction corresponds to the fraction
of neurons that are active at a typical instant. If r is large
then we have an instance of what some would call a
distributed representation. Here we provide a combina-
torial explanation for the need for whatever particular
value of r is used, and do not assume or require any
other assumptions.

3 A basic relationship

In terms of the four parameters n, d, k and r, we can
deduce relationship

rd/n � k (1)

that holds generally for algorithms of the nature that we
shall describe, and which can be tested experimentally.
Further, as we shall discuss, it is consistent with recent
findings for the locust olfactory system (Jortner et al.
2006). With regard to this relationship we make the fol-
lowing remarks. If r neurons are active and each one
is connected by synapses to d other neurons then each
neuron receives inputs from an average of rd/n of the
active ones. Hence, k cannot be much less than this quan-
tity rd/n, for then all the other neurons would typically
become active, precluding meaningful computation. The
force of the relationship (1) is that when k is in a narrow
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band of values, as large as or a little larger than rd/n,
then a rich range of computations of a unified nature
can be supported, based though on somewhat complex
statistical phenomena (Valiant 2005).

4 Basic tasks and algorithms

Since our methodology seeks to exploit constraints, the
tasks we seek to explain are those that are most chal-
lenging for networks in which connections may be rela-
tively few and individually weak. We characterize these
most challenging tasks as those where arbitrary pairs
of distinct previously made memories may have to be
related somehow, such as by forming a conjunction of
them or making an association. We call these random
access tasks.

We are interested in basic tasks that have the capa-
bility of forming rapidly evaluatable neural circuits that
reflect the potentially arbitrary and complex inter-
relationships among different pieces of knowledge that
are required in describing the world. We regard hierar-
chical memory formation in combination with associa-
tion to be a viable basis for building such circuits. The
widely investigated “associative memories” (Marr 1969;
Kanerva 1998; Graham and Willshaw 1997), which have
the functionality that information keyed with a fixed key,
possibly degraded, can be entered and retrieved, appear
to be less effective for this purpose.

Our approach is exemplified by the archetypal ran-
dom access task of hierarchical memory formation, which
we define as follows. Given two items A and B already
represented, the task is (a) to assign a representing set
of neurons for a new item C, and (b) to make further
modifications to the circuits as necessary, in the form of
state changes at the neurons or weight changes at the
synapses, so that the circuit will behave as follows. If at
some later time the representatives of both A and B fire
then the representatives of C will fire also.

In addition, we also need some non-interference con-
ditions, which ensure that C will not fire if it is not
intended to. For example, suppose we determine that
more than 95% of a representing set should fire for the
associated item to be considered recognized, fewer than
50% if it is not, and that intermediate situations never
occur. Then we want less than 50 % of C to fire if less
than 50% of A fires even if 100% of B does. Condition
X represents this condition. Condition Y is a condition
that ensures that if A and a different item D fire then
this will not cause C to fire. (The somewhat more pre-
cise description is as follows: For condition X, since the
size of C is r only in expectation the technical condition
we use is not that fewer 50% of C but that fewer than

3r/10 candidate nodes fire. This allows for the fact that C
may be smaller than the expected value r. For condition
Y the technical condition is that the number of nodes
corresponding to A ∧ B and not A ∧ D should be at least
2r/3. In general, the capacity can be computed by show-
ing that the probability of the specific non-interference
conditions that are to be avoided is small enough.)

Our proposal for the mechanism to realize mem-
ory formation is the simplest imaginable. The neurons
that are to represent C will be simply those that are
richly enough connected to both A and B that activ-
ity at A and B can cause each such neuron to over-
come its threshold. We assume a random network of
n neurons, each receiving an input from any other inde-
pendently with probability d/n. In any act of memori-
zation the representatives of A and B are assumed to
be fixed, either by preprogramming or by previous acts
of memorization. The choice of C is then the result of
a process determined by the random connections. Such
algorithms may be called vicinal to emphasize the fact
that their effect and execution is governed to a large
extent by the immediate neighborly connections among
the neurons.

While testing directly whether the brain executes the
above algorithm may be currently impractical, the theory
makes some quantitative predictions that are testable.
In particular, there is a governing equation that relates
n, d, k and r and whose solutions are robust to varia-
tions in the equation. Consider the function B(m, p, s)
defined to equal the probability that, in m tosses of a
coin that comes up heads, or has success, with probabil-
ity p, there will be at least s heads or successes. This is
simply the upper tail of the Binomial distribution. We
will always use it in cases in which s is a little larger than
mp, the expected number of successes. The basic prop-
erty we use is that as s exceeds mp by a larger and larger
amount, the tail B(m, p, s) will get rapidly smaller, and
at an exponential rate once this excess is larger than a
standard deviation (mp(1 − p))1/2.

First we consider the case that A and B are repre-
sented by disjoint sets of r neurons. Let us define C
to be exactly those neurons that have at least k con-
nections from A and also at least k connections from
B. Then the probability that an arbitrary neuron has
these required connections to A is B(r, d/n, k). The same
holds for B. It then follows that the probability that
an arbitrary neuron has these connection properties to
both is (B(r, d/n, k))2. Now if we want item C to be an
“equal citizen” with items A and B in the sense that it
has r representatives, at least in expectation, then we
want that among the n candidate neurons there be an
expected number r with these properties. (Here, as else-
where, it is convenient to view the random graph as being
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Table 1 The entries are solutions for x (= r/n) to equation (B(xn, d/n, k))2 = x for various combinations of d and k that hold for all
values of n ≥ 106

k = 4 k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 1024

d = 64 .03496 .100 .2449 .5559

d = 128 .0146 .0442 .1097 .2479 .5379

d = 256 .00626 .0198 .0502 .1159 .2499 .5269

d = 512 .00270 .00898 .0234 .0542 .1189 .2499 .5189

d = 1024 .00118 .00410 .0110 .0258 .0568 .1209 .2509 .5129

d = 2048 .0005166 .00189 .00517 .0123 .0275 .0586 .1229 .2509 .5099

d = 4096 .0002276 .000872 .00245 .00594 .0133 .0286 .0598 .1239 .2509

d = 8192 .0001016 .000404 .00116 .00286 .00649 .0140 .0294 .0606 .1239

d = 16384 .00004466 .000188 .000554 .00138 .00316 .00688 .0145 .0299 .0612
d = 32768 .00001988 .00008766 .000265 .000670 .00155 .00338 .00715 .0148 .0303
d = 65536 .000008869 .00004106 .000127 .000325 .000756 .00166 .00353 .00734 .0151

The solutions given are for n = 109 and were found numerically. They are accurate to three significant figures for n = 109 and 108, to two
for n = 107 and to one for n = 106. The superscripts give the greatest power x ≤ 9 such that for all integer powers n = 10y for x < y ≤ 9
the non-interference conditions X and Y hold. For k = 1 and 2 condition X is violated for all n � 109 for all values of d shown, and
therefore the entries are omitted

generated after the A and B nodes are fixed.) Hence the
governing equation is:

(B(r, d/n, k))2 = r/n. (2)

Qualitatively this equation means that we want the num-
ber of successes k to be sufficiently above the expected
number of successes rd/n that the resulting probability is
r/n. (We think of r/n as being typically small, say smaller
than 0.1.) As we have observed, the value of B(r, d/n, k)

drops very rapidly as k increases above the mean rd/n. It
follows that the rule of thumb (1) previously stated, that
rd/n � k, needs to hold, where the relation � denotes “is
of the same order of magnitude and a little smaller than”.

We note that relation (1) holds equally for several
important variations of this formulation (Valiant 2005).

In Table 1 we tabulate solutions of (B(r, d/n, k))2 =
r/n. We note that if k and d are fixed then as r and n
grow in proportion to each other, in particular, if r = xn
for a fixed constant x, then B(r, d/n, k) = B(xn, d/n, k)

asymptotes to a fixed value dependent only on the two
quantities xd and k, in the form of the Poisson distribu-
tion. Then equation (2) becomes (B(xn, d/n, k))2 = x,
and its solution for x is essentially invariant to n once
n is large enough. Hence we can regard these systems
as being governed by just the three parameters d, k and
x = r/n.

The discussion so far establishes conditions for the
wiring diagram that are sufficient to support hierarchi-
cal memory formation. To complete the theory one also
needs to have a model of computation that enables the
neuron and synapse updates to be specified explicitly.
Such a model is described in reference (Valiant 2005).
There it is also shown that the task of association can
be realized with the same parameters as those needed
for memory formation, where association is defined as

follows: given two items A and B already represented
the task is to make modifications in the circuit so that
whenever in the future A fires so will B also.

5 Correspondences with experimental findings

The classical model of vision in cortex is as a hierarchy.
As one ascends it the complexity of the items repre-
sented by a neuron increases, as does their invariance
to size, translation, etc. We hypothesize that the higher
levels of the vision hierarchy require the capabilities of
some form of hierarchical memory formation. Unfortu-
nately, we do not know of any such system for which
all of the parameters d, k and r/n, have been measured.
However, the results of Quian Quiroga et al. (2005) do
imply estimates for r/n in human medial temporal lobe,
and one can ask whether these are consistent in our
table with reasonable values of the anatomical param-
eters d and k. Here is a brief summary of their experi-
ments and findings: They recorded from 998 units (346
single- and 652 multi-neurons) across a number of hu-
man patients variously in hippocampus, parahippocam-
pal gyrus, amygdala and entorhinal cortex. Each morning
they presented each patient with 82–110 (mean 94) vi-
sual stimuli (Kreiman, personal communication). For
each patient they selected some 7–23 (mean 14) stimuli
that provoked significant or the strongest
responses, and in the afternoon for each such stimu-
lus they presented 3–8 different views of the item that
the experimenter had predetermined to be represented
in that stimulus. For example, one chosen item was
the actress Halle Berry, and different views included a
portrait of her, a portrait of her in her recent role in a
mask, and her name written as a string of letters. They
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found that 52 of the units did respond to the experi-
menters’ prechosen item, and of these 8 responded to
two items. Thus we can conclude that there were 998 ×
94 attempts to identify a neuron-item correspondence,
and of these 60 succeeded. This implies an estimate for
r/n of 60/(998 × 94) = 0.00064. Looking at our Table 1
we note that there are some plausible values of k and d,
such as k = 8 and d = 8,192 that correspond to an r value
in that range. The majority of entries there have higher
values of r/n, and it is indeed probable that this calcula-
tion for r/n gives an underestimate. While the fact that
some of the neurons recorded from were multiple neu-
rons would suggest that this calculation overestimates,
there are two other implicit assumptions that suggest the
opposite. First, it was assumed that all the neurons (or
units) in those areas represent some visual item, while it
is quite possible that a significant fraction have a differ-
ent purpose altogether. Second, it was assumed that the
patients were familiar with and had representations for
all the items presented to them.

The one system we know in which all four parame-
ters n, d, k, and r have been measured is in the olfactory
system of the locust as investigated by Jortner et al.
(2006). This system consists of a set of about 830 pro-
jection neurons (PN) in each antennal lobe, which in
turn connect to a set of about 50,000 Kenyon cells (KC).
The system is subject to 20–30 Hz cycles. Within each
cycle each cell undergoes 0 or 1 spikes. Within one such
cycle a natural odor stimulus will cause about 100–150
of the 830 PNs to fire, and a comparatively smaller frac-
tion of the KC’s, thought to be in the range 0.01–0.5%
(Laurent personal communication). The circuit sparsi-
fies the representation of the odors, apparently to facil-
itate processing upstream.

We shall use distinguishing notation for the two levels
of neurons, lower case (r, n) for the PNs and upper case
(R, N, D, K) for the KCs. From what we have already
said the parameters of the PNs are n = 830 and r in the
range 100–150. For the KCs N = 50,000 and r, to which
our theory is rather insensitive, is in the range 5–250.
Further, the estimate (Jortner et al. 2006) for the frac-
tion D/n of PNs from which a KC receives connections
is 0.50 ± 0.13. Finally, the estimate (Jortner et al. 2006)
of K, derived from the ratio of the voltage threshold of
a KC to the mean postsynaptic potential caused by a
single PN is 100.

Our interpretation of this circuit in our theory is the
following. Its connections form a random bipartite graph
where each PN is connected to each KC with probabil-
ity D/n. An arbitrary odor causes an arbitrary subset of
r of the PN’s to fire. Given a fixed chosen KC, what is
the probability that it will be caused to fire by that odor.
The answer to this is simply B(r, D/n, K). Here each toss

corresponds to one of the r PNs that is activated by the
odor, and success for a toss corresponds to that PN being
connected to the chosen KC. Further we want the prob-
ability that this chosen KC fires to be R/N. Then the R
KCs that will represent the odor will be simply those that
are connected by at least K connections to the specific
PNs that are activated by the odor.

Hence, the six measured quantities should satisfy the
equation:

B(r, D/n, K) = R/N. (3)

As far as the approximate rule of thumb (1) derived
above, we note that taking the mean values of 125 and .5
of the estimates for r and D/n gives an estimate of 62.5
for rD/n, which conforms roughly to the stated rule that
rD/n should be of the same order of magnitude and a
little smaller than K, which is estimated to have value
100.

For a more precise fit we note that the range estimate
for D/n is [0.37, 0.63] and for r is [100, 150]. The theory
predicts that there should be solutions to equation (3)
for values in this range that give realistic values of R/N,
which are in the range [0.0001, 0.005]. It is easy to verify
that this is indeed the case. Taking the value D/n = 0.60
and K = 100 the following are pairs of solutions for
{r, R/N} of the equation B(r, 0.60, 100) = R/N:

{130, 0.000035}, {132, 0.000102}, {134, 0.000272},
{136, 0.000671}, {138, 0.001529}, {140, 0.003244},
{142, 0.006436}, {144, 0.011993}, {146, 0.021084},
{148, 0.035101}, {150, 0.055538}.

These solutions span the estimated range of 0.0001–
0.005 for R/N. Jortner et al. (2006) note that their esti-
mate of K = 100 may be an overestimate because of
nonlinear effects. Values of r and D/n in the middle of
their estimated ranges of these would then be consistent
with appropriate lower values of K.

If instead of the above deterministic view we regard
each of the r PNs as firing with probability p < 1, then
equation (3) becomes B(r, pD/n, K) = R/N and the rule
of thumb (1) becomes: prd/n � k. Experimental evi-
dence suggests that PNs are probabilistic in this sense.
The 100–150 estimate for r refers to the number of the
more reliable ones, and a further large number is acti-
vated less reliably.

6 Discussion

In conclusion, we shall now argue that for neural systems
generally that compute random access tasks, two distinct
regimes are discernible. From Table 1 we see that if k is
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large then r is a significant fraction of n. For example for
k = 32 and d = 8192 we get r/n = 0.00286. This imme-
diately suggests that if we are to memorize more than
1/.00286 ∼ 350 items then we need shared rather than
disjoint representations. A large value of k therefore
forces the combination of (1) large k, (2) large r, and (3)
shared representations. This combination we shall call
regime-α. In fact, taking the non-inteference conditions
into account one can argue that any value of k larger
than 1 can be considered to be large in this context. In
this regime we have discussed the task of memory forma-
tion. Also, it has been shown that the same parameters
support association (Valiant 2005).

In earlier work (Valiant 1994) we considered the com-
bination of (1) strong k = 1 synapses, (2) small r, and
(3) disjoint representations. We shall identify this as
regime-β. In this regime, while the paucity of intercon-
nections is still a serious constraint, the system is closer
to digital computation than is regime-α in the following
senses: Information is localized in that representations
are disjoint, and influence is localized in that a single
neuron is able to cause an action potential in a neigh-
bor. This regime has been shown to support a broader
set of random access tasks (Valiant, 1994), including
appropriate formalizations of: supervised memorization
of conjunctions and disjunctions, inductive learning of
conjunctions, disjunctions and appropriate linear sepa-
rators, correlational learning, memorization and induc-
tive learning of conjunctive expressions involving
multiple objects and relations.

It seems that in systems in which neuron-item corre-
spondences can be discovered by probing a few hundred
or a few thousand neurons, r must be a significant frac-
tion of n for otherwise there would be little chance of
such a correspondence being found. We suggest that
within such systems, which include the hippocampus and
inferotemporal cortex, regime-α is in operation. In these
areas, which do not represent the highest cognitive ar-
eas, the tasks of memory formation and association, for
which we have quantitative mechanistic explanations,
may be a sufficient basis for performing the required
processing.

On the other hand, there are areas such as prefrontal
cortex, where item-neuron correspondences have proved
more difficult to identify. A natural theory is that in
such areas regime-β has some significant role. Any fail-
ure to find item-neuron correspondences can be then
explained by the small values of r, and the computation
of apparently more complex tasks by the possibly greater
computational capability of regime-β. Of course, the
price to be paid is strong synapses. Synapses there need
to have a large dynamic range so that they can change in
strength between an average weak level to k = 1 strength

through learning. Whether neurons do this is currently
unknown. Strong synapses, however, have been observed
(Thomson et al. 1993; Markram and Tsodyks 1996; Ali
et al. 1998) and one recent study shows that the distri-
bution of synaptic strengths is heavy-tailed at the strong
end (Song et al. 2005).

Our analysis treats the human temporal lobe results as
exemplars of regime-α. The locust olfactory system ap-
pears to be an interface between regime-α and regime-β,
since it translates between large r to small r in a single
step. There is evidence that different parts of cortex
have widely different cortical parameters, as would be
expected if they employed such different regimes. It has
been found (Elston et al. 1999) that in macaques the
number of spines in a polysensory area exceeds that in
the primary visual area by a factor of thirteen.

We suggest that this paper is a first step in a research
program to validate a general quantitative algorithmic
theory of neural computation against experimental evi-
dence. The numerous immediate directions of further
work include pursuing the following questions: Can the
values of the four parameters n, d, k, and r be measured
for systems other than the locust olfactory system? Can
it be shown that synapses can change between average
strength to k = 1 strength by learning, as required in
regime-β? Can direct experimental evidence be found
for some system that it works in regime-β? Is regime-β
provably more powerful than regime-α in some signifi-
cant computational sense?
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