
L I N K  TO  O R I G I N A L  A RT I C L E
L I N K  TO  I N I T I A L  C O R R E S P O N D E N C E

In my recent Timeline article, I described 
the emergence of neural network models 
as an important paradigm in neuroscience 
research (From the neuron doctrine to neu-
ral networks. Nat. Rev. Neurosci. 16, 487–497 
(2015))1. In his correspondence (Neural 
networks in the future of neuroscience 
research. Nat. Rev. Neurosci. http://dx.doi.
org/10.1038/nrn4042 (2015))2, Rubinov 
provides some thoughtful comments about 
the distinction between artificial neural 
networks and biologically inspired ones and 
about how a strictly data-driven approach 
may succeed at providing a general theory 
of neural circuits. I thank Rubinov for these 
comments and note that this theory agnosti-
cism is a methodological approach that we 
respect and indeed sponsored in our Brain 
Activity Map proposal that led to the BRAIN 
Initiative3. Also, although in my Timeline 
article I tried to provide a brief summary 
of the history of artificial neural network 
models, I am not yet personally convinced 
that there are clear instances in which a bio-
logically inspired neural network model has 
yet been validated (“…it is unclear whether 

existing neural network models have enough 
predictive value to be considered valid or 
useful for explaining brain circuits.” (REF. 1)). 
There are many exciting areas of progress 
in current neuroscience detailing phenom-
enology that is consistent with some neural 
network models, some of which I tried to 
summarize and illustrate, but at the same 
time we are still far from a rigorous demon-
stration of any neural network model with 
causal experiments. I therefore could not 
agree more with Rubinov that we still have 
“largely not bridged the gap between elegant 
theory and neuroscientific observation”. But 
when will we know that we have bridged that 
gap? This is a difficult question to answer, 
depending on the particular viewpoint, 
and I would leave this open to the reader’s 
own interpretation. In my mind, a success-
ful neural model should have quantitative 
accuracy in predicting either the behaviour, 
mental or perceptual state of the animal, or 
at least the future internal dynamics of the 
system. Another characteristic of a success-
ful model could be its effective use in design-
ing therapies of brain-based diseases. On the 

other hand, one of my mentors, David Tank, 
argued that for a true understanding of a 
neural circuit we should be able to actu-
ally build it, which is a stricter definition 
of a successful theory (D. Tank, personal 
communication) Finally, as mentioned in 
the Timeline article, one will also need to 
connect neural network models to theories 
and facts at the structural and biophysical 
levels of neural circuits and to those in cog-
nitive sciences as well, for proper ‘scientific 
knowledge’ to occur in the Kantian sense.
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L I N K  TO  O R I G I N A L  A RT I C L E
L I N K  TO  A U T H O R ’ S  R E P LY

Neural networks are increasingly seen to 
supersede neurons as fundamental units 
of complex brain function. In his Timeline 
article (From the neuron doctrine to neural 
networks. Nat. Rev. Neurosci. 16, 487–497 
(2015))1, Yuste provides a timely overview 
of this process, but does not clearly differ-
entiate between biological neural network 
models (broadly and imprecisely defined 
as empirically valid models of (embodied) 
neuronal or brain systems, which enable 
the emergence of complex brain function 
through distributed computation) and arti-
ficial neural network models (a relatively 
well-defined class of networks originally 
designed to model complex brain function2 
but now mainly viewed as a class of biologi-
cally inspired data-analysis algorithms useful 
in diverse scientific fields3).

A distinction between biological and arti-
ficial neural network models is important 
as the neuroscience network paradigm is 
mainly driven by the aim of uncovering bio-
logically valid mechanisms of neural com-
putation. Artificial neural networks were 
initially proposed as candidate models for 
such computation but, despite being enthu-
siastically researched at the end of the twen-
tieth century, they have largely not bridged 
the gap between elegant theory and neu-
roscientific observation4,5. In this context, 

Yuste’s emphasis on some classic artificial 
neural network models does not seem to be 
supported by the evidence of, or the promise 
for, the problem-solving capacity of these 
models in neuroscience6.

What could be an alternative promising 
approach to biologically valid neural network 
modelling? At present we can only specu-
late, but the ongoing development of high-
resolution high-throughput brain imaging 
technologies — including those being devel-
oped as part of the BRAIN Initiative7 — and 
the consequent availability of increasingly 
large structural8 and functional9 imaging 
data sets, make it appealing to initially search 
for patterns in such data in less theory-
bound and more data-driven ways10,11, and 
to subsequently construct theories a priori 
constrained on these discovered patterns12. A 
famous example of this approach in biology 
is the formulation of the theory of evolution 
by natural selection; this theory arose from 
an initial aim to catalogue all living biological 
organisms on earth, and from a subsequent 
careful analysis of the obtained diverse bio-
logical data13. Interestingly, artificial neural 
networks may yet prove to be important in 
this quest but in the role of powerful tools for 
analysing complex imaging data sets14, rather 
than as a theoretical foundation for how the 
brain computes.
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In a way, the history of neuroscience is the 
history of its methods. This is evident in the 
case of the neuron doctrine, which states 
that the structural and functional unit of the 
nervous system is the individual neuron1. 
The neuron doctrine was first enunciated 
by Cajal2 and Sherrington3 (FIG. 1) and has 
served as the central conceptual foundation 
for neuroscience1. This focus on the prop-
erties of individual neurons was a natural 
consequence of the use of single-cell ana-
tomical and physiological techniques, such 
as the Golgi stain4 or the microelectrode5. The 
piecemeal reconstruction of neuronal circuits 
into their individual neuronal components 
using these methods enabled researchers 
to decipher the structural plan and design 
logic of many regions of the brain, with the 
analysis of the retina providing a remarkable 
early example6 (FIG. 2a). Furthermore, single-
neuron recordings opened up the possibility 
of functional studies of the cerebral cortex7. 
Nevertheless, in spite of the enormous 
advancements in knowledge facilitated by 
these techniques, a general theory of brain 
function with the explanatory power to 
account for behavioural or cognitive states, or 
to explain mental pathologies, remains elu-
sive. It is possible that the neuron doctrine, 
with its focus on individual neurons, may be 
partly to blame.

Unlike the neuron doctrine, neural 
network models assume that neural circuit 
function arises from the activation of groups 
or ensembles of neurons8. According to these 
models, these ensembles generate emergent 
functional states that, by definition, can-
not be identified by studying one neuron at 
a time. In fact, it is thought that the brain, 
unlike other body organs, could be specifi-
cally built to generate emergent functional 
states9. Although the earliest neural network 
models were formulated in the 1940s10,11, 
they have only recently become experimen-
tally testable as a result of the development 
of new optical, electrophysiological and 
computational tools12–15. Using data gener-
ated by these novel methods, neural network 
models could incorporate the phenomeno-
logical insights acquired using single-neuron 
approaches and also explain phenomena 
that do not easily fit within single-neuron 
frameworks.

In this Perspective I describe how the 
neuron doctrine arose and flourished as a 
result of the use of single-neuron techniques 
and consider the resulting limitations of 
its view of neural circuits. The subsequent 
growth of neural network models is dis-
cussed, highlighting results obtained with 
new multineuronal recording methods. I 
suggest that neuronal network models could 

be a useful paradigm, or act as guideposts, to 
understand many brain computations. This 
article does not provide an exhaustive review 
but instead illustrates with a small number 
of examples the transition between these two 
paradigms of neuroscience.

History of the neuron doctrine
Origins. Many neuroscience textbooks begin 
by explaining Cajal’s proposal that the unit 
of the structure of the nervous system is 
the individual neuron2,16,17 (FIGS 1,2a). This 
idea, actively debated at the time, contrasted 
with the ‘reticular theory’ — defended by 
Golgi himself — which hypothesized that 
neurons were linked in a single overarch-
ing syncytium1. Cajal’s keen observations of 
physical discontinuities between neuronal 
processes were proven correct: decades later, 
the introduction of electron microscopy18 
demonstrated synaptic clefts between neu-
rons19,20. The neuron doctrine was the logical 
extension of Virchow’s cell theory, which 
itself arose from the works of Leeuwenhoek, 
Hooke, Schleiden and Schwann, among 
others, who, using microscopes, described 
the cell as the basic unit of the structure, 
reproduction and pathology of all biologi-
cal organisms21. Partly thanks to an influ-
ential review by the renowned anatomist 
Waldeyer22, the neuron doctrine became 
widely accepted and developed into the 
essential conceptual basis for the piecemeal 
description of the structure of nervous sys-
tems6 carried out by early anatomists and 
many subsequent researchers.

The functional aspect of the neuron 
doctrine — the hypothesis that individual 
neurons are also the unit of function in 
the nervous system — evolved in paral-
lel and was spearheaded by Sherrington3. 
Closely linked to this was the concept of 
the receptive field, originally formulated by 
Sherrington as the area of skin from which 
a scratch reflex is elicited. This concept was 
cemented with the development of tech-
niques that enabled investigators to record 
activity from individual nerve fibres23, 
revealing that different neurons responded 
specifically to different sensory stimuli24. 
Thus, each neuron had its own receptive 
field: a specific feature of the sensory world 
that activates it and defines its function. 
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One example of this concept was the dis-
covery of ‘bug detector’ neurons in the frog 
retina: neurons with small, motion-sensi-
tive, receptive fields that appeared perfectly 
designed to detect moving flies25 (FIG. 2b–d).

Over the decades, the focus on single 
neurons and receptive fields became the 
cornerstone of electrophysiology, espe-
cially after the introduction of the tungsten 
microelectrode by Hubel5. A rich tradition 
of single-cell recordings, which continues 
to this day, has mapped receptive fields 
throughout the brain. Particularly influ-
ential were the discoveries of topographi-
cally organized receptive fields in cortical 
‘columns’ described by Mountcastle26 and 
by Hubel and Wiesel7,27. These successes 
crystalized conceptually the idea that the 
single neuron was not only the anatomical 
and functional unit of the brain but also its 
perceptual unit28. Following this logic, for 
example, at the top of the hierarchy of the 
mammalian visual system one could find 
‘grandmother cells’ that were responsible 
for the perception of our grandmother28. 
Consistent with this, ‘face cells’ that 
responded to images of specific individu-
als were found in the temporal cortex of 
monkeys and humans29–31. Moreover, elec-
trical stimulation of a very small number 
of cortical neurons32, or even of individual 
neurons33,34, can lead to behavioural altera-
tions in monkeys and rodents, suggesting 
that the functional properties of individual 
neurons could represent the functional units 
of the perception or even the behaviour of 
the animal.

Limitations. A century after Cajal and 
Sherrington, it is clear that the nervous sys-
tem is built out of individual neurons and 
that their responses can be correlated with 
particular sensory stimuli, motor actions 
and behaviours. There is no question that 
work based on the basic assumptions made 
by the neuron doctrine has been ground-
breaking. At the same time, when examining 
the historical evolution of neuroscience, 
one appreciates the direct links between 
the neuron doctrine and the use of single-
neuron methods1. The neuron doctrine was 
cemented by the Golgi stain4, which ena-
bled investigators to visualize with relative 
completeness the morphologies of isolated 
neurons, and by electrodes5, which provided 
routine recordings of individual neurons in 
whole brains. It therefore seems quite natural 
that neuroscientists emphasized the impor-
tance of individual neurons in the brain’s 
structure and function. As in other fields 
of science, there is a direct link between 
the techniques used and the concepts and 
paradigms that arose from these studies21, 
as investigators cannot make discoveries 
beyond those that their techniques reveal35. 
However, as with every established scientific 
paradigm36, over the years the neuron doc-
trine may have become limiting.

It is possible, for example, that the concept 
of receptive fields may have led to an under-
estimation of the true complexity of neuronal 
function37. The fact that neurons are specifi-
cally activated by particular inputs may not 
necessarily mean that this is their role in the 
circuit. It may be too narrow or simplistic to 

equate neuronal function with the fact that 
a neuron fires in response to a stimulus: its 
function could be related to its firing, to the 
exact time at which it fires, to whether or not 
it fires in synchrony with or builds a dynami-
cal pattern with other neurons, or even to 
its lack of firing37. Indeed, even in primary 
sensory areas, and particularly in awake 
animals, neurons do not always respond in 
the same way to identical sensory stimuli38,39, 
suggesting that their coding could be more 
sophisticated than originally thought. In fact, 
organized spontaneous activity appears to be 
prevalent in many brain regions40–43, particu-
larly in humans44,45. This spontaneous activity, 
already described in the first electroencepha-
lography (EEG) recordings44, cannot be easily 
explained from the perspective of receptive 
fields, as it occurs in the absence of sensory 
inputs, and thus indicates that neurons could 
be engaged in intrinsic functions unrelated to 
sensory stimulus or motor action (FIG. 3).

In addition, when interpreting ‘face 
neuron’ data31, perhaps one of the strongest 
pieces of evidence for feature selectivity in 
receptive fields, it is difficult to understand 
how the investigators can be lucky enough 
to find a neuron that codes for the face of 
a particular person when recording from 
one neuron at a time in a cortical area that 
contains hundreds of thousands, or even 
millions, of neurons. It is more likely that 
coding for any particular face is distributed 
across large populations of neurons. A 
similar argument has been made for find-
ing place cells in the hippocampus46. Thus, 
the receptive field could be reinterpreted 
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Figure 1 | Historical evolution of the neuron doctrine and neural network models. Historical summary of the key single-cell or multicellular experi-
mental or theoretical publications used to support the neuron doctrine or neural network paradigms. CCD, charge-coupled device; EEG, 
electroencephalography. 
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more generally as the single-cell manifesta-
tion of distributed circuit states: that is, the 
activation of a large number of neurons by 
a stimulus or a location. If this is the case, 
we should re-examine the assumption that 
single neurons are the functional units of 
the nervous system, and instead focus our 
attention on groups of neurons11,47.

Moving to neural circuits
Structural evidence for distributed circuits. 
Is there any evidence that groups of neurons, 
rather than single neurons, serve as func-
tional units in neural circuits? Indeed, there 
is anatomical evidence to support the notion 
that most neural circuits, particularly in the 
mammalian brain, are built with a distrib-
uted connectivity: that is, as a connectivity 
matrix in which each neuron receives inputs 
from many other neurons while sending 
its outputs to large populations of cells48,49. 
Furthermore, the majority of the excitatory 
connections in the brain are weak, as though 
each neuron is trying to integrate as many 
excitatory inputs as possible without satura-
tion50. For example, the average pyramidal 
cell neuron in the mammalian cortex prob-
ably receives inputs from and connects to 
tens of thousands of other cells51. More dra-
matically, each Purkinje cell in the cerebel-
lum probably receives a single input from as 
many as several hundred thousands of gran-
ule cells, and each granule cell itself connects 
with as many Purkinje cells as it can, given 
its axonal length52. This distributed design, 
which did not escape Cajal’s notice (he 
compared it to telegraph lines)6, appears to 
be built to enhance the distribution of infor-
mation. A distributed design principle is 
also prominent in inhibitory neurons. Most 
subtypes of cortical GABAergic interneurons 

(with the exception of vasoactive intes-
tinal peptide-expressing interneurons)53 
appear to connect with as many excitatory 
neighbours as possible, with a connectivity 
approaching the physical limit (connec-
tion to 100% of local targets)54–56. Moreover, 
inhibitory neurons are often linked to each 
other by gap junctions57–59, as though they are 
designed to work as a unit. In addition, some 
interneurons release GABA directly onto the 
neuropil60, affecting all of their local neigh-
bours. Thus, inhibitory neurons appear to be 
designed to extend a ‘blanket of inhibition’ 
onto excitatory cells56.

This distributed connectivity plan is also 
reflected in the biophysical properties of neu-
rons. For example, many mammalian neu-
rons are covered with dendritic spines, which 
receive essentially all excitatory inputs61. The 
fact that these excitatory inputs choose to 
connect on spines and not on neighbouring 
dendritic shafts indicates that spines must 
have a fundamental role in neuronal integra-
tion62. One possibility is that spines facilitate 
distributed connectivity by maximizing the 
assortment of different axons that dendrites 
can connect to63. Also, by avoiding input 
saturation, spines could enable the independ-
ent integration of each excitatory input while 
simultaneously allowing the neuron to alter 
the synaptic strength of each input individu-
ally64. These properties only make sense if the 
neuron is trying to integrate as many different 
inputs as possible.

Now, if one assumes that neural circuits 
are built to maximize connectivity, one could 
then argue that the more connected a neu-
ron is, the less important it becomes in the 
circuit9. If every neuron is connected with 
every other neuron, any individual neuron 
becomes dispensable (like an individual vote 

in a democracy). Because of this, individual 
neurons in the mammalian brain are likely to 
be irrelevant for the overall circuit function, 
which must depend instead on interactions 
among a large number of neurons. This 
design is unique among other organs in the 
body, as the overall function of organs such as 
the liver, kidney, lung, skin or muscle can, in 
principle, be comprehended by understand-
ing the function of each of their cells, whereas 
for the brain one may need to consider the 
activity of selected populations of cells.

The situation in the nervous system — in 
which many elements are connected and 
contribute structurally or functionally to 
a larger structure — is characteristic of 
physical systems that generate emergent 
properties8,65. Emergent properties arise 
from interactions among elements but are, 
by definition, not present in the individual 
elements. Even something as mundane 
as watching a movie on a TV screen is an 
example of the importance of emergent 
properties: one cannot comprehend the 
scene by looking at individual pixels but 
instead needs to simultaneously view many 
pixels to decipher the image. Although the 
neuron doctrine and single neuronal tech-
niques have focused on the exhaustive analy-
sis of the individual ‘pixels’ of the brain, it is 
possible that the function of neural circuits 
may not be apparent unless one can visualize 
many, or most, ‘pixels’ in the screen.

Neuronal assemblies and spontaneous activ-
ity. The idea that neural circuits are built for 
an emergent function is not new. As early 
as the 1930s, Cajal’s disciple Rafael Lorente 
de Nó argued that the structural design of 
many parts of the nervous system is one of 
recurrent connectivity whose purpose could be 
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encoded calcium 
indicators 
generated155

Linear attractor 
networks 
described107

Liquid-state 
neural networks 
described109

Calcium 
imaging of 
circuits in vivo 
achieved179

Single-cell stimulation 
elicits movement33

Deep-belief 
networks invented94

Calcium imaging of 
awake mice 
achieved180

Calcium imaging of an 
entire zebrafish nervous 
system described42
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to generate functional reverberations (pat-
terns of neuronal activity that persist after the 
initial stimulus has ceased) among groups 
of neurons66,67. This idea was embraced by 
Donald Hebb, who proposed that neural 
circuits worked by sequentially activating 
groups of neurons, which he called ‘cell 
assemblies’11. According to Hebb, these recur-
sive and reverberating patterns of neuronal 
activation, firing in closed loops, would be 
responsible for generating functional states 
of the brain, such as memories or specific 
behaviours11. He proposed that synaptic con-
nections between neurons could be altered 
by a learning rule (a local change in synaptic 
strength governed by correlated patterns of 
activity), thus linking neurons into an assem-
bly68. In doing so, the circuit has ‘learned’ a 
pattern of activity, storing it into its altered 
repertoire of synaptic connections.

In parallel with these ideas, a rich phe-
nomenology demonstrated the presence 
of intrinsic, spontaneous activity in many 
neural circuits (FIG. 3). Rhythmic types of 
activity are generated by central pattern gen-
erators (CPGs), which are responsible for 
stereotypical behaviours such as digestion, 
locomotion or respiration69. The concept of 
CPGs originated with Sherrington’s student, 
Graham Brown, who observed the persis-
tence of spinal cord activity in the absence 

of sensory stimuli70,71. Although the idea ran 
contrary to Sherrington’s view that neural 
circuits operate through an input–output 
sequence of reflexive actions, Sherrington 
himself later appeared to be open to the 
importance of intrinsic activity patterns72. 
Thus, the scientists responsible for the 
neuron doctrine, Cajal and Sherrington, 
trained the early pioneers of the alternative 
viewpoints.

A related line of experimental work, 
which began with the first use of EEG by 
Berger44, led to the description of spontane-
ous electrical oscillations throughout the 
brain40,73,74. These rhythmic modulations 
in neuronal activity, which can arise from 
the dynamical properties of neurons75,76, 
have been linked to a variety of important 
functional roles, including attention, brain 
states, sensory or computational processing, 
decision-making, perceptual binding and 
consciousness77–87. The role of spontaneous 
activity in brain function could be basic and 
ancient: during evolution, the function of the 
CNS may have resulted from the encephaliza-
tion of simpler fixed action pattern rhythms88. 
From this point of view, repeated or oscilla-
tory firing patterns may no longer correspond 
to simple rhythmic movements but could 
have acquired a symbolic or computational 
meaning88.

Emergent circuit properties
The first neural network models. Neuronal 
reverberations, neuronal assemblies, ensem-
bles, CPGs and oscillations are examples of 
functional emergent states that may be of 
great importance but cannot be captured 
within a single-neuron framework. These 
ideas have attracted many theorists, who, 
over the decades, formalized these emergent 
models, creating the concept of a neural 
network8,89,90. The term ‘neural network’ 
has become synonymous with models of 
distributed neural circuits in which neurons 
are abstracted into nodes and linked by con-
nections that change through learning rules8 
(FIG. 4). Typically, neurons in neural networks 
are connected in an all‑to‑all or a random 
fashion and integrate inputs linearly, leading 
to a threshold nonlinearity that causes the 
cell to fire and activates its outputs.

In the first neural network models10, 
neurons merely summed inputs to reach a 
threshold and fire action potentials. If the 
threshold is set at a high level, the neuron 
will only fire if many (or all) of its inputs 
are active. This strategy corresponds to the 
AND logical function and could be used, 
for example, to build neurons that are very 
selective to the conjunction of inputs and to 
detect and recognize a pattern or particu-
lar object. At the same time, if one sets the 
threshold to a low level, the neuron would 
fire whenever any of its inputs is active. This 
corresponds to the logical OR function and 
enables neurons to respond to a set of inputs, 
thus generating an invariant response, even 
if inputs are changing. Hence, even these 
simple circuits could implement Boolean 
logic, the mathematical foundation of digital 
calculus and computers, as demonstrated by 
Turing91. Neural networks have, in princi-
ple, the computational abilities of the most 
sophisticated computers. Importantly, these 
networks generate emergent computations: 
the overall logic and function implemented 
in the circuit (for example, object recogni-
tion or invariant response) depends on the 
activity — or lack of activity — of all of its 
components.

Over the ensuing decades, more complex 
models were created. These belonged to two 
basic types, based on their architecture: feed-
forward networks, which are governed by 
one-way connections (FIG. 4a), and recurrent 
networks, in which feedback connectivity 
is dominant (FIG. 4b). Feedforward networks 
(sometimes referred to as multilayer per-
ceptrons) are organized in layers and linked 
by unidirectional connections92. Such cir-
cuits can solve effectively problems such as 
categorization or classification of inputs. 
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Figure 2 | Anatomical and physiological examples of the neuron doctrine.  a | Cajal’s schematic 
illustration of a section of a bird retina, depicting individual neurons that were assumed to be the units 
of the circuit. The arrows indicate the direction of electrical impulses, correctly deduced by Cajal’s 
application of the neuron doctrine and the law of dynamic polarization. b–d | Physiological application 
of the neuron doctrine. The diagram of the experiment (panel b) shows the electrical activity of a 
ganglion cell in a frog’s retina recorded while a visual stimulus is moved with a magnet over a screen 
(panel c), as well as the electrical activity in response to a stationary stimulus (panel d). Note how the 
neuron responds vigorously to the moving stimulus but only weakly to the stationary stimulus. The 
neuron was defined as a ‘bug detector’, because its receptive field matches the movement of a physi-
ological prey of the frog. Thus, the single neuron would have a very specific function, in agreement 
with the idea that single neurons are the functional units of the circuit. Part a adapted, with permission, 
from REF. 192 © The Nobel Foundation 1906. Parts b–d adapted, with permission, from REF. 25 © 1960 
Maturana et al. Journal of General Physiology. 43:129–175. doi:10.1085/jgp.43.6.129.
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Although originally viewed with suspicion 
by the artificial intelligence community93, 
feedforward networks have recently under-
gone a renaissance in computer science, 
through the development of novel training 
rules, an expansion in the number of layers 
and the access of large-scale datasets and bet-
ter hardware implementations (convolutional 
or deep belief networks)94,95.

Recurrent networks, however, empha-
size feedback connections between pools of 
neurons. In some models, the recurrent con-
nectivity enables these networks to generate 
intrinsic activity, which becomes stable at 
particular points in time, termed attractors96. 
Attractor models were inspired by the Ising 
model of ferromagnetism, in which individ-
ual atomic spins interact with neighbouring 
spins and spontaneously align into emergent 
states by minimizing an energy variable97. 
Likewise, in a recurrent neural network with 
symmetric connections (in which synapses 
between any pair of neurons have the same 
synaptic strength), one can define an ‘energy’ 
function that assigns a value to any activ-
ity pattern to measure the propensity of the 
network to change its activity. It can be dem-
onstrated mathematically that this energy 
tends to decrease, endowing the network 
with a dynamical trajectory that coalesces 
into several lower energy states. Because of 
this, the activity map for such networks con-
tains multiple stable points, which ‘attract’ 
the activity; hence the term ‘attractors’96,98 
(FIG. 4c). Attractors are another example of the 
emergent states of the activity of the network 
and could serve to implement associative 
memories, decision-making, or — more gen-
erally — solutions to optimization or other 
computational problems99,100. Moreover, the 
trend towards lower energy states endows 
these networks with pattern completion 
properties: that is, the internal dynamics of 
the system can ‘complete’ a spatiotemporal 

pattern of activity when provided with a par-
tial stimulus. Pattern completion is found in 
memory recall and many neuroethological 
fixed action patterns101,102.

Recent neural network models. Starting with 
the original models of McCulloch and Pitts10, 
neural networks were traditionally based on 
circuits that had an all-to-all connectivity 
or were widespread, where the exact spatial 
pattern of the connections did not matter. At 
the same time, connections in the brain often 
have particular spatial properties. For exam-
ple, inhibition tends to mostly affect local 
neighbours (known as lateral inhibition)103. 
This was explored in one set of neural net-
work models, in which adding a spatial local 
profile to the connectivity enabled networks 
to implement competitive ‘winner takes all’ 
algorithms, in which individual neurons 
stand out among their neighbours, stifling 
their activity. These algorithms perform 
pattern separation: that is, they differentiate 
similar inputs by having them excite differ-
ent sets of neurons, thus ‘placing’ them into 
different locations of the activity map of 
network104,105. Interestingly, these excitatory–
inhibitory networks were able to spontane-
ously assemble into self-organizing maps in 
which the computational variables of the input 
space became systematically ordered onto the 
planar physical structure of the network106. 
This may be particularly interesting for neu-
robiologists because many areas of the brain 
have sensory, motor or cognitive maps, and 
perhaps lateral inhibitory connections could 
help to build these maps spontaneously during 
development.

Continuing with this trend, recent genera-
tions of neural network models have tried to 
better capture known structural and func-
tional features of brain circuits107–113. In fact, 
unlike the original attractor networks (which 
assumed all‑to‑all, symmetric connections 

between neurons, and were deterministic as 
they were locked into discrete stable activ-
ity states), an entirely new type of recurrent 
neural networks (which are stochastic, not 
deterministic) allows weights to be asym-
metric and exhibits transient dynamical 
patterns without stable states109. Moreover, 
the asymmetry in the synaptic connectivity 
matrix naturally endows these models with 
temporally organized activity89. In fact, many 
of these newer dynamical networks models 
can produce repeated temporal patterns in 
the firing of the neurons114, which — because 
of the recurrent connectivity — can be gener-
ated in the absence of input to the network. 
Spatiotemporal patterns of activity are pro-
duced in recurrent dynamical models by 
spike-timing-dependent synaptic plasticity 
and could be used as an emergent substrate 
for neural coding115.

Through these refinements, newer 
neural networks are becoming useful for 
experimentalists as models of neural circuits, 
capturing effectively the recurrent nature 
of excitatory neural connections and the 
intrinsic firing of neurons in the absence of 
stimuli, as observed, for example, during 
working memory tasks116,117. Furthermore, 
recurrent models can also be used to explain 
binary circuit states, such as those that must 
occur during decision-making111, or pro-
vide continuous solutions to computational 
problems, as often observed during smooth 
physiological responses107.

Importantly, in neural network models 
the computation is an emergent collective 
property, carried out by the assembly of neu-
rons rather than by single cells96,118. In fact, 
individual neurons can participate in differ-
ent functional groups, flexibly reorganizing 
themselves and diluting the concept of the 
receptive field. This combinatorial flexibility, 
originally proposed by Hebb11, is a natural 
consequence of synaptic plasticity and it also 
allows the modular composition of small 
assemblies into larger ones. Because of this 
flexibility, neural circuits may never be able 
to be in the same functional state twice, 
responding differently even if the exact 
same sensory stimulus is presented. Neural 
circuits could be constantly changing, as if 
they were a ‘liquid state’ machine109,119. This 
could be used as an emergent mechanism 
to encode time120, providing different time 
stamps to different moments121.

Experimental evidence for emergent prop-
erties. The possibility that neural circuits 
generate emergent states of activity is fasci-
nating, but is there any evidence that biologi-
cal neural circuits actually operate as such 

Figure 3 | Spontaneous cortical activity.  The figure illustrates one of the first electroencephalo-
grams by Hans Berger (1929)44, recorded from his son Klaus (15 years old). The upper trace represents 
a sample of the ‘alpha rhythm’ (a sinusoidal rhythm of approximately 10 Hz), often found in the visual 
cortex when the eyes are closed (thus in the absence of visual stimulation). The lower trace is a 
generated 10 Hz sine wave, for reference44. Patterned spontaneous activity is present throughout 
the nervous system and is an example of a phenomenon that cannot be easily explained by the 
Sherringtonian physiological neuron doctrine because it occurs in the absence of sensory inputs. 
Rather, spontaneous activity is likely to be generated by interactions among groups of neurons and 
indicates that neurons could be engaged in intrinsic functions, unrelated to a sensory stimulus or 
motor action. Adapted from REF. 44, Steinkopff-Verlag, with kind permission from Springer Science 
and Business Media.
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neural networks? From a naive point of view, 
if one assumes that a neural network simply 
consists of interconnected neurons, every 
neural circuit is indeed a neural network, 
and no experimental evidence is needed. 
A more relevant question is whether these 
feedforward or recurrent neural network 
models have any validity in explaining the 
phenomenology measured in brain circuits. 
Is there any evidence for emergent states of 
activity that may make it necessary to use 
these neural network models? Are neural 
network models helpful for understanding 
how neural circuits operate?

One could argue that traditional single-
cell circuit models can be explained as par-
ticular examples of feedforward or recurrent 
neural networks. For example, the Hubel 
and Wiesel model for orientation selectiv-
ity is equivalent to a multilayer perceptron 
performing conjunction or disjunction89. 
Likewise, oscillatory dynamics present 
throughout the CNS can be reinterpreted 
as reverberating activity patterns generated 
by recurrent neural networks with stable 
dynamical trajectories73,88,122.

In some cases, neural network models 
have already been used by researchers to 
help design and interpret their experi-
ments. In particular, the circuit architecture 
of the mammalian hippocampus has been 

proposed to represent a series of sequen-
tial feedforward and recurrent neural 
networks123, which generate attractors46,124. 
Attractor networks have also been used to 
model grid cells in the entorhinal cortex125–127 
and to explain their remapping in new envi-
ronments128 — something that is hard to 
understand from a single-neuron point of 
view. Pattern separation, pattern completion 
and replay, which are well-known proper-
ties of recurrent neural networks100,123, are 
also found in hippocampal activity129,130. 
Furthermore, network models are being 
used to guide the optogenetic manipulation 
of hippocampal circuits in mice to enable 
feats that include activating a memory131 or 
implanting ‘false’ memories by activating a 
neuronal ensemble132.

Similarly, neural network models have 
been used to understand emergent func-
tional properties of the cerebral cortex133,134. 
For example, repeated temporal sequences 
of action potentials described in vivo135–137, 
and even in brain slices138, could result from 
recurrent neural network architecture. In 
fact, some of these stimulus-evoked activ-
ity patterns are similar to those that occur 
spontaneously41,43,139–141, as would be pre-
dicted from some dynamical network mod-
els115. Also, neural network models based 
on the multidimensional representation of 

information by neuronal ensembles have 
been recently used to explain, for example, 
context-dependent coding114, multidimen-
sional selectivity in the functional responses 
of neurons in the prefrontal cortex142, and 
complex motor actions in awake behaving 
monkeys143. In these studies, multidimen-
sional activity patterns appear to repeat in 
systematic fashion during the performance 
of the behavioural task (FIG. 5a).

Recent evidence for the existence of 
emergent circuit states in the mamma-
lian cortex comes from experiments on 
mice navigating a virtual maze144 (FIG. 5a). 
Researchers used two-photon calcium imag-
ing to measure the activity of groups of neu-
rons in the parietal cortex while the mouse 
made a behavioural choice, based on visual 
cues. Although single-neuron activity could 
not be used to explain decision-making, the 
temporal trajectory of the population of neu-
rons could be used to decode the behaviour, 
indicating the possible existence of an emer-
gent code. Strikingly, the temporal sequences 
of firing were predictive of the behavioural 
choice (FIG. 5b). These experiments echo 
earlier work on the behavioural switching of 
leeches between swimming and crawling, in 
which the dynamical activity of a population 
of neurons in the ganglion could be used to 
decode and predict a behavioural choice145.

Figure 4 | Neural networks.  Examples of common types of neural net-
work models. a | Feedforward network. The diagram shows a multilayer 
perceptron, consisting of three sequential layers of neurons (repre-
sented by circles), in which every neuron from each layer is connected 
to every neuron of the next layer. Each connection has an associated 
synaptic strength or ‘weight’ (w

ij 
or w’

jk
) that changes according to a 

learning rule that is applied to all the connections; w has a numerical 
value and is indexed by the presynaptic neuron and the postsynaptic 
neuron, which generate the connection. In this network, inputs are 
sequentially processed layer by layer in a unidirectional fashion, from 
the input layer on the left, to the ‘hidden’ layer in the middle, to the output 
layer on the right. The simple addition of synaptic weights in the output 
layer results in the generation of selective responses. The computation is 
an emergent property of the activity of the entire network. b | Recurrent 
network: an example of an attractor (feedback) neural network in which 
four pyramidal neurons (blue) are connected to themselves through 

recurrent axons (thin lines) with synaptic weights (w
ij
) that change owing 

to a learning rule. The network receives an external set of inputs (top con-
nections) and generates an output (bottom arrows). In networks with 
recurrent and symmetric connectivity the activity becomes ‘attracted’ to 
particular stable patterns. c | Recurrent network: an activity map of an 
attractor neural network (Hopfield model). Each point in the grid repre-
sents a particular state of activity of the entire network, and the three-
dimensional height of the map represents the ‘energy’ of the network in 
that particular activity pattern. This energy is a mathematical function 
that captures the propensity of the network to change its activity. The 
landscape thus represents all possible activity patterns, where the ‘valleys’ 
(red dots) are circuit attractors, which represent stable (that is, low energy) 
states of activity. The dashed circle represents an attractor ‘basin’ in which 
the network activity patterns converge into the attractor. Part b repro-
duced, with permission, from REF. 193, by permission of Oxford University 
Press. Part c reprinted from REF. 194.
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New methods to study networks
It is not an accident that the experiments 
that provide the strongest support for 
neural network properties have been per-
formed with multineuronal recording tech-
niques56,146,147, highlighting the ties between 
techniques and scientific paradigms35. 
Moving beyond the microelectrode5, 
advances in electrical recordings — such as 
the EEG44, the development of tetrodes148, 
multi-electrode arrays149 and nanofabricated 
high-density complementary metal-oxide 
semiconductor (CMOS) arrays150 — have 
enabled neurophysiologists to record pop-
ulation-wide activities and decipher coding 
properties and the functional connectivity of 
circuits such as those in the retina151. A simi-
lar case could be made for optical recordings 
of neuronal activity. From the initial devel-
opment of organic calcium152 or voltage153,154 
indicators to the more recent genetically 
encoded indicators155–158, it has become pos-
sible to measure the activity of many — or, in 
some cases, most42,159 — neurons in a neural 

circuit. These advances in optical probe 
design and synthesis have been accompanied 
by a similar revolution in optical hardware. 
From the introduction of cooled charge-
coupled device (CCD) cameras160, which 
enabled quantitative optical imaging from 
different regions of a neuron, to the develop-
ment of ultrafast infrared lasers that enabled 
two-photon microscopy161, which allowed 
imaging of neurons deep into living brain 
circuits162,163, and to more recent optical 
designs for three-dimensional imaging of 
neural activity42,164, these new methods are 
bringing not just a quantitative change in the 
amount of data acquired but a qualitative 
modification in the mindset with which neu-
roscientists approach neural circuits. Besides 
microscopy, new optical or magnetic meth-
ods to image the activity of entire cortical 
areas should be also highlighted, although 
they do not yet possess the spatial resolution 
to visualize individual neurons. For exam-
ple, intrinsic signal imaging165 has enabled 
visualization of the functional architecture 

of cortical areas with unprecedented reso-
lution166. Also, the development of func-
tional MRI167 has enabled the pinpointing 
of critical regions of the brain involved in 
specific behaviours, mental states or disease 
processes in human subjects. These large-
scale imaging methods are starting to build 
bridges between neural circuits and topics at 
the core of psychology168 and as complex as 
consciousness169.

Novel techniques have also been devel-
oped to optically alter the activity of neural 
circuits, such as optogenetics12 or opto-
chemistry170,171. This optical large-scale 
manipulation of neural circuits can be car-
ried out while preserving single-cell resolu-
tion172–174, while simultaneously imaging 
neuronal activity172,175, thus allowing one 
to ‘play the piano’ with neuronal circuits in 
order to generate spatiotemporal patterns of 
activity with the same precision as the ones 
encountered naturally.

Finally, novel computational and ana-
lytical approaches have been developed to 
analyse and decipher the meaning of multi-
neuronal datasets. Using dimensionality 
reduction methods143, dynamical systems 
analysis176, information theoretic frame-
works177 and a rich variety of other novel 
theoretical tools15,113, researchers can visualize 
and understand multidimensional neuronal 
dynamics in ways that enable them to probe 
brain circuits at the multicellular level.

Challenges and outlook
Despite the very good progress made over 
more than a century using the neuron 
doctrine as a foundation, neuroscience still 
lacks a general theory of how neural circuits 
operate, how they generate behaviour or 
mental states, and how their dysfunction 
leads to mental or neurological diseases. I 
would argue that this may be due partly to 
the methodological focus on single cells, 
which — despite propelling the field forward 
— has left multicellular phenomenology 
and its corresponding emergent properties 
relatively unexplored. Although one can, 
in principle, study circuit-level properties 
with single-neuron techniques (such as local 
field potentials that monitor the aggregate 
activity of groups of neurons, or even whole-
cell recordings that provide access to the 
population of excitatory or inhibitory inputs 
onto an individual cell), one may still miss 
emergent circuit properties unless more 
comprehensive measurements of population 
activity are made. In this respect, the above-
mentioned new methods to measure multi-
neuronal activity in vitro or in vivo14,149,178–180 
or to analyse and model multidimensional 

Figure 5 | Emergent functional states in multineuronal dynamics during virtual navigation.  a | A 
virtual navigation task is shown.  A T‑maze is projected in a virtual reality arena. A mouse runs along a 
linear track and has to choose to turn right or left depending on the cue that is presented to it via pat-
terns present on the virtual maze walls. b | Repeated spatiotemporal dynamics are observed during 
behaviour. The colour panels show the activity of a population of neurons in the mouse parietal cortex 
during the virtual navigation task, measured using two-photon calcium imaging. Each panel displays 
the calcium-related fluorescence (ΔF/F) in pseudocolour for every individual cell (y axis), as a function 
of time. The multineuronal activity from 101 cue-preferring cells (left) or 170 turn-preferring cells 
(right) is aligned to the trial start and turn onset, and displays a smooth progression in time of the 
activity through the population. Whereas individual neurons are activated at variable times, the overall 
activity faithfully tracks the behaviour of the animal. c | Choice-specific multineuronal trajectories. 
Analysis of similar data to that shown in part b. Here, the multineuronal activity is now condensed into 
three-dimensional plots of principal component axes. The left panel shows the time course of average 
multidimensional dynamical trajectories on the right (red) and left (blue) choice trials from one session. 
Points labelled 1, 2 and 3 correspond to the times of the cue offset, turn onset and trial end, respec-
tively. The right panel superimposes several individual (thin lines) and mean (thick lines) trajectories 
for correct trials. Note how the trajectories of the activity of the neuronal population differ on the right 
and left trials, yet are similar within each type of trial. Thus, one can decode the behaviour of the animal 
from the multineuronal activity patterns, as an emergent property of its dynamics. Figure modified 
from REF. 144, Nature Publishing Group.
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and dynamical activity37,109,181 may usher in 
a Kuhnian ‘scientific revolution’36, in which 
the single-neuron doctrine taught in text-
books is replaced by a new neural network 
paradigm that assumes that assemblies of 
neurons are the basic building blocks of the 
function of the brain.

However, the adoption of neural networks 
as a new paradigm faces some potential chal-
lenges, at least when one considers current 
models. For example, it is unclear whether 
existing neural network models have enough 
predictive value to be considered valid or 
useful for explaining brain circuits. Given 
the nonlinearity of the interactions among 
neurons present in most neural network 
models, numerical simulations can result 

in vastly different outcomes if they have too 
many free parameters. Alternatively, the 
same outcome can be generated from many 
different network simulations, underspecify-
ing any biological predictions. Thus, it could 
become difficult to disentangle how current 
models of neural circuits generate dynami-
cal structured or emergent functional states. 
Because of this, it is possible that although 
artificial neural networks could operate well 
in principle and even be very useful for engi-
neering applications, in order to be applied 
rigorously to realistic neural circuits they 
may need to be constrained with quantita-
tive data, which are still not available. In this 
respect, although there is increasing evidence 
supporting some of these neural network 

models, the data are still correlative and criti-
cal experiments to demonstrate their impor-
tance or disprove them have not yet been 
carried out. Novel methods to systematically 
modify or manipulate neuronal activity at 
the population level are key, because they can 
directly reveal causal interactions and test 
the validity of these emergent-level models. 
Perhaps the new tools generated by the BRAIN 
initiative182,183 to measure, manipulate or ana-
lyse multineuronal activity could critically 
contribute to the refining and proper testing 
of neural network models. It should also be 
pointed out that in addition to gathering and 
analysing the data it is equally important 
to generate an organizational framework 
to store, distribute and share these data in a 
fashion whereby knowledge could be gained 
from the parallel efforts of the entire research 
community.

Simply recording from more neurons, or 
even manipulating large numbers of them, 
may not suffice and may only be a first step. 
Developing an understanding of how neural 
circuits work may require integration of 
essential knowledge from many — or all — 
levels, with a detailed characterization of 
the way in which the elements at different 
levels work together and interact. This is not 
a new idea: Marr emphasized the intercon-
nectivity of the different levels as a neces-
sity for acquiring a proper knowledge of 
how vision works118. Earlier than this, Kant 
pointed out that science is a ladder in which 
every rung is connected to those above and 
below it, and it is only once the facts become 
properly connected to the ladder that they 
finally become knowledge184. To be truly 
paradigm shifting, neural circuit models 
must assimilate the knowledge of single-
cell properties and interactions that was 
painstakingly acquired by the past century 
of research, as well as multineuronal data 
acquired with EEGs, local field potential 
and multi-electrode recordings. Moreover, 
a proper synthesis needs to be carried out, 
integrating the new anatomical and physi-
ological large-scale datasets (termed ‘struc-
tural’ and ‘functional’ connectomics), and 
evaluating how neuromodulators can alter 
their function185,186.

Finally, it should be noted that research 
based on the principles of the neuron doc-
trine is far from being finished1,16. There are 
still some important questions remaining 
about the function of individual cells, like, 
for example, what local computations are car-
ried out by dendrites187 (which in some cases 
serve as both input and output devices)49. 
The future integration of different levels of 
analysis by neural network models should be 

Glossary

Attractors
Stable or semi-stable states in the temporal dynamics 
of the activity of a neuronal population. They arise 
naturally in neural networks that have a recurrent 
(feedback) architecture with symmetric connections.

Boolean logic
A form of algebra in which all values are reduced to either 
true or false. Boolean logic is especially important for 
computer science because it fits nicely with its binary 
numbering system. Boolean logic depends on the use of 
three logical operators: AND, OR and NOT.

BRAIN initiative
The Brain Research through Advancing Innovative 
Neurotechnologies (BRAIN) initiative is a decade-long 
large-scale scientific project, sponsored by the White 
House, to accelerate the development and application of 
innovative neurotechnologies to revolutionize the 
understanding of the brain.

Activity map
In a neural network context, the activity map is a 
three-dimensional representation of all the activity states of 
the network, where the depth dimension corresponds to 
the energy function of the activity, which captures the 
propensity of the network activity to change. This 
topological representation provides an intuition of how the 
activity of the circuit evolves in time, as it progresses 
through this energy landscape to find its lower-energy 
(attractor) points.

Ensembles
A group of neurons that show spatiotemporal 
co-activation. Ensembles provide an example of an 
emergent state of the circuit. 

Gap junctions
Cellular specializations that allow the non-selective passage 
of small molecules between the cytoplasm of adjacent cells. 
They are formed by channels termed connexons, which are 
multimeric complexes of proteins known as connexins. Gap 
junctions are structural elements of electrical synapses.

Golgi stain
A staining technique introduced by Camillo Golgi in 1873 
that involves impregnating the tissue with silver nitrate. 
This labels a random subset of neurons, allowing the entire 
cell and its processes to be visualized.

Grid cells
Neurons in the rodent entorhinal cortex that fire when the 
animal is at one of several specific locations in an 
environment; these locations are organized in a grid-like 
manner. 

Learning rule
The alteration of the strength of a synaptic connection in a 
neural network, as a consequence of the pattern of 
activity experienced by that synapse (or the network).

Neuronal assemblies
Originally proposed by Hebb; groups of neurons that 
become bound together owing to synaptic plasticity, and 
whose coordinated activity progresses through the 
circuits, often in a closed loop.

Pattern completion
A process by which a stored neural representation is 
reactivated by a cue that consists of a subset of that 
representation.

Pattern separation
A process by which overlapping neural representations are 
separated to keep episodes independent of each other in 
memory.

Perceptrons
Multilayer feedforward artificial neural networks in which 
activity flows unidirectonally from one layer to the next. 
Multilayer perceptrons are often used to implement 
classification problems.

Place cells
Hippocampal neurons that specifically respond to 
stimuli in certain spatial locations. Their firing rate 
increases when an animal or subject approaches the 
respective location.

Recurrent connectivity
The concept that neurons within a class connect with one 
another, implying feedback communication within the 
network.

Replay
Recapitulation of experience-dependent patterns of 
neural activity previously observed during awake 
periods.
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able to incorporate and explain, from a circuit 
perspective, this neuron subcompartment 
phenomenology.

In closing, neural network models based 
on the conjoint activity of groups of neurons 
could explain the phenomenology described 
with single-neuron approaches, but may also 
go beyond that and help understand observa-
tions that did not fit the single-neuron mould. 
If successful, neural network models could 
help to reveal the nature of the neuronal code 
and reformulate classical — yet still unan-
swered — questions in neuroscience, such as 
the physiological basis of learning and mem-
ory, perception, motor planning, ideation and 
mental states; for example, in an emergent 
theoretical framework. A new framework 
may help us to take a fresh look at data, 
reveal novel phenomena, and perhaps help 
generate a unified theory about how neural 
circuits give rise to behaviour and mental or 
pathological states.
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