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The hippocampus is critical for forming memories of daily life 
events, but over time memories can become independent of the hip-
pocampus1–3. This transition of memory representations from being 
strongly dependent on the hippocampus to being fully or mostly 
engrained in cortical networks is termed memory consolidation. 
According to the influential ‘two-stage model’4,5 of consolidation, 
the first stage occurs during behavior, when the hippocampus rapidly 
encodes various aspects of the experience via changes of synaptic 
strengths. In the second stage, during slow-wave sleep and consum-
matory behaviors, the newly acquired hippocampal information is 
replayed repeatedly, driving plasticity in neocortex and allowing 
for the longer-term storage of the memory. The hippocampus has 
therefore been referred to as the ‘fast learner’, which teaches the  
cortex, the ‘slow learner’1,6.

A number of studies have implicated hippocampal replay during 
SWRs as a potential mechanism of hippocampal–cortical commu-
nication underlying memory consolidation4,7–11. SWRs originate 
in the hippocampus5,12,13, and sequences of hippocampal place cell 
firing that occurred during wakefulness are repeatedly reactivated 
on an accelerated timescale during SWRs. Importantly, reactivated 
hippocampal representations have been suggested to engage cortical 
networks, as SWRs can drive excitatory responses in cortical output 
regions14,15, and reactivation in some cortical regions, most notably 
the medial prefrontal cortex, is coordinated with hippocampal reac-
tivation7,16–19. Finally, studies have established a causal role for SWRs 
in learning: SWR rates increase in post-learning sleep20, and block-
ing hippocampal SWRs impedes learning8,21,22. Taken together, these 
findings support the idea that SWRs facilitate repeated transmission 
of representations of recent experiences from the hippocampus to 
the cortex, potentially inducing synaptic changes that would support 
long-term memory storage.

In the intact brain, SWRs arise at specific times relative to ongoing 
neocortical activity, and previous studies have established that mem-
ory consolidation involves a bidirectional interaction, or ‘dialogue’, 
between hippocampus and cortex4,23,24. During sleep, SWRs occur 
more often after cortical down-to-up state transitions15 and around 
the times of cortical spindles18. Based on these findings, it has been 
suggested that the neocortical up-states provide feedforward excita-
tion promoting thalamic spindles and hippocampal SWRs, resulting 
in coordination between SWRs, cortical up-states and spindles, and 
thus providing a potential mechanism of hippocampus-to-cortex 
information flow23. Consistent with these findings, a previous study 
found that ‘activity frames’ in visual cortex precede frames in the hip-
pocampus and demonstrated coordinated reactivation across these 
structures, although the direction of information flow could not be 
determined17. Another study showed that hippocampal reactivation 
during sleep can be biased by sounds, raising the possibility that this 
effect is mediated by a flow of sound-evoked information from the 
cortex to the hippocampus25. Finally, selective ablation of axons from 
entorhinal cortex to hippocampal area CA1 after learning causes a 
long-term memory impairment26, suggesting a role for these con-
nections in consolidation. Taken together, these studies raise the 
possibility that cortical firing patterns preceding hippocampal SWRs 
could affect subsequent hippocampal reactivation, but the presence or 
absence of such a communication pattern remains to be established.

In this study, we aimed to establish the direction and nature of 
information flow in the hippocampal–cortical circuit around the 
time of SWRs. We focused on interactions between the hippocam-
pus and the auditory cortex, as rodents have high auditory acuity and 
the rodent auditory cortex has been implicated in memory-related 
processes27–34. Our results provide strong support for a cortical– 
hippocampal–cortical information-processing loop wherein cortical 
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Hippocampal replay during sharp-wave ripple events (SWRs) is thought to drive memory consolidation in hippocampal and 
cortical circuits. Changes in neocortical activity can precede SWR events, but whether and how these changes influence the 
content of replay remains unknown. Here we show that during sleep there is a rapid cortical–hippocampal–cortical loop of 
information flow around the times of SWRs. We recorded neural activity in auditory cortex (AC) and hippocampus of rats as they 
learned a sound-guided task and during sleep. We found that patterned activation in AC precedes and predicts the subsequent 
content of hippocampal activity during SWRs, while hippocampal patterns during SWRs predict subsequent AC activity. 
Delivering sounds during sleep biased AC activity patterns, and sound-biased AC patterns predicted subsequent hippocampal 
activity. These findings suggest that activation of specific cortical representations during sleep influences the identity of the 
memories that are consolidated into long-term stores. 
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patterned activation precedes hippocampal SWRs and influences the 
content of hippocampal activity during the SWRs, while hippocampal 
patterns during SWRs influence subsequent cortical activity.

RESULTS
We carried out electrophysiological recordings of neuronal activity 
in the hippocampal CA1 region and AC in rats during learning of a 
sound-guided task and during interleaved sleep sessions in a rest box 
(Fig. 1a). Rats were trained on a Y-shaped track, where they learned 
to nose-poke in the home well to initiate each trial (Fig. 1b). In ~75% 
of trials, no sound was presented and the animal was rewarded for 
going to the ‘silent well’. In a pseudorandom ~25% of trials, poking 
in the home well was followed by presentation of a target sound, and 
the animal was then rewarded for visiting the ‘sound well’. Animals 
reached high levels of performance after ~6–8 d of training (Fig. 1c). 
The locations of the home, silent and sound wells were fixed across 
days. We recorded neuronal ensemble spiking activity across learning 
using tetrodes targeted to the AC and to the dorsal CA1 region of the 
hippocampus (Fig. 1d and Supplementary Fig. 1).

Modulation of auditory cortical activity around hippocampal SWRs
We focused on spiking activity during sleep, when reactivation and 
consolidation processes are known to occur. CA1 reactivation of 
awake experience during sleep SWRs is well-established5,9,35,36, but 
it is not known whether AC also shows reactivation during sleep and, 
if so, whether it does so in coordination with hippocampal SWRs. 
We examined these questions by focusing on activity during non-
rapid eye movement (NREM) sleep in training-interleaved sleep ses-
sions when no sounds were presented (‘silent sleep’; Supplementary  
Fig. 2). We aligned spiking activity of all cells to the onset of SWRs, 
derived SWR-triggered peri-SWR time histograms and used a vari-
ance-based method to detect systematic firing rate variations. Notably, 
the firing rates of 36% (117/322) of cells in AC were significantly 
modulated around the time of hippocampal SWRs (Fig. 1e,f and 
Supplementary Fig. 3), as were the firing rates of the majority of 
CA1 cells (85%, 164/192).

We then asked whether AC spiking at the time of SWRs during 
sleep reflected reactivation of awake experiences. We employed a 
previously developed principal component analysis-based method7 
to measure the reactivation of population patterns that were observed 
during wakefulness. We observed significant reactivation of awake 
experience during silent sleep in 69/83 (83%) of rest sessions (indi-
vidual session criterion of P < 0.05, shuffle test; likelihood of 69/83 
significant: P < 10−10). The patterns of AC reactivation were similar 
to those reported previously for prefrontal cortex7, with large tran-
sient increases in reactivation amplitude (Fig. 1g and Supplementary  
Fig. 4). Notably, AC reactivation increased significantly around 
the times of hippocampal SWRs (P = 5.7 × 10−8 at lag 0, one-sided 
Wilcoxon signed-rank test; Fig. 1h and Supplementary Fig. 4), sug-
gesting that reactivation could be synchronized and coordinated 
across these structures. In support of this possibility, and consistent 
with previous findings in other brain regions in rodents15,18,37 and in 
humans38,39, we found that power in the delta and spindle bands of the 
local field potential in AC increased around the time of hippocampal 
SWRs (Supplementary Fig. 5).

AC activity precedes and predicts CA1 spiking during SWRs
While SWRs are generated in the hippocampus, we found clear evi-
dence for an initial flow of information from cortex to hippocampus  
immediately preceding SWRs. We first noted that single cells in 
AC often increased firing before the onset of hippocampal SWRs 

(Figs. 1f and 2a), while CA1 cells consistently increased firing after 
SWR onset (Figs. 1f and 2b). Across the population, firing rate 
increases could be detected in AC earlier than in CA1 (Fig. 2c and 
Supplementary Fig. 3). Moreover, we found that AC ensemble fir-
ing patterns could significantly predict the occurrence of hippocam-
pal SWRs (P = 2.5 × 10−16 at lag 0, one-sided Wilcoxon signed-rank  
test; Supplementary Fig. 6).

Could specific patterns of AC spiking preceding SWRs influence 
subsequent hippocampal reactivation? To answer this question, we 
used cross-validated generalized linear models to determine whether 
pre-SWR ensemble activity in AC predicted the firing of single CA1 
neurons during SWRs. These analyses revealed striking examples of 
such coordination (Fig. 2d–f), including cases in which pre-SWR 
firing of different AC neurons from the same recorded ensemble was 
either positively (Fig. 2diii), negatively (Fig. 2div) or not (Fig. 2dv) 
correlated with the SWR firing of individual CA1 neurons.

Across the population of CA1 cells, pre-SWR AC ensemble spiking 
patterns significantly predicted subsequent CA1 spiking during SWRs 
(n = 107 predicted CA1 cells; Fig. 2g and Supplementary Figs. 7  
and 8). This prediction was highly significant for both the 200-ms 
window immediately preceding the SWR (−200 to 0 ms; z = 4.69,  
P = 2.69 × 10−6, two-tailed rank-sum test compared to shuffled) and 
for the preceding window (−400 to −200 ms; z = 3.45, P = 0.0006) but 
was not seen for a more remote window (−600 to −400 ms; z = 0.84, 
P = 0.40). Notably, these predictions were only significant from AC 
to CA1: pre-SWR CA1 ensemble spiking patterns did not predict AC 
activity during the SWR (n = 152 predicted AC cells, −600 to −400 ms:  
z = 1.02, P = 0.31; −400 to −200 ms: z = 1.58, P = 0.115; −200 to 0:  
z = 0.49, P = 0.627, two-tailed rank-sum test compared to shuffled; 
Fig. 2h). Firing-rate differences across time windows could not 
account for the differences in prediction (Supplementary Fig. 9).  
Thus, these findings provide evidence for pre-SWR AC patterns  
biasing CA1 firing during SWRs.

CA1 activity patterns during SWRs predict subsequent  
AC spiking
Our analyses also revealed that, following this initial information flow 
from cortex to hippocampus before SWRs, there was coordinated 
reactivation during SWRs and subsequent information flow in the 
reverse direction, from CA1 to AC. CA1 and AC activity patterns were 
mutually predictive of one another during the SWR (0 to 200 ms: z > 6,  
P < 1 × 10−8, two-tailed rank-sum tests compared to shuffled; Fig. 2g,h).  
In contrast, CA1 ensemble spiking patterns during the SWR signifi-
cantly predicted AC spiking in the post-SWR window (200–400 ms; 
n = 150 predicted AC cells, z = 4.37, P = 1.25 × 10−5, two-tailed rank-
sum test compared to shuffled; Fig. 2i), while AC ensemble spiking 
patterns during the SWR did not significantly predict CA1 activity 
in the post-SWR window (n = 108 predicted CA1 cells, z = 1.18, 
P = 0.237, two-tailed rank-sum test compared to shuffled; Fig. 2i). 
Significance rates of individual ensemble-cell predictions showed a 
similar temporal pattern between structures (Supplementary Fig. 10). 
These findings suggest the existence of a rapid cortical–hippocam-
pal–cortical information-processing loop with a flow of information 
from AC to CA1 immediately preceding the SWR and a subsequent 
reverse flow of information from CA1 to AC.

Coordination is temporally specific and comparable in 
magnitude across structures
We then asked whether this communication loop was specific to peri-
SWR times. We employed the same approach to predict activity pre-
ceding SWRs when no SWRs were detected. Activity in the pre-SWR 
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time window in CA1 could not be predicted from ensemble spiking 
patterns in AC in any examined time windows (n = 101 CA1 predicted 
cells, −800 to −600 ms: z = 0.28, P = 0.775; −600 to −400 ms: z = 0.28, 

P = 0.78; −400 to −200 ms: z = 1.73, P = 0.083; −200 to 0 ms: z = −0.64, 
P = 0.523, two-tailed rank-sum test compared to shuffle; Fig. 2j). 
Similarly, activity in the pre-SWR time window in AC could not be 
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Figure 1  Auditory cortical reactivation during hippocampal SWRs in training-interleaved sleep. (a) Daily experimental schedule. Each day included  
3–4 20-min training sessions, interleaved with 20–30-min rest sessions in the rest box (silent sleep). In addition, at the beginning and end of each day,  
a sound protocol was presented while the animals were in the rest box (sound sleep). (b) Track and task. Rats (n = 4) initiated each trial by nose-poking in 
the home well and receiving a reward. In ~75% of trials the rat then had to go to the silent well for the next reward. In a pseudorandom ~25% of trials, 5 s  
after poking in the home well, a sound series was emitted from a speaker, indicating the rat had to go to the sound well for the next reward. The speaker 
was placed at the end of the sound arm in the first days of training and moved to the center junction after rats displayed consistent correct choices in more 
than ~70% of trials. (c) Behavioral performance on the task. Error bars indicate s.e.m. across animals. Dotted line indicates chance level of 50% correct. 
(d) Tetrode targeting. Seven tetrodes targeted the hippocampal CA1 region and seven tetrodes targeted primary auditory cortex in each animal. (e) Example 
ensemble spiking activity in auditory cortex (green) and CA1 region of the hippocampus (orange) during sleep. Each tick marks a spike from one cell. Top 
two traces show broadband local field potentials (LFP; 1–400 Hz) in CA1 and ripple-band filtered LFP (150–250 Hz) in CA1. Cyan shading denotes SWRs.  
(f) SWR-aligned rasters of example neurons and corresponding time histograms. Top examples are significantly SWR-modulated AC neurons; bottom 
examples are significantly SWR-modulated CA1 neurons. Gray lines mark the range (mean ± 2 s.d.) of firing rates in the preceding −1,000 to −500 ms 
time window. FR, firing rate. (g) Population reactivation time series of an awake pattern from an example sleep epoch. SWR events shown in cyan.  
Inset: SWR-triggered reactivation histogram. (h) Mean z-scored SWR-triggered reactivation histogram across all sleep epochs that showed significant 
reactivation (n = 69 epochs). Error bars show s.e.m. Gray trace shows result for same data when SWR timing was randomly shuffled.
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predicted from ensemble spiking patterns in CA1 in any examined 
time windows (n = 152 predicted AC cells, −800 to −600: z = −0.54,  
P = 0.59; −600 to −400 ms: z = 1.66, P = 0.097; −400 to −200: z = 0.34, 
P = 0.737; −200 to 0 ms: z = 0.43, P = 0.668, two-tailed rank-sum 
test compared to shuffle; Fig. 2k). The absence of detectable predic-
tion of activity in the pre-SWR window in either the AC–CA1 or 
CA1–AC directions indicates that coordination between these regions 
is strongly increased during SWRs and that this coordination cannot 
be explained by a slow covariance in activity across structures.

How strong is this coordination? Across all predictor-ensemble–
predicted-cell combinations, the mean prediction gain of CA1 firing 
during the SWR from AC patterns during the SWR was 1.05%. We 
expected this value to be low as it was the average across all ensem-
ble–cell combinations and was derived from relatively small ensemble 
sizes. To compare it to the well-established phenomenon of coordi-
nated activity of CA1 cells during sleep SWRs, we calculated how well 
the spiking of single CA1 cells during the SWR could be predicted 
from the activity of the other CA1 cells. Specifically, we calculated 
prediction gains of spiking for each single CA1 cell during the SWR 
from the ensemble activity of the other CA1 cells during the SWR. We 
found that the mean prediction gain for this analysis was 2.75%. Thus, 
the AC-to-CA1 prediction within the SWR was ~40% of the CA1-to-
CA1 prediction, while the pre-SWR AC to SWR-CA1 prediction was 
~20% of the CA1-to-CA1 prediction. These relatively large values 
suggest substantial coordination across these structures. Finally, we 
also examined the relationship between AC and CA1 activity around 
awake SWRs. Unfortunately, the smaller number of awake SWRs and 
the overlap with task events like sound presentation and receipt of 
reward precluded us from obtaining an unambiguous result.

Sound-biased AC ensemble patterns predict CA1 reactivation 
during SWRs
These findings established patterns of prediction consistent with 
cortical-to-hippocampal information flow immediately before SWRs 

and subsequent hippocampal-to-cortical information flow during 
and after SWRs. As AC is a sensory region with well-characterized 
response properties, we hypothesized that auditory stimuli during 
sleep would invoke specific activity patterns in AC, which would in 
turn influence subsequent hippocampal SWR activity. This could 
account for the previously observed biasing of hippocampal reacti-
vation by auditory stimuli25. We therefore examined responses to the 
sounds presented during the first and final sleep epochs of each day 
(sound sleep; Fig. 1a), which consisted of the target sound (target) 
and other control sounds (S1, S2 and S3; Fig. 3a and Supplementary 
Fig. 11). As expected40, AC cells showed robust and selective auditory 
responses during sleep (Fig. 3b,c and Supplementary Fig. 12).

SWRs were detected both during and between sound presenta-
tions (Fig. 3a,d), and we therefore asked whether sounds biased 
pre-SWR AC ensemble spiking patterns (−250 to 0 ms relative to 
SWR onset). We found evidence for this biasing: the identity of the 
most recently presented sound could be decoded from pre-SWR 
AC ensemble patterns (n = 26 epochs, t25 = 3.33, P = 0.0013, cross-
validated discriminant analysis, population test for mean larger than 
0 using one-tailed t-test; Fig. 3e). Notably, these sound-biased pre-
SWR AC activity patterns were also predictive of subsequent CA1 
spiking during the SWR. We used the generalized linear models 
derived from silent sleep to determine whether CA1 spiking during 
SWRs could be predicted from the AC pre-SWR ensemble spik-
ing patterns during sound presentation, and we found significant 
predictions (n = 163 predictor-ensemble–predicted-cell combina-
tions across sound epochs, 96 unique predicted CA1 cells; z = 3.4,  
P = 0.00068, two-tailed rank-sum test compared to shuffled; Fig. 3f). 
These findings linked sound presentations to patterns of activity in 
AC and to the subsequent spiking seen in CA1 during SWRs. At the 
same time, sound identity could not be significantly decoded from 
CA1 ensembles (P = 0.17; Supplementary Fig. 13), likely due to 
the increased cumulative variability from sounds to AC firing and 
from AC to CA1.

Figure 2  AC modulation precedes and predicts CA1 firing around SWRs. (a) z-scored SWR-triggered spiking histograms of all SWR-modulated AC 
neurons, sorted by timing of peak firing in −250 ms to 250 ms window. (b) Same as a for CA1 neurons. (c) Mean z-scored SWR-triggered spiking 
histogram across all SWR-modulated neurons for AC (green) and CA1 (orange). Shaded area indicates s.e.m. (d) Activity of an example AC–CA1 
neuronal pair around SWR times. (di): overlaid SWR-triggered spike rasters of simultaneously recorded AC (green) and CA1 (orange) neurons;  
(dii): enlarged view of highlighted region in di; (diii): peri-SWR time histograms (PSTHs) of the AC (left) and CA1 (right) neurons from di separated by spike  
count of CA1 cell (≥1 spike, black; 0 spikes, dashed gray). (div): same as above, but for the same CA1 cell paired with a different AC cell. (dv): Same 
as above but for same AC cell as in diii but a different CA1 cell. (e) Example dataset used for generalized linear model (GLM) prediction analysis. Left 
matrix denotes spike counts in the pre-SWR time window (−200 to 0 ms relative to SWR onset) of 6 AC cells across SWRs. Right shows spike counts in 
the subsequent SWR time window (0 to 200 ms) of one CA1 cell. Spike counts of all cells are sorted by spike counts of the CA1 cell. Data corresponds 
to the data in d: rightmost column of the AC matrix corresponds to ‘AC cell 1’ in d, fifth column corresponds to ‘AC cell 2’ in d. Color scale denotes 
spikes per bin; max is 8 for AC cells and 12 for CA1 cell. (f) Prediction illustration aligned to the data in e. Blue and red edges denote individually 
positively and negatively predictive relationships, respectively. (g) Prediction of CA1 single-cell spiking during SWRs from ensemble spiking patterns 
in AC across varying time windows (n = 107 predicted CA1 cells). Black error bars indicate mean ± s.e.m. prediction gain for real data. Gray error bars 
indicate mean ± s.e.m. prediction gain for shuffled data. Columns represent varying time windows used as predictor data; predicted data is always the 
SWR time window (0–200 ms). CA1 spiking during SWRs could be predicted significantly better than shuffled data from AC ensemble spiking patterns 
in the −400 to −200 ms window (z = 3.45, P = 0.0006), −200 to 0 ms window (z = 4.69, P = 2.69 × 10−6) and 0 to 200 ms window (z = 6.75,  
P = 1.5 × 10−11) but not from the −600 to −400 ms window (z = 0.84, P = 0.40; all tests using a two-tailed rank-sum test compared to shuffled).  
(h) Prediction of AC single-cell spiking during SWRs from ensemble spiking in CA1 (n = 152 predicted AC cells). AC spiking during SWRs could not  
be significantly predicted from pre-SWR CA1 ensemble spiking patterns but could be predicted from CA1 spiking during the SWR (−600 to −400:  
z = 1.02, P = 0.31; −400 to −200: z = 1.58, P = 0.115; −200 to 0: z = 0.49, P = 0.627; 0 to 200: z = 6.04, P = 1.56 × 10−9, two-tailed rank-sum 
test compared to shuffled). (i) Prediction of post-SWR time window from SWR spiking. AC ensemble spiking patterns during SWRs could not predict 
CA1 firing in post-SWR window (left; n = 108 predicted CA1 cells, z = 1.18, P = 0.237, two-tailed rank-sum test compared to shuffle), but CA1 
ensemble spiking patterns during SWRs significantly predicted AC firing in post-SWR window (right; n = 150 predicted AC cells, z = 4.37, P = 1.25 × 10−5,  
two-tailed rank-sum test compared to shuffled). (j) CA1 spiking in the pre-SWR time window could not be significantly predicted from AC ensemble 
spiking patterns in any time window (n = 101 predicted CA1 cells, −800 to −600: z = 0.28, P = 0.775; −600 to −400: z = 0.28, P = 0.78; −400 to 
−200: z = 1.73, P = 0.083; −200 to 0: z = −0.64, P = 0.523, two-tailed rank-sum test compared to shuffle). (k) AC spiking in pre-SWR time windows 
could not be significantly predicted from CA1 ensemble spiking patterns in any time window (n = 152 predicted AC cells, −800 to −600: z = −0.54,  
P = 0.59; −600 to −400: z = 1.66, P = 0.097; −400 to −200: z = 0.34, P = 0.737; −200 to 0: z = 0.43, P = 0.668, two-tailed rank-sum test 
compared to shuffle). ***P < 0.001 for GLM prediction beta values.
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Strikingly, we also found that presentation of sounds continued 
to bias AC patterns well after the termination of the sound series.  
We analyzed SWRs that occurred between sound series (2–14 s after 
the onset of the last sound in each series; Fig. 4a,b) and examined 
the relationship between the sounds presented immediately previ-
ously, the pre-SWR AC activity and the subsequent CA1 SWR activ-

ity. The average ensemble AC pattern evoked by a sound series was 
more similar to pre-SWR patterns that occurred after the sound series 
(forward similarity) than to pre-SWR patterns that occurred before it 
(backward similarity; n = 55 epochs, t54 = 2.49, P = 0.0079, population 
test for mean larger than 0 with one-tailed t-test; Fig. 4c), indicating 
a sustained effect of sound presentation on AC pre-SWR patterns.  
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Moreover, the identity of the preceding sound stimulus could be 
significantly decoded from pre-SWR AC ensemble patterns that 
occurred well after the termination of the sound series (n = 17 epochs, 
t16 = 1.84, P = 0.0418, population test for mean larger than 0 with 
one-tailed t-test; Fig. 4d). Finally, just as for pre-SWR patterns dur-
ing the sound series, these persistent sound-biased AC patterns pre-
dicted CA1 SWR firing (n = 162 predictor-ensemble–predicted-cell 
combinations across sound epochs, 97 unique predicted CA1 cells,  
z = 2.72, P = 0.0066, two-tailed rank-sum test compared to shuf-
fled; Fig. 4e). These data indicate that sound presentation during 
sleep biases pre-SWR AC patterns well after sound termination and  
that these patterns continued to predict CA1 reactivation.

Learning-related and sound-specific changes in SWR density
Finally, as presenting meaningful sensory stimuli during sleep can affect 
memory41,42, we asked whether SWR dynamics during sound presen-
tation in sleep changed with learning. We found that overall, sound 
presentation significantly reduced SWR rates as compared to periods 
between sound series (n = 30,782 stimuli bins and 39,899 no-stimuli 
bins, z = 19.85, P = 1.07 × 10−87, two-tailed rank-sum test; Fig. 5a).  
Notably, however, we also found that SWR rates were significantly 
sound-specific and modulated across learning. The sounds presented 
during sleep included the target sound, which gained behavioral sig-
nificance as the animals learned the task, as well as three other sounds 
that were not associated with the task. To account for potential learning 

effects both within and across days, we divided all sound epochs accord-
ing to whether they occurred before or after the daily training (first and 
last daily sound epochs) and whether they occurred in the first few 
days (days 1–3) or later days (days 4 and after), when the rats started to 
show better task performance. We found that in post-learning epochs 
on later days of learning, higher SWR rates were observed following 
the learned target sound as compared to the other sounds (Fig. 5b and 
Supplementary Fig. 14). Thus, as the target sound became meaningful 
to the animals, its presentation during sleep was associated with higher 
SWR rates, similar to those seen outside of sound presentation.

DISCUSSION
We found evidence for a cortical–hippocampal–cortical communi-
cation loop centered around hippocampal SWRs during sleep. Our 
results showed that the spiking rate of a considerable fraction of AC 
cells increased at the time of hippocampal SWRs and that AC ensem-
bles showed increased reactivation of awake experience during SWRs. 
Fine temporal analysis revealed that pre-SWR AC activity predicted 
hippocampal firing during the SWR, while pre-SWR hippocampal 
activity was not predictive of AC firing during the SWR. Conversely, 
hippocampal patterns during the SWR predicted subsequent AC fir-
ing, but AC patterns during the SWR were not predictive of subse-
quent hippocampal firing. Furthermore, auditory stimuli could be 
used to influence auditory cortical activity patterns before SWRs, and 
these patterns were predictive of subsequent hippocampal spiking. 
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Moreover, while sounds reduced SWR rates overall, SWR rates were 
higher during presentation of the target sound following learning. 
Thus, our findings strongly suggest that a cortical–hippocampal– 
cortical loop underlies memory consolidation during SWRs and that 
this loop can be biased using sensory stimuli.

Our results suggest that memory consolidation processes begin with 
patterned activity in the neocortex. This is consistent with previous 
observations of increases in activity in cortical areas preceding hip-
pocampal SWRs15,18,43. Our findings are also broadly consistent with 
a previous report of coordinated replay events in hippocampus and 
visual cortex17. That study identified and analyzed ‘frames’ of cortical 
and hippocampal activity, showed that cortical frames tended to occur 
before hippocampal frames and found that replay events in the two 
structures were coordinated, but they could not establish directional-
ity of information flow during replay events. Here we extended those 
previous studies to show that pre-SWR increases are also seen in AC 
and, notably, that these increases reflect specific patterns of activity,  
which in turn predict subsequent hippocampal reactivation.

This result supports the notion that cortical reactivation has an 
instructive role in shaping hippocampus-dependent memory consoli-
dation44,45. As hippocampal activity preceding SWRs is not predictive 

of pre-SWR cortical activity, the identity of the cortical ensembles that 
reactivate appears to be determined by cortical dynamics rather than 
hippocampal inputs. Moreover, these dynamics are likely influenced 
by experience. Previous work has established that ensemble activ-
ity patterns in AC show similarities to sensory-evoked patterns46. In 
addition, multiple lines of evidence have implicated the AC in mem-
ory-related processes on multiple time scales: responses and func-
tional organization of auditory cortex can be substantially affected 
by recent27–29 or remote30–33 experiences. We therefore suggest that 
experience-driven intracortical plasticity could play an important 
role in determining the content of memory reactivation and thus the 
identity of the memories that are consolidated.

Activity from AC could influence patterns of hippocampal activity 
during SWRs via direct connections from AC to entorhinal47 and per-
irhinal cortex48, both of which send projections to the hippocampus. 
Many sensory areas project directly or disynaptically to entorhinal 
cortex, and it seems likely that activity in all of these areas could influ-
ence subsequent SWRs in CA1. This convergence, in addition to the 
sparsely sampled ensembles we recorded, is expected to yield limited 
predictive power when averaged across all ensemble–cell combinations.  
Nonetheless, the gains we measured when predicting CA1 spiking 
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during the SWR from pre-SWR AC patterns were ~20% of the gain 
observed when predicting CA1 spiking from CA1 ensemble patterns  
within SWRs, a gain that reflects the well-established structure under-
lying sleep replay in CA1. Thus, our results suggest substantial influ-
ence of AC on CA1, and as information processing in these areas likely 
engages ensembles many orders of magnitude larger than those we 
measured, the prediction gains we report should be considered as a 
lower bound on the actual prediction gains in the system.

Significant prediction of hippocampal firing during SWRs from 
preceding AC activity patterns were seen both during silent sleep 
as well as during sleep when sounds were presented. These findings 
thus provide a potential mechanism for striking previous observations 
that sounds can bias subsequent memory41,42 and for a study show-
ing that sounds during sleep can bias hippocampal reactivation25.  
In particular, we showed that sounds presented during sleep bias  
pre-SWR spiking patterns in AC and that these sound-biased patterns 
are predictive of SWR CA1 spiking. Sensory-stimulation-dependent 
biasing of memory during sleep may thus be a result of biasing of the 
cortical–hippocampal–cortical loop we describe here.

We also found that, overall, the rate of SWRs was lower during 
sound presentation than during quiet periods. This indicates that, 
while stimuli can bias the content of reactivation in cortex and hip-
pocampus during sleep, they can simultaneously reduce the overall 
number of reactivation events, at least when the stimuli are relatively 
novel. Presenting sensory stimuli during sleep may thus lead to bet-
ter-controlled but overall weaker reactivation. At the same time, SWR 
rates during sound presentation showed learning-dependent stimulus 
selectivity, with higher SWR rates observed during presentation of the 
target sound following learning. Based on these results, we speculate 
that effective sensory-stimulation-dependent memory biasing during 
sleep is dependent on familiarity with the biasing stimulus.

Our results also provide evidence for the reverse hippocampus 
to AC information flow during and after SWRs. The most obvious  
anatomical connections underlying this information flow are from 
CA1 to entorhinal cortex, which projects directly to AC (refs. 47,49). 
Given previous observations of activity in other brain regions dur-
ing and after SWRs7,19,37,50, it appears likely that information flow 
from hippocampus does not exclusively target AC, and it is likely 
that SWR activity from the hippocampus influences subsequent 
spiking across multiple cortical and subcortical structures. We 
note, however, that our measures of information flow are not dem-
onstrations of causal influences between regions, and it remains  
possible that information flows through pathways other than those 
proposed here. It further remains to be determined whether the 
cortical–hippocampal–cortical loop described here is necessary  
for consolidation.

Taken together, our findings and the available literature lead us to 
propose that coordinated reactivation across sensory cortical regions 
immediately preceding SWRs facilitates a flow of reactivated sensory 
information into the hippocampus. This incoming information biases 
hippocampal reactivation, which then broadcasts an integrated rep-
resentation back to the preactivated cortical networks, linking the 
patterns of activity across multiple cortical areas to consolidate a 
coherent memory representation.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects and neural recordings. All procedures were approved by the 
Institutional Animal Care and Use Committee at the University of California, San 
Francisco and conformed to National Institutes of Health guidelines. Four Long 
Evans male rats aged 4–5 months and weighing 450–550 g were used in this study. 
Animals were housed singly under a regular 12-h light/dark cycle. All behavioral 
experiments were carried out in the light cycle. As previously described51, animals 
were first habituated to daily handling over several weeks. After habituation, 
animals were food deprived to 85–90% of their baseline weight and pretrained 
to run on an E-shaped raised track for liquid food rewards (sweetened con-
densed milk). After animals learned to run and collect rewards on the E-track, 
they were implanted with a microdrive array with 21 independently moveable 
tetrodes (groups of four twisted 12.5-µm nichrome wires assembled in a bundle). 
Seven tetrodes were targeted to the left primary AC (−4.8 mm AP, 5.5 mm ML,  
25° lateral from midline) and seven tetrodes to the left dorsal CA1 region of the 
hippocampus (−3.6 mm AP, 2.2 mm ML). In each animal, one hippocampal 
tetrode was left in corpus callosum to serve as reference for the hippocampal and 
cortical tetrodes. The reference tetrode was itself referenced to a ground screw 
installed in the skull overlying the cerebellum. We also targeted left PFC (seven 
tetrodes, +3.0 mm AP and 1 mm ML). These data contributed to a previous 
manuscript16 but here were used only to assist in sleep state detection (see below). 
Over the course of two weeks following implantation, hippocampal tetrodes were 
advanced until characteristic LFP patterns and neural firing patterns indicated 
that the cell layer had been reached. AC tetrodes were advanced gradually and 
responses to sound stimuli were used to validate approach to primary AC.

Data were collected using the NSpike data acquisition system22,52 (L.M.F. and 
J. MacArthur, Harvard Instrumentation Design Laboratory). We recorded con-
tinuous LFP (filtered 0.5–400 Hz and sampled at 1,500 Hz) from all tetrodes (one 
channel was chosen from each tetrode for LFP recording). Spike data were sam-
pled at 30 kHz, digitally filtered between 300 Hz and 6 kHz (two-pole Bessel for 
high and low pass) and threshold crossing events were saved to disk (40 samples 
at 30 kHz). Individual units (putative single neurons) were identified by clustering 
spikes using peak amplitude, principal components and spike width as variables 
(MatClust). An infrared light emitting diode array with a large and a small cluster 
of diodes was attached to the preamps during recording. Behavior sessions were 
recorded with an overhead monochrome CCD camera (30 fps) and the animal’s 
position and speed were detected using the infrared diodes.

Behavioral task. After 5–7 d of recovery following microdrive implantation, 
animals were once again food deprived to 85–90% of their baseline weight and 
again pretrained for 2–3 days on the E-track with the recording cables connected. 
Approximately 14 d after implantation, animals were introduced to the Y-track 
and data gathering commenced. The Y-track (Fig. 1b) was made of 7-cm-wide 
metal sections with an 84-cm center arm and 64-cm side arms. Animals were 
trained on the Y-track for 10–12 d in 3–4 20-min training sessions per d with 
interleaving 20- to 30-min sleep sessions in the rest box (silent sleep). In addition, 
at the beginning and end of each day, a sound protocol was presented during sleep 
sessions in the rest box (sound sleep; Fig. 1a).

During training sessions, sweetened condensed milk rewards were automati-
cally delivered in food wells triggered by animal’s nose-poke crossing of an IR 
beam. Rats initiated each trial by a nose-poke in the home well and receiving a 
reward. In ~75% of trials the next reward was delivered in the silent well if the 
rat nose-poked there. In a pseudorandom ~25% of trials (sound trials separated 
by 2–5 silent trials), 5 s after nose-poking in the home arm, a target sound series 
was emitted from a speaker, indicating that the next reward would be delivered 
in the sound well if the rat next nose-poked there. The speaker was placed at 
the end of the sound arm in the first days of training and moved to the center 
junction after rats displayed consistent correct choices in more than ~70% of 
trials. The locations of the home, silent and sound wells were fixed across days.  
The target sound was a pair of upward chirps, consisting of one 200-ms chirp with 
frequency modulated from 3 to 4 kHz, an interchirp interval of 50 ms, and a sec-
ond 200-ms chirp with frequency modulated from 9 to 12 kHz (Supplementary 
Fig. 11). The series of target sounds was presented at 1 Hz and stopped after 12 
s or once the rat made a correct or incorrect choice by a nose-poke in one of the 
wells. Reward amount in the sound well was double the reward amount in the 
home or silent well. Performance for the inbound direction was measured as the 
percentage of trials in which the rat correctly returned to the home well after 

nose-poking in one of the outer arms, and performance for the outbound direc-
tion was measured as the average of the percentage of correct visits to the sound 
well and the percentage of correct visits to the silent well following a departure 
from the home well.

Following the conclusion of the experiments, subjects were anesthetized with 
isoflurane and we made electrolytical lesions through tetrode tips (30 µA for 3 s)  
to mark the recording locations. Animals were allowed to recover overnight and 
were then euthanized the following day with pentobarbital and were perfused 
intracardially with PBS followed by 4% paraformaldehyde in PBS. The brain 
was postfixed in situ overnight, after which the tetrodes were retracted and the 
brain removed, cryoprotected (30% sucrose in PBS) and embedded in OCT  
compound. Coronal sections (50 µm) were taken with a cryostat and Nissl-
stained with cresyl violet.

Auditory protocol in sound-sleep sessions. The auditory protocol in the sound-
sleep sessions consisted of series of the target sound (target) and 3 additional sound 
pairs (S1, S2 and S3; Fig. 3a and Supplementary Fig. 11). S1 was a pair of down-
modulated chirps (first chirp frequency modulated from 9 kHz to 6.75 kHz, second 
from 3 kHz to 2.3 kHz), S2 was a pair of pure tones (first tone at 5 kHz, second at 
2 kHz) and S3 was a pair of amplitude-modulated broadband noise sounds (first 
modulated at 20 Hz, second at 4 Hz). Each sound series consisted of 15 pairs of 
sound pips. Like the target sound presented on the track, each sound pip lasted 
200 ms, and pips within a pair were separated by 50 ms. Sound pip pairs within a 
series were presented at 1 Hz. Each sound series included sound pips of one of the 
four sounds. Sound series were separated by 15–30 s. The full protocol included a 
total of 10 series per sound type. Only responses that occurred during NREM sleep 
were analyzed. We presented additional auditory stimuli separately after the sound 
epochs described above, but these were not analyzed here. These stimuli included 
single (nonpaired) sound pips and in 2 animals, dynamic moving ripple stimuli.

Data analysis. Data analysis was performed using custom software written in 
Matlab (MathWorks).

Sleep detection. Hilbert amplitudes (smoothed with a Gaussian kernel, σ = 1 s) 
of filtered theta (6–12 Hz), delta (1–4 Hz) and spindle (8–20 Hz) band LFP were 
calculated for all available hippocampal and cortical tetrodes and the mean taken 
over tetrodes within each region. All analyses on sleep data were performed on 
identified NREM sleep, and all awake and REM periods were excluded. NREM 
sleep was identified as periods in rest epochs that met these criteria: (i) the animal 
was immobile (< 0.5 cm/s) for more than 10 s or spindles were detected and (ii) 
the animal was not in REM sleep. REM sleep was identified based on elevated 
ratio of hippocampal theta to cortical delta band power and elevated ratio of 
hippocampal theta to cortical spindle power with the requirement that a single 
REM bout lasted at least 10 s. Cortical spindles were identified as periods in rest 
epochs that met three criteria: (i) the animal was immobile (< 0.5 cm/s) for more 
than 5 s, (ii) the cortical spindle to delta band power ratio was >1 and (iii) the 
animal was not in REM sleep. We used a highly conservative speed threshold  
of < 0.5 cm/s to exclude periods of small head movements.

SWR detection. SWRs were detected using LFPs filtered in the 150–250 Hz 
range on multiple CA1 tetrodes as previously described53. Increases in power in 
the ripple band were detected using a 3-s.d. criterion, with the condition that the 
SWR had to be detected on at least two tetrodes.

Unit inclusion. Only cells with more than 500 spikes in ±5-s windows around all 
daily sleep SWRs were included (e.g., for 500 daily SWRs this meant a minimum 
of 0.1 Hz around SWR times). Putative CA1 interneurons (firing rate > 7 Hz) 
were also excluded.

SWR modulation. To quantify the SWR modulation of AC and CA1 cells, we 
first created an SWR-triggered raster across SWRs that occurred in NREM sleep 
during all silent rest epochs in that day. To avoid contributions from other SWRs 
that might have occurred in close temporal proximity, we only included SWRs 
that were separated from other SWRs by at least 500 ms in both directions in 
the SWR modulation analysis, thus ensuring accurate temporal assignment of 
spiking activity to SWRs. We detected a daily mean ± s.e.m. of 574.9 ± 26.6 tem-
porally well-isolated SWRs during silent NREM sleep at a rate of 0.21 SWRs per s.  
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These relatively low SWR rates were due to our conservative procedure of ana-
lyzing only SWRs separated by at least 500ms from other SWRs to allow reliable 
temporal assignment of spikes to SWRs. The rate of SWRs before this procedure  
was 0.43 SWRs per s (Supplementary Fig. 2). We then averaged each SWR-trig-
gered raster to yield a peri-SWR time histogram (PSTH). To quantify whether 
this histogram shows a significant modulation, we then created 1,000 shuffled 
SWR-triggered rasters by circularly jittering the spiking in each row (SWR) by a 
random amount. We averaged each shuffled raster to produce a shuffled PSTH. 
We defined a baseline PSTH as the mean of all shuffled PSTHs. We then calcu-
lated for the real and shuffled PSTHs their mean squared difference from the 
baseline PSTH in the −250 ms to +250 ms window relative to SWR onset.

In examining the data from single days we noted several instances where SWR 
modulation appeared to strengthen or weaken within the day. To ensure that we 
analyzed all cells that showed some degree of SWR modulation, we performed the 
above procedure separately for the first and second half of daily SWRs and deter-
mined that a cell was significantly SWR-modulated if in either the first or second 
datasets the mean squared difference of the real PSTH from the baseline PSTH 
was greater than 95% of mean squared differences of shuffled PSTHs from the 
baseline PSTH. This analysis has a false positive rate of 0.0975 (the rate of SWR 
modulation being not due to chance in both dataset tests is 0.95 × 0.95 = 0.9025, 
and therefore the false positive rate is 1 − 0.9025 = 0.0975), and the observed 
frequency of SWR modulation in AC cells (117/322) has a probability of occur-
ring by chance of P < 10−10, given that false positive rate. Using a more stringent 
criterion of assessing all daily SWRs together at P < 0.05, 77/322 (24%) of AC cells 
and 160/192 (83%) of CA1 cells were significantly SWR modulated. The temporal 
profiles of the mean z-scored SWR-triggered PSTHs using this criterion showed 
the same pattern as using the dual condition (Supplementary Fig. 3).

Network reactivation analysis. For the network reactivation analysis we used a 
previously developed PCA approach7,54. Using this method we derived ensemble 
patterns from activity during awake training epochs, and by using those patterns 
as templates on network patterns during identified NREM sleep, we quantified 
the similarity of the sleep ensemble activity to the awake template across time. 
To do so, we first binned all spiking data into 200-ms bins, only including cells 
that were clustered during both waking and sleep and only including ensembles 
with at least four AC cells. We then concatenated all included bins from the daily 
awake epochs, z-scored each cell’s binned firing rate and derived the correla-
tion matrix C of all cell pairs. We calculated the first eigenvector of C (the first 
principal component of the data) and corresponding eigenvalue and defined the 
‘projector’ as the outer product of the eigenvector with itself, multiplied by its 
eigenvalue and setting the diagonal to 0. Significance of principal components 
(PCs) were verified as in Peyrache et al.7 and nonsignificant PCs were excluded. 
The projector defines a template of pairwise correlations in the awake behaving 
state. To measure the similarity of this template to the ongoing network activity 
during NREM sleep, we first similarly binned and z-scored the network activity 
in NREM sleep in each silent rest epoch. For each time bin, we calculated the 
outer product of the network pattern (a vector of spike counts from all cells) in 
that time bin with itself, which describes the pairwise coactivity in that time bin. 
Finally, to determine how similar this coactivation pattern is to that derived from 
the awake template, we calculated the sum of the dot product of the projector 
with the outer product of the momentary network pattern.

To assess the significance of reactivation, we performed the procedure 100 
times by projecting a shuffled awake pattern on the sleep ensemble activity and 
comparing mean reactivation strength of the real versus shuffled data. A shuf-
fled awake pattern was constructed from independently circularly shuffling the 
binned spiking activity of each cell in the ensemble. The P-value of reactivation of 
the real data was determined as the fraction of shuffles in which the mean shuffled 
reactivation was larger than the mean real reactivation. Significant reactivation 
was determined with a P < 0.05 criterion.

To examine the temporal relationship between reactivation and SWRs, we 
calculated the cross-correlation between the reactivation trace and all detected 
SWR events in each sleep epoch (no inter-SWR minimum was applied). Each 
SWR-triggered reactivation profile was then z-scored before combining data 
across epochs.

GLM in silent sleep sessions. We constructed generalized linear models (GLMs) 
with a log link function to predict spike counts of single cells during SWRs in 

CA1 or AC from ensemble spiking patterns in AC or CA1 during specific time 
windows. SWRs (separated by at least 500 ms from other SWRs) detected dur-
ing NREM sleep across all daily silent sleep epochs were included, and only cells 
that were clustered across all daily epochs were included. Spiking activity of each 
neuron was binned in 200-ms bins relative to SWR onset: −600 to −400 ms,  
−400 to −200 ms, −200 to 0 ms and 0 to 200 ms. The 0- to 200-ms bin was defined 
as that cell’s SWR response. An ensemble pattern in a specific bin was the vector 
of binned spiking responses across cells.

We used ensemble patterns in the different time bins to predict single-cell 
SWR responses. In a dataset for a single prediction model in a single time win-
dow, the predictor data consisted of the ensemble patterns in that time window 
across SWRs, and the predicted data consisted of the single-cell SWR responses 
across SWRs. Only cells that were active (> 0 spikes) in more than 10 SWRs were 
predicted. For each combination of predictor ensemble and predicted cell, we 
then performed five-fold cross validation (Supplementary Fig. 7). We randomly 
partitioned the daily SWRs into five equally sized sets, with the constraint that 
the number of nonzero values in the predicted vector must be approximately 
balanced across sets. For each fold, we used four of five folds to train the GLM 
model and the remaining fold to test. For the test phase, the model derived from 
the training phase was applied to the predictor ensemble data in the test set, 
yielding predictions for the predicted cell firing across SWRs.

We defined the prediction error as the mean absolute difference between the 
predicted spike counts and the real spike counts. For that same fold, we defined 
a baseline prediction error by performing 100 random shuffles of the predicted 
firing rates across SWRs in the test fold and taking the mean of the shuffled 
prediction errors. The real and shuffled prediction errors were then averaged 
across the five folds. Prediction gain for one predictor-ensemble–predicted-cell 
combination in one time window was defined as the shuffled prediction error 
divided by the real prediction error. Shuffled prediction gains were not different 
across time windows (Kruskal Wallis, P > 0.98).

For comparison, we repeated the exact same procedure described above on 
100 random shuffles of the entire original dataset, where shuffling entailed ran-
dom matching of activity patterns in the predictor and predicted data (e.g., tak-
ing predictor data for one SWR and using it to predict firing rate for another 
SWR). To assess prediction significance in a given time window, we compared 
the distribution of real prediction gains to the shuffled prediction gains across all 
ensemble/cell combinations using a two-tailed nonparametric rank-sum test.

Predictions of activity in post-SWR and pre-SWR time windows were  
performed using the same approach.

Analysis of sound sleep epochs. There were two sound sleep epochs per day, at 
the beginning and end of each day. SWRs in sound sleep sessions were identified 
as described for the silent sleep epochs. Only SWRs separated from other SWRs 
by at least 400 ms on both sides were included. We used a slightly more permissive 
separation window for these analyses because there was a much smaller number 
of SWRs and because we did not focus on timing for these analyses. Spiking data 
was binned into 250-ms bins, where an SWR bin was from 0–250 ms from SWR 
onset and the pre-SWR bin was from −250 to 0 ms. We used slightly larger bins 
than the 200-ms bins to capture most of the pre-SWR modulation we observed in 
two bins (−400 to −200 and −200 to 0) in a single bin. For the within-sound-series 
analyses, we included all SWRs that occurred from the onset of the first sound in 
each series to 2 s after the onset of the last sound (or 1.5 s after the termination 
of the last sound, where the sound period is defined as the sum over: first pip  
(200 ms), inter-pip interval (50 ms), second sound pip (200 ms) and offset 
response window (50 ms)). Only epochs with at least three AC cells, two CA1 
cells and 30 SWRs were included.

Sound decoding from pre-SWR AC patterns. To decode sound identity from 
pre-SWR AC ensemble patterns, we used a cross-validated discriminant analysis 
classifier. For each epoch, the data consisted of AC ensemble patterns in the 
pre-SWR windows as predictors and the identity of the preceding sound to be 
predicted. The preceding sound could be any one of the four presented sounds. To 
have enough data for decoding, we only used epochs with at least 100 SWRs.

We used 1,000 repeats of five-fold cross validation for each dataset. For each 
dataset, the data was randomly partitioned into five roughly equally sized groups. 
For each fold, we used four of the five folds as training set while the remaining 
fold was used as test set. We fit a pseudoquadratic discriminant classifier on the 
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training set and used it to predict the sound identities from ensemble patterns in 
the test set. Our measure of prediction quality was the rate of correctly predicted 
patterns averaged across folds and repeats. The same procedure was performed 
for a shuffled training set, in which the correspondence between ensemble pat-
terns and sound identity were randomly shuffled. Decoding gain for an epoch was 
defined as the mean of correctly decoded patterns of the real data divided by the 
mean of correctly decoded patterns of the shuffled data. Decoding significance 
across epochs was quantified by determining whether the distribution of the loga-
rithm of decoding gains was significantly larger than 0 using a one-tailed t-test.

Decoding preceding sounds from pre-SWR AC patterns that occurred after 
sound series termination was performed similarly but including SWRs that 
occurred during silent periods from 2 to 14 s after the onset of the last sound 
in each series.

GLM in sound sleep epochs. To determine whether sound-biased pre-SWR AC 
patterns were predictive of CA1 firing during the SWR, we used GLM models 
created from NREM sleep during silent sleep epochs and applied them to NREM 
sleep during sound presentation. For each combination of AC ensemble firing in 
the pre-SWR time window and CA1 cell firing in the SWR window, we derived 
the full GLM model from the silent sleep epochs. We then used this model on the 
sound biased AC ensemble pre-SWR data (−250 to 0 ms relative to SWR onset) to 
predict CA1 cell firing during the SWR (0 to 250 ms relative to SWR onset) and 
defined the prediction error as the mean absolute difference between predicted 
and real firing rates. We then defined a baseline prediction error by performing 
1,000 shuffles of the predicted firing rates across SWRs and taking the mean of 
the shuffled prediction errors. Prediction gain was defined as the mean shuffled 
prediction error divided by the real prediction error. For comparison, we repeated 
the same procedure 100 times after shuffling the correspondence between AC 
ensemble firing and CA1 SWR firing across SWRs in the original silent sleep 
dataset. Prediction significance was estimated by comparing the distribution of 
real prediction gain to the distribution of the shuffled prediction gain using a 
two-tailed rank-sum test.

Sound–SWR similarity. We compared AC ensemble patterns evoked by a sound 
series to the AC ensemble patterns that occurred in pre-SWR time windows 
following sound-series termination (forward similarity). For this analysis we 
included SWRs that occurred during silent periods from 2 to 14 s after the onset 
of the last sound in each series. Within a sound series, we defined the response to 
each sound pair as the number of spikes that occurred in the 0–500 ms window 
from sound onset (200-ms first sound pip, 50-ms interval and 200-ms second 
sound pip, 50-ms offset) divided by 2 to allow direct comparison to the 250-ms 
pre-SWR windows. To avoid the effects of different responses to the first or last 
sounds within a series, we defined the sound-evoked response of one sound 
series as the average network pattern across all individual sounds in that series. 
We then measured the similarity between the sound-evoked response of a series 
to the ensemble patterns that occurred in the pre-SWR windows of SWRs that 
occurred 2–14 s after the onset of the last sound in each series. To do so, we cal-
culated the mean Euclidean distance between the sound-response patterns and 
the pre-SWR patterns. For comparison and normalization we also calculated this 
1,000 times while shuffling the correspondence between sound identity and pre-
SWR for each cell. We defined forward similarity as the average Euclidean dis-
tance of shuffled data divided by the average Euclidean distance for the real data,  
and thus high values indicated higher similarity between the sound patterns 

and following pre-SWR patterns. We then measured the similarity of the sound-
evoked patterns of sound series to pre-SWR patterns that occurred before (instead 
of after) the series and termed it ‘backward similarity’. For backward similarity, the 
sound-evoked pattern of each sound series was compared to pre-SWR patterns 
that occurred in the −14 to −2 s relative to onset of the first sound in the series. 
To determine whether sounds biased pre-SWR patterns that occurred after them 
we calculated for each epoch the forward similarity divided by the backward 
similarity and tested whether, across epochs, the logarithm of this distribution 
was larger than 0 with a one-tailed t-test.

SWR rate during sound series. To examine SWR rates during sound series across 
learning, we considered all SWRs that occurred during NREM sleep and that were 
separated from other SWRs by at least 400 ms on both sides. For each sound pres-
entation, we counted the number of SWRs that occurred in a 1-s window starting 
from sound onset and summarized these counts by sound type and day/epoch. 
To calculate SWR rates during no-sound conditions (Fig. 5a), we summarized 
SWR counts across all 1-s time bins occurring between sound series (> 2 s after 
last sound). As learning occurs both within day and across days, we separated 
sound sleep epochs according to whether it was the first or last within a day and 
whether it was in the first days of training, before animals showed signs of learn-
ing the task and the meaning of the target sound (days 1–3), or later (days ≥ 4). 
We averaged SWR rates within each of four groups: ‘first days, first epochs’, ‘first 
days, last epochs’, ‘later days, first epochs’ and ‘later days, later epochs’. Difference 
between SWR rates across stimuli was tested using a nonparametric Kruskal-
Wallis test with a Tukey-Kramer post hoc test.

Statistical methods. Mean or medians are given with s.e.m. Unless otherwise 
noted, all tests were two-sided and nonparametric. One-tailed t-tests were used 
in Figures 3e and 4c,d to test whether the distribution mean was larger than 0.  
The distributions in these cases did not deviate from Gaussian (Lilliefors test,  
P > 0.5). Multiple comparisons were corrected using Tukey-Kramer post hoc test. 
No statistical methods were used to predetermine sample sizes; however, sample 
sizes were similar to those generally employed in the field. Data collection and 
analysis were not performed blind to the conditions of the experiments and no 
randomization was used.

Data availability. The data that support the findings of this study will be made 
available upon reasonable request. A Supplementary Methods Checklist is 
available.

Code availability. The code used in this study will be made available upon  
reasonable request.
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