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Volitional activation of remote place representations
with a hippocampal brain–machine interface
Chongxi Lai1*†‡, Shinsuke Tanaka1†‡, Timothy D. Harris1, Albert K. Lee1,2*

The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily
drawing from hippocampal memory representations of people, events, and places, including maplike
representations of familiar environments. However, whether representations in such “cognitive maps” can
be volitionally accessed is unknown. We developed a brain–machine interface to test whether rats can
do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner.
We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual
reality arena solely by activating and sustaining appropriate hippocampal representations of remote
places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation
and planning, and imagination and opens up possibilities for high-level neural prosthetics that use
hippocampal representations.

T
he ability to simulate scenarios in one’s
mind is a hallmark of intelligence, as it
facilitates the evaluation of past exper-
iences and future plans. For instance, we
can imagine walking around our previ-

ous workplace, or imagine how our current
workplacemight function if we rearranged the
furniture. Such imagination requires an inter-
nal world model that can be flexibly accessed
to construct possible scenarios (1–3).
The hippocampus is a brain region that is

critical for memory and imagination (1, 4–6).
It holds amodel of the environment (also called
a cognitive map) (7, 8) that could potentially
be mentally traversed for the purpose of recall
or simulation. In particular, the hippocampus
contains spatial maplike representations of
previously explored environments. Each envi-
ronment’s representation consists of place
cells—neurons that fire selectively whenever
an animal moves through specific locations
(called the “place fields” of those cells) in that
environment (9, 10). This selective firing re-
sults in a distinct multicell activity pattern at
each location in the environment,which, during
physical navigation, can be used to decode the
animal’s current location from the ongoing
pattern of neural activity (11). In contrast, a
key aspect of imagination is the activation of
neural representations that deviate from cur-
rent sensory input, such as those that are non-
local (i.e., represent locations away from one’s
current location). Previous work has shown
brief and intermittent activation of nonlocal

hippocampal spatial representations sugges-
tive of the planning of specific paths within a
cognitivemap (12–21). However, it is unknown
whether this activity is volitionally controlled
or rather reflects passive memory–related
processes that are presumably nonvolitional
(22, 23).
To test whether an animal can directly con-

trol its hippocampal activity according to its
model of the world, we used a brain–machine
interface (BMI) approach because, unlike with
humans, we cannot simply ask animals to
imagine scenarios.WithBMImethods,we could
reward animals for generating neural activity
resembling the simulation of specific scenar-
ios. More precisely, we could reward them for
the volitional activation of specific nonlocal
representations from the cognitive map—a
fundamental building block of scenario simu-
lation. BMI research has a rich history of di-
rectly testing for volitional control of activity
patterns of neuronal ensembles in the motor
cortex and related areas (24–35). In the hippo-
campus, it has been shown that the activity
level of individual neurons (36, 37) or the pop-
ulation activity related to individual stimuli
(38) can be controlled. However, a real-time
BMI that allows humans or animals to con-
trol their hippocampal population activity in
terms of the content of their cognitive map
(e.g., location representations) has never been
demonstrated.

A hippocampal map–based BMI

We designed a real-time hippocampal BMI
and two BMI tasks to investigate whether rats
could navigate to goals (“jumper” navigation
task), or move external objects to goals while
remaining stationary (“Jedi” object location
control task), within an immersive virtual real-
ity (VR) environment solely by controlling the
activity of a population of place cells. Each
jumper or Jedi BMI experiment consisted of
three phases (Fig. 1A). In phase 1, rats ran to a

succession of arbitrary locations marked by a
tall, visible goal cue placed in a familiar two-
dimensional virtual arena (“running” task).
Upon reaching each cue, liquid reward was
delivered, the trial ended, and the cue moved
to another location for the next trial. Animals
were secured in a harness and could freely
rotate their body and head direction on top of
a spherical treadmill (39) while hippocampal
CA1 neural activity was recorded (Fig. 1B, fig.
S1, and movie S1). We applied a recently de-
veloped field-programmable gate array (FPGA)–
based neural signal processor to perform low-
latency (1ms) assignment of extracellular spikes
(recorded from 128 channels) to a population
of hippocampal units (40, 41). In the running
task, treadmill movement updated the ani-
mal’s location in the virtual environment, and
many hippocampal units (i.e., place units) dis-
played spatiallymodulated activity (39, 42–44)
(Fig. 1B, blue arrows) similar to that in real-
world environments (8–11). In phase 2, the
binned spike counts from themost recent 1.5
or 5 s of activity of these place units and the
animal trajectory from the running task
were used to train a decoder (Fig. 1B, green
arrows) that estimates the animal’s current
location from the neural data every 100 ms.
We used a deep neural network for decoding
(fig. S2), allowing the use of data augmenta-
tion for training—a method that improves
both the decoder’s performance given limited
data and its noise robustness. In phase 3, the
treadmill was disconnected from the VR sys-
tem, and the animal’s ability to control its own
or an object’s translational movement was
limited to controlling its hippocampal activity,
which was converted by the decoder into a
specific location output every 100 ms (Fig. 1C).
Note that the decoder was trained to estimate
the animal’s current location in the running
task only, not its location in the subsequent
BMI tasks, but, during BMI periods, the ani-
mal needed to generate activity corresponding
to locations away from its current location.

BMI navigation task

In the jumper task, we tested whether animals
could navigate to arbitrary goal locations as
in the running task, except here by means of
BMI-based first-person teleportation. After
rats performed the running task for ~40 min
(~120 trials) (Fig. 2, A and B, and movie S1),
the data were used to train the decoder, which
accurately estimated the rat’s current location
in the running task [validation set coefficient
of determination (R2) = 0.78 to 0.88] (Fig. 2C).
Jumper trials were identical to running trials,
except the animal’s location was updated to
the BMI-decoded location (smoothed with a
3-s sliding window to help reduce potential
high-frequency visual jitter of the VR updates)
(Fig. 2, D and E, and movie S1). If an animal
did not reach the goal within 62 s, the trial
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Fig. 1. Hippocampal map–based brain–machine interface in a virtual reality
system. (A) Steps for performing the two different BMI experiments in this study.
Rats first physically ran to a series of goals (running task), while their hippocampal
neural activity and (virtual) location in a square arena were recorded. This data
was used to train a decoder to take neural activity as input and output the animal’s
current location in the running task. In BMI task 1 (jumper task), animals needed
to generate neural activity that would be decoded as locations they wanted to move
to so that they could reach each goal (to obtain a reward). In BMI task 2 (Jedi
task), animals were fixed at the center of the virtual arena (but could rotate) and
needed to generate activity corresponding to locations where they wanted an
external object to move to so that the object reached the goal, then they needed
to sustain that activity to maintain the object there (to maximize reward).

(B) Schematic of the VR system (left). The animal was free to rotate its body in
the horizontal plane. In the running task, the animal’s location in the virtual arena
environment was updated according to treadmill movement. Simultaneously
recorded spiking from a population of hippocampal CA1 units expressed place
fields—the basis of the cognitive map of the environment (right). Decoder was
then trained using binned spiking activity and location data. (C) In both BMI tasks,
the treadmill no longer updated VR. Instead, the animal or object location was
controlled solely by real-time hippocampal activity. A neural signal processor rapidly
assigned activity to individual units, whose spike counts were fed into the decoder.
VR projection was updated according to locations output by the decoder. In the
jumper (Jedi) task, the animal’s (object’s) virtual location was moved toward the
most recent decoded locations. PC, personal computer.
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Fig. 2. Rats can navigate to goals by controlling their hippocampal activity.
In both the running and jumper BMI tasks, animals were rewarded when they reached
each goal. (A) Animal trajectories in the virtual arena for consecutive running task
trials. Trial duration (time to reach goal) in seconds is shown. (B) Example running
task trial. From top: trajectory, firing rate (z-scored) of individual units (units were
ordered by time of peak activity), treadmill speed, and LFP from one recording channel
and corresponding wavelet spectrogram during trial. (C) Accuracy of trained decoder
of animal’s current location for held-out running task data. Actual and decoded
trajectories during example trial (top left) and across several trials (for x and y
coordinates separately, bottom left). Median decoding error (distance between actual
and decoded locations) with range and quartiles (bottom right). (D) Example jumper
BMI trial with similar trajectory as the running trial in (B). From top: trajectory generated

by the animal controlling its hippocampal activity and the decoder output (animal is
teleported toward decoded location; each gray circle represents the decoded location at
the time the animal is at the corresponding point in the trajectory connected by the
dark line, sampled here every 1 s), firing rate of individual units [using same order of
units as in (B)], treadmill speed, LFP, and spectrogram. (E) Example jumper BMI trial
in which animal did not move the treadmill. Trajectory (left) as in (D). Right, from top: unit
activity, treadmill speed, LFP, and spectrogram. See fig. S10 for all 10 nonmovement
trials. (F) BMI-generated trajectories for consecutive jumper trials. (G) Mean jumper
trial duration (magenta vertical line) is significantly lower than distribution of expected
mean duration for simulated trials if goals were in random locations. (H) Polar distribution
of angle between direction of movement and direction to goal during running and
jumper tasks. Zero corresponds to animal movement directly toward the goal center.
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Fig. 3. Rats can move objects to remote goal locations and maintain
them there by controlling their hippocampal activity. In the Jedi BMI task,
trials did not end when the external controlled object first reached the goal;
instead, animals were rewarded as long as the object was in the goal region
(white circle), for up to 3 min per trial. The animal was always fixed at center of
the virtual arena but could rotate its body and generally turned toward each
goal. (A) Distribution of real-time decoded locations (output every 100 ms)

generated by the animal controlling its hippocampal activity across eight
consecutive Jedi BMI trials for rats 1, 2, and 3. Panels show decoded locations
during each trial (up to 3 min; fig. S11). Periods when the animal’s body
rotated >12°/s were excluded. See text and methods for details. The external
controlled object (which was visible for rats 1 and 2 but invisible for rat 3)
was moved toward the decoded location (fig. S11 shows that the distribution
of object locations was essentially the same as the distribution of decoded
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ended and a new goal cue appeared at a ran-
dom location.
Rats successfully navigated by controlling

their hippocampus, generating efficient paths
to each goal (Fig. 2F; see figs. S3 to S5 for all
trials of three rats, and figs. S6 to S8 for all
trials re-decoded using a shorter decoding
window and without smoothing). To check
whether this performance could be attributed
to non-spatially-specific neural activity (e.g.,
modulating global firing rate), we randomly
shuffled the spike trains across place units, ran
the shuffled data through the original decoder
to produce simulated trajectories, then deter-
mined how long it would have taken to reach
the same sequence of goal locations as in the
original experiment. Shuffled-unit mean trial
durations were much longer than the actual
means (P < 10−100, three rats, one session each),
suggesting that performance depended on
generating place field–related activity. To test
whether generating non-goal-directed sequen-
ces of location-specific activity (e.g., random
movement within the cognitive map) could
explain the performance, we randomly shuffled
the goal locations in each trial while preserv-
ing the original BMI trajectories and then de-
termined the time that would have been
needed to reach the shuffled goals. Shuffled-
goal mean trial durations were again much
longer than actual means (P = 2.8 × 10−15 to
1.5 × 10−7) (Fig. 2G), indicating that animals’
BMI trajectories were clearly goal-directed.
Goal-directedness was also apparent from the
distribution of angles between the animal’s
instantaneous direction of BMI-generated
movement and the direction from the animal’s
current location to the goal, which was con-
centrated around a value near 0° (Fig. 2H).
Thus, even though jumper trials took longer
than running trials (mean trial duration across
animals: 15.1 s versus 6.9 s; note, however, that
BMI decoding and smoothing added a few sec-
onds to jumper durations), the animals’ routes
revealed effective, goal-directed,map-based BMI
navigation. Furthermore, such performance
was achieved without extensive BMI training
(Fig. 2F; figs. S3 to S5 show sessions 3, 9, and
2 for rats 1, 2, and 3, respectively; table S1; a
fourth rat failed to perform either BMI task).
Although animals were free to physically run

during the jumper task, such movement was
not necessary for task performance. Initially,
animals ran as in the running task, but in later
trials, animals ran less (fig. S9). In a subset of
trials (10 out of 161 trials) (Fig. 2E and fig. S10),

animals remained still, yet in all cases they
efficiently reached the goal. Moreover, this suc-
cessful navigation did not depend on activity
in population burst events (PBEs), which often
appear during immobility and during which
brief activation of place cell representations
for remote locations has been shown to occur
(13–16, 18, 20, 21, 23).

BMI object location control task

Although episodic memories are encoded and
often retrieved using a first-person perspective,
individuals can also imagine scenarios from a
third-person perspective, with other animate
and inanimate players taking part. Further-
more, imagination often involves holding a
single thought in mind for extended periods.
Therefore, our second BMI task, the Jedi task,
tested whether animals—while remaining in
the same place—could use the same map of
the arena to control the location of a virtual
object, guide it to the goal cue location, and
maintain it nearby. The jumper and Jedi tasks
thus used different forms of feedback: self-
location and the location of an object, respec-
tively. After the same running task and decoder
training phases as in the jumper experiment, the
animals in Jediwere fixed (but could freely turn)
at the arena’s center, and the object’s location
was updated to theBMI-decoded location (with
a 2-s smoothing window). In each trial, the goal
cue remained in the same place, providing re-
ward as long as the object touched it. After 3min
or the rat having received 0.5 ml of reward in
total, whichever came first, a new goal cue ap-
peared at a distant random location for the
next trial.
Rats could activate and sustain a remote lo-

cation’s representation around the goal for
long periods, until the trial ended, and then
shift attention to the next goal (Fig. 3, A and B;
fig. S11; and movie S1). Performance was mea-
sured using the mean distance (over time) be-
tween thedecoded locations andgoals. Shuffling
spike trains across units yielded much greater
meandistances than the actualmeans (P=2.2 ×
10−5 to 2.6 × 10−3, three rats, one session
each). To assess the goal-directedness of BMI-
generated activity, we shuffled the goal loca-
tions while preserving the locations output
by the decoder. The decoded (and controlled
object’s) location was far more concentrated
around the actual remote goal cue than shuffled
goal locations (P = 1.8 × 10−22 to 5.2 × 10−10)
(Fig. 3C and fig. S11), indicating clear goal-
directed control of activity. Again, such per-

formance occurred without extensive training
(Fig. 3A shows sessions 7, 6, and 3 for animals
1, 2, and 3, respectively). Task performance
was not dependent on PBEs, as there was no
change in performancewhen all activity in PBEs
was eliminated and the decoder was rerun post
hoc (fig. S11).
Animal movement was generally low when

engaged in the Jedi task (Fig. 3D), and move-
ment was not required for successful perform-
ance. There were many longer periods (≥8 s
long with a treadmill speed of ≤1 cm/s, 38
periods, mean: 17.3 s, maximum: 44.0 s) during
which the animal did not move the treadmill
while it directed the object to the goal and/or
held it there (34 of 38 periods) (Fig. 3B and fig.
S12). Activity during PBEs was also generally
not necessary for performance in these non-
movement segments (fig. S12).

Features of volitionally generated spiking and
local field potential activity

What characteristics did the volitionally gen-
erated activity have? First,mean firing rates per
unit were similar between jumper and run-
ning tasks (fig. S13A). Mean firing rates per
unit were correlated across Jedi and running
tasks, but lower in Jedi (fig. S13B)—consistent
with the decreased physicalmovement in Jedi.
We then investigated the hypothesis that, to

move themselves or the object toward a given
(decoded) location in the jumper and Jedi
tasks, animals generated a pattern of firing
rates across units (i.e., a population vector, or
PV) similar to the mean PV at that location
over the entire running task (called the refer-
ence PV, or rPV) (Fig. 4A). (Note that the set of
rPVs for all locations is thus equivalent to the
standard place field map across the popula-
tion.) We examined the correlation between
the PV generated at each moment (in every
500-ms window) during jumper or Jedi and
the rPV of the decoded location at that mo-
ment. As a benchmark, we computed the cor-
relation between the 500-ms PVs during the
running task with the rPVs corresponding
to the animal’s actual location at those times
(Fig. 4, B and C, “Run”) as well as the correla-
tion between the running task PVs and the
rPVs of random locations (Fig. 4, B and C,
“randRun”). We then correlated jumper or
Jedi PVswith the rPVs of the decoded locations
at each moment (Fig. 4B for “jumper” and Fig.
4C and fig. S14 for “Jedi”) and with rPVs of ran-
dom locations (“randJumper” and “randJedi”).
Jumper and Jedi PVswere significantly correlated

locations). (B) A 40-s-long period during an example trial during which the
animal did not move the treadmill. From top: summed activity across all
units with PBEs identified, treadmill speed, distance of decoded location from
goal (0 means inside goal region), and close-ups of two 5-s periods [as
animal moves object to goal (left) and as animal maintains object at goal
(right); points in the arena represent sequence of decoded locations] with

spike trains of units, LFP, and spectrogram. See fig. S12 for additional
example periods. (C) Mean distance of decoded location from goal across
all trials (magenta vertical line) is significantly lower than mean distance
expected for randomized goal locations. (D) Treadmill speed distribution
during periods shown in (A), illustrating that the animal was generally still
during task performance.
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Fig. 4. Volitionally generated nonlocal activity is similar to the activity
when the animal is at the corresponding locations and is associated with
theta-band power in the LFP. (A to E) The population vector (PV) of ongoing
spiking activity was compared with the average place field activity (rPV) at
a given location during the running task. (A) Schematic of comparison.
(B) Mean correlation of instantaneous (500-ms window) PV during running or jumper
task with rPV for the current location (in the running task), current decoded
location (in the jumper task), or random location in the running (randRun) or jumper
(randJumper) task. (C) Same as (B) but for the Jedi task. For Jedi, only periods
when decoded location was near (within 5 cm of) the goal were included [also
for (E)]. [(D) and (E)] Correlation of PV with rPV relative to baseline random
value as a function of the time integration window for determining the PV.

(F and G) Evaluation of decoder performance when ground truth activity for each
location, i.e., the rPV, was input into the decoder. (F) Schematic of evaluation
procedure. (G) Comparison of our DNN decoder to Bayesian decoder for different
levels of added noise, with example traces using a specific level of noise (top).
(H) Distribution of decoded location (left) during Jedi task segment with no
treadmill movement (right). Right, from top: summed activity across all units with
PBEs identified, treadmill speed, distance of decoded location (excluding data
during PBEs) from goal, and close-up of LFP with spectrogram. (I) Power spectral
density of z-scored (for pooling across animals) LFP during the Jedi task for
periods of treadmill movement and all long segments (≥8 s) without treadmill
movement. See text and methods in the supplementary materials for details. Here
and elsewhere, all confidence intervals (CIs) are 95% CIs.
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with the rPVs associated with the decoded loca-
tions versus random locations, consistent with
the hypothesis. Furthermore, jumper PV-rPV
correlations were comparable to running task
PV-rPV correlations. In line with this, the ex-
ample running (Fig. 2B) and jumper (Fig. 2D)
trials, which happened to share similar trajec-
tories, showed similar activity patterns across
place units over time. PV-rPV correlation scores
were, unlike in jumper, lower in Jedi than in
the running task using 500-ms windows (Fig.
4C), consistent with noisier generation of non-
local representations and/or lower firing rates
(fig. S13B) in Jedi. However, with longer in-
tegration windows (>500 ms) (Fig. 4, D and
E), the PVs generated during Jedi matched
the rPVs as well as the best match during the
running task (note that longer integration times
work for Jedi because animals activated goal
location representations for extended periods).
These results indicate that, during BMI task
performance, animals generated nonlocal pop-
ulation activity as similar to the corresponding
place field representations as when they ac-
tually visited those locations in the running
task. Were these place field–like (i.e., rPV-like)
patterns what our deep network detected to
decode location? While determining what fea-
tures a deep network uses for decoding is gen-
erally not straightforward, inputting a single
location’s rPV for a brief duration was suffi-
cient to produce accurate location decoding
(Fig. 4, F and G), consistent with the decoder
being tuned to detect rPV-like activity. In ad-
dition, unlike the commonly used Bayesian
decoder (45), our decoder was highly robust to
noise (Fig. 4G) by design because of the use of
data augmentation during training.
Lastly, we analyzed the local field potential

(LFP) activity during BMI task performance
(Fig. 4, H and I). When animals move, the ro-
dent hippocampal LFP is known to display
prominent theta band (∼5 to 12 Hz) power,
which peaked at ~7.3 Hz during periods of
movement in the running and BMI tasks (Fig.
4I). During the extended periods of nonmove-
ment when the animal was performing the
Jedi task, the theta peak shifted down to 6.3 Hz
(Fig. 4I). Note that, unlike themore continuous
theta oscillations during movement, the oscil-
lations during such nonmovement periods
tended to be more intermittent.

Discussion

Previous BMI research has yielded major ad-
vances in the control of robotic arms, com-
puter cursors, and other devices by activity
from the primary motor cortex, premotor cor-
tex, and posterior parietal cortex (24–35). The
hippocampal cognitive map has a code that
represents space in terms of absolute location
in the external environment versus location
relative to (e.g., in front of, or to the right or
left of) the animal (8–11), and it was unknown

whether a subject could control a BMI by
means of this code. With this study, we dem-
onstrated a hippocampal map–based BMI in
which the subject is able to control its location
or that of other objects by activating location
representations in terms of absolute space, in-
dependent of where the animal currently is.
That is, even though animals generally (but
not always) turned their body toward the goal,
the activity that needed to be generated dif-
fered depending on the location of the goal
with respect to the environment. The relative-
ly small amount of training needed for the
animals to perform our BMI tasks is in line
with our use of a biomimetic decoder (35, 46),
that is, one based on the neural code that the
subject naturally employs.
In humans, imagining or recalling objects or

video clips is accompanied by hippocampal
activity in individual neurons similar to that
when viewing the original stimuli (47, 48).
This suggests that the mechanisms allowing
animals to selectively activate their nonlocal
hippocampal spatial representations, as we
have shown here, could also underlie our abil-
ity to actively recall or imagine experiences in
other places. The ability of rodents to perform
these BMI tasks should thus allow imagina-
tion, as well as the voluntary recall of memory,
to be investigated using the range of tools
available for this model system. More gener-
ally, the neural processes engaged here could
underlie our capacity to perform “mental time
travel”—travel back in time by reexperiencing
richly detailed episodic memories and travel
forward in time by generating possible future
scenarios (49). Mental time travel depends
critically on the hippocampus (4–6, 50–52)
and enables subjects to internally simulate new
experiences according to their world model.
This can aid decision-making and facilitate
learning in complex situations where trial and
error is expensive, as shown using artificial
agents (3, 53–55).
Along these lines, the rats in our study could

control their hippocampal map-based activity
on a timescale of seconds, corresponding to
the speed and duration at which humans re-
live past events or imagine new scenarios.
Navigational trajectories each lasted ~10 s,
and a virtual object could be held at a remote
location for several seconds. This contrasts
with the previously described fast (~100 ms)
sequences of nonlocal hippocampal activity in
awake rodents (i.e., awake replay events, which
are associated with population bursts and
sharp wave–ripples) thought to be associated
with planning (12, 16, 18, 21), and which were
not responsible for the performance in our
BMI tasks (analysis in which all PBEs were re-
moved). The content of such replay events,
which can portray specific routes through
the environment starting from the animal’s
current location, has been shown to be corre-

latedwith deliberative (12) and future (16, 18, 21)
behavior. However, it is not known whether
this content is—or replay content in general
can be—under an animal’s volitional control.
For instance, hippocampal activity displays
similar fast sequences during sleep (23), thus
nonlocal path generation per se does not ap-
pear to require intention. If awake replay is
volitionally controlled, these events could rep-
resent a brief consideration of alternatives for
making a quick decision and be distinct from
the more comprehensive mental simulations
of possible scenarios that take seconds. Previ-
ous work has also described neurons in the
hippocampus and related areas whose activity
is tuned to the angle to a goal or a salient cue
or object relative to the direction the animal is
facing (56–59). In addition, hippocampal neu-
rons that are tuned to the location of con-
specifics have been found (60, 61). As with
fast sequences, whether these forms of activity
that reflect locations away from the animal are
volitionally controlled is yet to be determined.
Beyond aiding decision-making, the ability

to control the content of the hippocampal
spatial and episodicmemory system could help
explain the richness of our inner lives. Finally,
the ability to control hippocampal activity to
guide oneself or objects to intended locations—
and do so with high signal-to-noise readout
using our decoder—could lead to new BMI ap-
plications for restoring or enhancing function
by realizing a subject’s high-level intentions
with respect to their internal world models.
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Materials and Methods 

Subjects 

The subjects were adult male Long-Evans rats, weighing ~350-450 g at the time of 
surgery. Animals were individually housed in home cages fitted with custom-made running 
wheels throughout training and after surgery on a 12 h light / 12 h dark schedule. Animals were 
water-restricted to provide motivation to perform the Running and BMI tasks, during which liquid 
reward could be obtained. All procedures were performed according to the Janelia Research 
Campus Institutional Animal Care and Use Committee guidelines on animal welfare. 

Virtual reality system 

Virtual environment software and hardware 

Our custom virtual reality (VR) software was developed as part of Janelia’s virtual reality 
software platform (Jovian). Our software suite, named ‘MouseoVeR’, was written in C++ and 
built from a number of open-source software components (Boost, Bullet, osgBullet, osgWorks, 
OpenSceneGraph, Collada, OpenGL, and Qt) (63). Virtual arena environments were created 
using the open-source animation software Blender (www.blender.org) and rendered by 
MouseoVeR. Blender environments were rendered using six virtual camera objects located at a 
single point in space to cover all the directions of a cube. For display, the six images were 
converted to an annulus shape to be projected from above onto a custom-made screen (80% 
polyester, 20% spandex, First Response Custom Sewing, Inc.). The screen was shaped like an 
inverted truncated cone stretched between two aluminum rings (top and bottom ring diameters: 
122 cm and 63.5 cm, respectively, height: 100 cm). The final image encompassed a viewing 
angle of 50° above and 30° below the horizontal eye level. The top ring was mounted on an 
aluminum frame. The top of the screen was covered by a horizontal sheet of transparent acrylic 
(122 × 122 × 1.2 cm). A projector (InFocus 5312a) with short-throw lens (InFocus LENS-060) 
was mounted horizontally on the ceiling, and images (1600 × 1200 pixels) of a virtual 
environment were reflected at a right angle off a round mirror (18-inch diameter, McMaster-Carr) 
onto the screen through the acrylic sheet. The cone-shaped screen surrounded a spherical 
treadmill, which consisted of a large, hollow, lightweight polystyrene sphere (24 in diameter, 350 
g total when the 2 separate hemispheres were glued together, Foam Mart ball modified by 
WeCutFoam) resting on a bed of seven individually air-cushioned ping-pong balls (30 psi) 
arranged around the lower half of the sphere by an acrylic frame (https://www.janelia.org/open-
science/large-spherical-treadmill-rodents (63)). To prevent chewing of the sphere by the rats, 
the sphere was covered with packing tape (Scotch). Rotation of the sphere around its vertical 
axis was prevented by four “yaw blockers” (small, vertically oriented rubber wheels with custom 
made attachments) separated by 90° around the sphere’s equator, thus the animals could only 
change direction by rotating themselves on the treadmill. To track the motion of the treadmill, 
two cameras separated by 90° were positioned at the equator and focused on 4 mm2 regions 
under infrared illumination (modified from FlyFizz, (64)). The cameras captured 30 × 30 images 
of the treadmill surface at 4 kHz and the motion of the treadmill was computed from the 
accumulated differences in the images over time. In each iteration of the rendering loop, 
MouseoVeR communicates with the treadmill’s data server to retrieve the updated motion 
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values since the last request. For calibration, we created mappings between 180° rotations of 
the treadmill along each of the two relevant directions in real-world space and the data server’s 
coordinate space. Body orientation in the horizontal plane was detected by a rotational encoder 
(TRD-MX1000AD, Koyo) that was calibrated by a photointerruptor (EE-SX672-WR, Omron) and 
a Teensy 3.1 microcontroller. The animal was held in place at the apex of the treadmill by a 
body harness, consisting of a jacket for the forelimbs (Harvard Apparatus), two spandex belts 
supporting the lower body (16 × 1.5 cm), and a neoprene backbone (10.5 × 5.5 cm, 70A 
hardness). A 3D-printed hook on this backbone was used to fasten the animal to an aluminum 
arm containing two hinges, which permitted a small amount of up-and-down body movement 
during walking. The arm was attached to a bearing (X-contact, 3.500 × 4.000 × 0.25, Swerve 
Drive Specials) on the bottom acrylic plate of a 128-channel motorized commutator (Saturn, 
Neuralynx), which allowed the rat to freely turn its body in any horizontal direction on the 
treadmill (i.e., 360° free rotation with no restriction on the number of net turns it could 
accumulate in either the clockwise or counterclockwise direction). Another 3D-printed arm that 
also rotated with the animal was attached to hold a lick port in front of the animal. To not block 
the animal’s forward view, this arm had an open window (16 × 12 cm) in front of the animal. On 
the top of the commutator, a liquid rotary joint (Doric) was mounted, and its rotation was linked 
to the commutator so that the water reward supply line could go through the commutator and 
freely rotate with it. The back end of the water supply line was connected to two solenoid valves 
(EV-2-12, Clippard) and a syringe pump (PHD2000, Harvard Apparatus) to control the amount 
and timing of water reward. In addition, a 50 mL reservoir and a small solenoid valve (SV-2C-
12-3-V, Clippard) were mounted onto the aluminum arm so that sweetened water (Kool-Aid) 
could also be provided, if desired. Whenever reward was delivered, a buzzer beeped 
(SunFounder, 2300 ± 300 Hz). On the acrylic frame holding the spherical treadmill, four nozzles 
(Eppendorf 1000 µL tips connected to stainless steel tubing) were attached 30 cm away from 
the animal to supply airpuffs (30 psi). Airpuffs were triggered manually when animals did 
unfavorable behaviors, such as chewing the equipment or sitting still for too long (e.g., during 
Running task training). The screen, projection, yaw restriction, commutator, and body harness 
systems were modeled after (39). 
 
VR game engine for task implementation 
 

The Running, Jumper, and Jedi tasks were all written in Python using our VR game 
engine called Playground. Playground (https://github.com/chongxi/playground) is a Python-
based software system that allows for the creation, execution, and control of complex behavioral 
tasks in VR environments. At the core of Playground is a Finite State Machine (FSM) framework 
used to define the task's logic and rules. For instance, when a trial starts, the task state is set to 
"trial started". A cue is then generated at a random location. Once the animal moves close 
enough to the goal, the cue triggers a transition in the task state from "trial started" to "reward 
cue touched", then to "reward delivering", and finally to "trial finished". Each state transition can 
lead to a specific outcome. The state transition and associated outcome is fully defined in the 
FSM. This FSM is fully customizable and simple to prototype with using a few lines of Python 
code, allowing for the creation of a wide range of tasks, from simple go/no-go paradigms to 
more complex, multi-state tasks. Playground also includes a user-friendly visualization module 
that enables researchers to intuitively track task states, animal behavior inside a 3D-modeled 
environment, and electrophysiological data, such as spike trains and waveform features, 



4 

 

simultaneously in real time. With this fast 3D visualization, researchers can observe and 
understand the relationship between behavior, neural activity, and task states for rapid BMI task 
prototyping. Playground also integrates with the Jovian VR platform, which is used in this study 
to render the 360° immersive virtual environment. The combination of Playground and Jovian 
software allows for the precise control and manipulation of the virtual environment, including the 
ability to teleport objects and change their properties in real time according to either animal 
behavior or BMI output. The code for all of the tasks that were used in this study can be found 
on the GitHub page of the Playground project 
(https://github.com/chongxi/playground/blob/master/playground/base/task/task.py). 
 
Brain-machine interface system 
 
Overview 
 

Our brain-machine interface system performs real-time analysis and converts the place 
unit activity of a population of CA1 units into an estimate of the animal's current location in the 
Running task (and the “desired” location in the BMI tasks). It consists of a Field Programmable 
Gate Array (FPGA)-based neural signal processor (NSP) and a deep neural network (DNN)-
based decoder, the latter of which resides on a personal computer (PC). The NSP is connected 
to up to 5 32-channel headstages (RHD2132, Intan Technologies) that amplify and sample 
neural signals from up to 160 channels (128 channels were used in this experiment) at a rate of 
25 kHz per channel. The NSP communicates with the PC through Python application 
programming interfaces (APIs), which allow the NSP to retrieve the parameters of a spike 
sorting model from the PC. The FPGA uses these parameters to classify spikes as belonging to 
individual units in 1 ms, and sends the assigned spike-id's (which identify the units) along with 
spike timestamps to the PC through a low-latency interface for real-time decoding. The FPGA-
based NSP is described in more detail below in this section, and the DNN-based decoder in the 
BMI task section. 

Our BMI system was integrated with the VR systems. During the pre-BMI Running task, 
band-pass filtered raw recordings, together with online-detected spike waveforms, the waveform 
features, and their electrode origins, as well as the animal's location and body orientation at 
each moment, were collected and stored. After conducting semi-automated spike sorting, place 
units were selected based on their activity level and spatial information for use in training the 
decoder. This decoder was trained to estimate the animal's current location in the Running task 
based on recent neural activity from the population of place units. This decoder was then 
deployed in real time for BMI tasks. In the BMI tasks, the online-decoded location was 
transmitted to the VR game engine, enabling updates of the task state, and from the game 
engine to MouseoVeR for VR rendering. 
 
FPGA-based NSP for on-chip spike assignment 
 

The real-time FPGA-based neural signal processor for classifying spikes into their 
source unit is described in detail in (40). Briefly, the 128 channels of raw data that were 
amplified and sampled at 25 kHz per channel (32 bits per sample) by the headstages were input 
into the FPGA (KC705, Xilinx). Inside the FPGA, (1) each channel was band-pass filtered 
between 500-3000 Hz using a custom pseudo-linear phase FIR filter, (2) common noise across 
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channels was removed by reference subtraction, (3) the data were split into 32 independent 4-
channel electrode groups (2 per 8-site shank), (4) within each electrode group, spikes were 
detected using an amplitude threshold (see below) and 19 points (0.76 ms) per channel around 
each spike’s peak were assigned as the (4 × 19 dimensional) waveform for that spike, (5) 
principal components of each spike waveform were extracted as features, based on principal 
component analysis (PCA) that had been applied to all the spike waveforms from the 
corresponding electrode group acquired during the training period (here the Running task), (6) 
each spike was classified as coming from a given unit with respect to unit clusters that had been 
defined from spike sorting the training period data. Importantly, the PCA and classification 
model, used for identifying the unit origin of each spike, were determined offline by analyzing 
and curating the training data on a PC. The resulting PCA transformation matrix and 
classification model for each electrode group were manually inspected, then transferred to the 
FPGA for fast, online processing (41). In the FPGA, the PCA matrix converts online-detected 
spike waveforms into waveform features, which are then classified by comparing them to pre-
determined reference features for each unit. The time elapsed from spike detection to the 
completion of spike classification is a deterministic latency of 1 ms for each spike, regardless of 
the number of spikes or units due to the real-time processing power of FPGAs (40, 41).  
 
Behavioral training 
 
Acclimation to equipment 
 

To acclimate the rats to wearing the harness and behaving on the treadmill, a series of 
steps were followed. First, the rats were subjected to water restriction for 1-2 weeks. Then, they 
began a habituation process in which they wore the jacket for 10-15 minutes each day, then the 
jacket plus belts, until they became comfortable with them. This typically took about 10 days. 
Then they were placed in the full harness on the treadmill for a few days with ample water 
provided from the lick port. During this time, they were encouraged to start obtaining water 
regularly from the lick port. This acclimation process helped the rats become accustomed to the 
harness and treadmill, which allowed for goal-directed running and BMI task behavior. 
 
Training using the Running task 
 

After acclimation, animals were exposed to a cue-rich VR environment (1 × 1 m square 
arena with 20 cm high walls) with proximal cues (on the floor and walls) and distal cues (around 
the arena above the walls). A tall, thin, spiral pillar (of maximum extent 20 × 20 × 80 cm) was 
used as the goal cue for all tasks. To increase its visual salience, the goal cue moved up and 
down at a frequency of approximately 1 Hz. During the initial training phase, the goal cue was 
placed close to the animal. Whenever the animal reached within 20 cm of the goal cue (center-
to-center distance, called the “goal radius”), it was rewarded with 20-40 µL of water or 40-50 µL 
of sweetened water, and the goal cue was moved to a new location. This training phase served 
to help the rat understand that touching the goal cue leads to reward. Once the animals 
demonstrated consistent navigation to the goal cue, the Running task was introduced, in which 
the goal cue was placed at a random location at least 50 cm away from the location of the last 
reward, and the goal radius was decreased from 20 to 15 cm (or sometimes 10 cm). The same 
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VR environment was used for all of the training and experiments in order to allow the animal to 
form a well-learned map of the arena for the BMI experiments. 
 
Surgery and electrode targeting 
 

After an animal’s performance in the Running task improved to the point of reaching the 
goal and obtaining reward ~200 or more times per 90 min training session, the animal was 
anesthetized with isoflurane and mounted in a stereotaxic frame for chronic implantation of 
electrodes. Two craniotomies were made, one over the CA1 field of the dorsal hippocampus of 
each hemisphere (centered at AP -3.7 mm, ML 2.8 mm). The dura was removed, and a 64-
channel silicon probe consisting of 8 shanks with 8 recording sites each (Buzsaki64-
H64LP_30mm, Neuronexus) was inserted into each hemisphere at an initial depth of ~900 µm. 
Each silicon probe was mounted on a shuttle drive (Nano Drive, Ronal Tool Company), which 
was fixed to the skull using OptiBond Universal (Kerr), Charisma A1 (Kulzer), dental cement (Jet 
Acrylic, Lang), and Calibra Universal (Dentsply Sirona). The probes were each connected to two 
of the 32-channel headstages (RHD2132, Intan Technologies), and the probes and headstages 
were surrounded by custom-made 3D-printed protective shells (the headstages remained with 
the implant when the animal was in its home cage). After a week of recovery, the electrodes 
were gradually adjusted over several weeks until they reached the CA1 pyramidal cell layer. 
Electrophysiological features such as the amplitude and polarity of sharp waves and the 
amplitude of spikes, recorded during each day’s ~90 min training session in the Running task, 
were assessed visually to guide adjustment to the CA1 cell layer. After performing the BMI 
experiments, animals were anesthetized with isoflurane, small electrolytic lesions were made by 
passing anodal current (30 µA, ~10 s) through one electrode site per hemisphere, then animals 
received an overdose of ketamine and xylazine and were perfused transcardially with saline 
followed by 4% formaldehyde. Brains were coronally sectioned (50 µm thick) and placed on 
slides with mounting media containing DAPI (Vectashield) to verify recording locations. 
 
Brain-machine interface tasks 
 
Running task before either BMI task 
 

After CA1 place unit activity was observed during a Running task training session (from 
offline sorting of data and analysis of spatially tuned firing, as in Fig. 1B), we started BMI 
experiments for that animal. On a given day, we first recorded neural activity for ~10 s to set the 
spike threshold (mean minus 4.5 to 5 × the standard deviation of the activity (65)). Then, 
animals were required to perform ~40 min of the Running task (~120 trials) while neural activity 
was recorded. Animals had to get to within 15 cm (or, in some sessions, 10 cm) of the center of 
the goal cue to get reward. Afterwards, animals were temporarily returned to their home cage, 
which was placed in the same room as the VR system. 

 
Semi-automatic spike sorting 
 

For the spikes that were detected online using threshold crossing per channel during the 
Running task, the four waveforms per spike from that electrode group (set of 4 adjacent 
electrodes) were saved, and these saved spike waveforms were used for offline semi-automatic 
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spike sorting (which was done separately per electrode group). The spike waveforms of an 
electrode group were PCA-transformed with 4 principal components kept, then a Dirichlet 
process Gaussian mixture model was applied (using the scikit-learn package in Python) to 
cluster the spike waveform features of each electrode group into 15-20 clusters (i.e., units). 
Using this “over-split” spike sorting model (i.e., one place cell might be split across more than 
one unit) reduces the amount of time needed to curate the unit clusters. This is important 
because a shorter curation time results in a smaller gap between the end of the training period 
(i.e., the Running task) and the start of the BMI task, thus reducing the potential impact of 
electrode drift. Additionally, using an over-split spike sorting model, which is related to 
clusterless decoding (66, 67), leads to the same or better population decoding performance 
compared to single-unit spike sorting by maximizing the amount of information obtained from 
each electrode group. Finally, rapid manual curation was conducted using the interactive 3D 
visualization software of our BMI system, during which we separated noisy or unstable units 
from stable units by visual inspection, and a spike-to-unit classification model was built from this 
manually curated clustering result. We removed the noisy or unstable units from further 
processing (i.e., building the location decoder) while keeping these clusters for the online spike 
assignment to absorb noisy spikes. In this manner, many “noise” spikes were accurately labeled 
as belonging to noisy clusters and therefore did not contribute to either offline or online location 
decoding. However, some of the noise spikes (particularly when small electrode drifts occur) 
can invade the boundary of the well-isolated clusters. Such noise is likely inevitable, but we 
handle noise by explicitly training the location decoder to be less sensitive to noise in general 
(see below).  
 
Spatial tuning (place fields), spatial information, and selection of place units 
 

To determine the spatial tuning of a unit, a two-dimensional histogram of the unit’s 
spiking locations in the 1 × 1 m arena (binned into 4 × 4 cm spatial bins) was first generated. 
The histogram was then normalized by the total duration the animal spent in each spatial bin. 
The resulting firing rate map was subsequently smoothed using a Gaussian filter with a 
standard deviation of 8 cm. Only periods of time when the rat’s speed was >5 cm/s were used 
to calculate place fields. The collection of firing rate maps across the units represents a sample 
from the hippocampus’ spatial map of the environment (cognitive map). Given the firing rate 
map 𝑓 of a unit, the information rate 𝐼 (bits/spike) of a unit was calculated as follows (68): 
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where 𝜆 is the mean firing rate of the unit and 𝑝ሺ𝑥ሻ is the probability that the rat is present in the 
spatial bin 𝑥 .  

Place units were selected from the pool of all stable units to train the decoder. Selection 
criteria included the peak rate of the unit's spatial firing rate map and the unit’s information rate, 
both of which had to exceed certain thresholds, and which varied across animals (default 
parameters were set to exclude units with <0.5 Hz peak firing rate, spatial information <0.1 
bits/spike, or <0.1 Hz or >4 Hz mean firing rate, the last of which should generally exclude 
interneurons, leaving units from pyramidal cells). The number of (oversplit) stable units and, of 
these, the number of stable place units satisfying the above criteria, were: for Jumper (157 and 
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68 units for rat 1, 373 and 122 for rat 2, 233 and 159 for rat 3, respectively), and for Jedi (253 
and 110 units for rat 1, 288 and 124 for rat 2, 138 and 94 for rat 3). Note that only the place 
units were used for training the decoder, real-time decoding in BMI tasks, re-decoding analysis, 
and PV analysis. We used all stable units for the firing rate analysis in fig. S13 as well as for 
population burst event (PBE) detection. 
 
Deep neural network decoder to estimate animal’s current location in the Running task  
 

To estimate the current location of an animal, we trained a 16-layer DNN (fig. S2) using 
the neural activity and locations during animal movement (counting only those periods when the 
speed, smoothed with a zero-lag 2 s boxcar window, was >5 cm/s) in the pre-BMI Running task. 
The DNN was trained to minimize the Euclidian distance between its estimate of the current 
location and the animal's actual current location (smoothed with a zero-lag 3 s boxcar window) 
every 100 ms. The input to the DNN consisted of the last 5 seconds of CA1 population activity, 
discretized into 50 100 ms time bins (note that in one session, the rat 3 Jumper session, the last 
1.5 s of CA1 population activity was used instead as the input). Each bin contains the spike 
counts produced by N place units. To stabilize the spiking noise variance, the elements of the N 
× 50-dimensional (or N × 15-dimensional, when using the last 1.5 s of activity) spike count 
matrix were square-rooted, in accordance with methods proposed previously (69, 70). The DNN 
transformed the N × 50-dimensional spike count matrix into a single 256-dimensional vector and 
passed it through all the internal layers until reaching the final linear layer, which output a 2-
dimensional vector representing the x and y coordinates of the estimated animal location. 
Inspired by recent research that employs periodic nonlinear activation function (71), we 
designed a new network backbone that employs a sinusoidal activation function in place of the 
commonly used rectified linear unit (ReLU). We named this block Sine Net (fig. S2). We 
observed that a stack of this network structure using skip connections between each instance of 
the Sine Net significantly accelerated the training on some of our data in comparison to other 
nonlinear activation functions.  
 
Data augmentation to improve decoder robustness   
 

To improve the robustness of our DNN location estimation in the presence of input noise 
(which could come from online spike sorting, motion artifact, electrode drift, physiological state 
changes, and other sources), we employed data augmentation (33) that adds independent and 
identically distributed (IID) noise to the training data. This noise was generated using a Bernoulli 
random variable and a uniform random variable (between 0 and a maximum value). The 
Bernoulli variable introduced a probability of 0.5 that the spike count of each place unit at each 
time bin would be changed (either increased or decreased) independently. The uniform variable 
determined the magnitude of this change, which was sampled independently for each unit and 
each bin. To ensure that the input remained valid, we set the spike count to zero whenever it 
became negative after the change. During training, the DNN was exposed to various levels of 
noise by using the absolute value of a sinusoid as the maximum magnitude of the noise across 
epochs (fig. S2F). This data augmentation procedure allowed the network to learn to ignore 
independent noise across units (i.e., “off-manifold” activity). By training the DNN model to 
produce similar outputs in the presence of various amounts of noise, we improved its 
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robustness and generalization performance. (Note that data augmentation is only used during 
training but not the evaluation of decoder performance.) 

For the Jedi task (rats 1-3) and one session of the Jumper task (rat 3), factor analysis 
(FA)-based reconstruction of the spike count matrix was conducted before adding the 
independent noise. FA is a dimensionality reduction technique widely used in BMI (30, 69, 72) 
that models shared variability and maps the population neural activity onto its intrinsic manifold. 
Akin to PCA, FA is used when the underlying structure of the data is believed to be a linear 
combination of uncorrelated latent variables, called factors, but, importantly, FA separates the 
neural population activity into two components: shared-variability that is generated by a set of 
low-dimensional factors (on-manifold activity) and independent noise that can be different 
across units (off-manifold activity). This explicit separation provides an additional source for data 
augmentation during training which could further improve our decoder robustness. To achieve 
this, latent factors (40-dimensional) were used to reconstruct raw spiking activity by removing 
off-manifold activity, ideally resulting in only on-manifold activity, then independent noise was 
added across units to create an additional set of training data. Because FA reconstruction 
(using the first 40 factors) reduces off-manifold activity in the raw input, this further encourages 
the DNN to rely more on the “on-manifold” activity (30) for location estimation. Our FA-based 
data augmentation was implemented in Python using scikit-learn and PyTorch.  
 
Evaluation of decoder performance 
 

We used 70% of the data from the Running task to train the current location decoder and 
tested the performance of the decoder on the remaining 30% of the data. Time intervals when 
the subject was stationary were excluded from both the training and test datasets. This 
procedure took ~10-20 min. After training, the decoder was evaluated on the test set using the 
coefficient of determination (i.e., R2 score). To compute the R2 score, the decoder output was 
first smoothed with a zero-lag 3 s boxcar window (as was the actual current location in the test 
set). (Note that the decoder output was not smoothed during DNN training.) The mean R2 score 
was calculated by taking the mean of the R2 scores for the x and y axes separately and was 
used as the final performance score of each individual session (Fig. 2C). A higher value of 
R2 indicates more accurate decoding. 

If the performance of the decoder on the test data had a mean R2 score >~0.8, we 
proceeded with one of the BMI tasks: we uploaded the spike sorting model parameters to the 
FPGA, placed the animal back into the VR system, had the animal run 20 more trials (i.e., 20 
different goal cue locations) of the Running task to visually verify the performance of the 
decoder, then started the BMI task (Jumper or Jedi). Note that on a given day, after the Running 
task, usually one session, but sometimes two sessions, of the Jumper or Jedi task were run (but 
the Jumper and Jedi tasks were generally not run on the same day). Rats 2 and 3 were first 
exposed to the Jumper task, while rat 1 was first exposed to the Jedi task (Table S1). 
 
Deployment of DNN decoder to control VR in real time 
 

Spike counts from each unit were recorded and binned in real time into 100 ms bins 
based on their FPGA timestamps. The square roots of these binned spike counts, organized 
into a matrix with dimensions N × 50 (or N × 15), were sent to the trained decoder every 100 ms 
for location estimation. The real-time spike binning and decoding were implemented in Python 



10 

 

and communicated to the VR game/task engine Playground using the PyTorch multiprocessing 
module, with each process running on a dedicated CPU and sharing data through shared 
memory. The parameters of the DNN were fixed after training, except for the running mean and 
variance in the batch normalization layer, which were updated every 60 s during the BMI tasks. 
The entire process of binning and decoding consistently took less than 50 ms on a PC (Dell 
Precision Tower 7910 with 40 CPU cores and 128 GB RAM), well within the 100 ms update 
interval. To smooth out any sudden jumps of the output to be rendered during BMI tasks, a 3- or 
2-second moving average (i.e., an average of the last 30 or 20 outputs of the decoder) was 
applied to the output of the DNN to determine the updated location of the animal (in Jumper) or 
controlled object (in Jedi), respectively. This moving average introduced a delay of a few 
seconds in the BMI trajectory of animal or object relative to the current decoded locations, which 
can be seen in the supplementary video (movie S1). For both tasks, the new location that was 
determined every 100 ms and a command string were sent to our VR game engine to update 
both the task states and the VR rendering. The VR update typically took 1-2 rendering frames to 
complete. Note that the VR projector runs at 60 Hz and Playground (the VR engine) sends 
updates to the MouseoVeR VR system at 20 Hz, while the decoder updates the animal or object 
location at 10 Hz.  
 
BMI navigation task (“Jumper”) 
 

In the Jumper task, which is a BMI version of the Running task, the animal’s location in 
the virtual arena was decoupled from the treadmill movement; instead, animals were teleported 
to the average decoded location of the latest 3 s of decoder outputs (i.e., 30 consecutive 
decoding windows) every 100 ms. Whenever the rat reached within 15 cm (or, in some 
sessions, 20 cm) of the center of the goal cue, the current trial ended, the cue disappeared, a 
reward (20-40 µL of water or 40-50 µL of sweetened water) was delivered, and the goal cue 
reappeared at a new, random location at least 50 cm away from the animal’s location, as in the 
Running task. The goal radius was fixed once the session started and remained the same for all 
trials in that session. If the animal failed to reach a given goal cue within 62 s, the trial was also 
considered ended, and the location of the goal cue was changed, at which point the next trial 
began. 
 
BMI object location control task (“Jedi”) 
 

In the Jedi task, animals were virtually fixed at the center of the arena, the goal cue was 
placed at least 30 cm away from the center, and a visible (or invisible) controlled object (a 
rectangular object 20 × 20 cm wide and 30 cm tall with large, open sides and floating 5 cm 
above the floor) was teleported every 100 ms to the average decoded location of the latest 2 s 
of decoder outputs (i.e., 20 consecutive decoding windows). Whenever the controlled object 
remained within 15 (or, in some sessions, 20 cm) of the goal cue, reward could be triggered. 
Each reward pulse lasted 10 ms (0.3-0.4 µL of water or 0.2-0.3 µL of sweetened water) for each 
100 ms decoding step, but a refractory period was implemented 0.3 s after reward delivery was 
triggered (i.e., after every 3 pulses). The duration of the refractory period followed a uniform 
distribution between 0 and 2 s. As in Jumper, the goal radius was fixed once the session started 
and remained the same for all trials in that session. For each trial, the location of the goal cue 
was fixed at a given location for ~3 min (187.4 s) or until the animal received at least 0.5 mL of 
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reward, whichever occurred first. After that, the trial ended, and the goal cue's location was 
changed while the controlled object’s location remained the same, thus starting the next trial, at 
which point the rat needed to control the external object to enter the new goal region.  

 
Rationale for Jumper and Jedi task design 
 

The Jumper task was designed to assess whether animals can use BMI to navigate to 
arbitrary goal locations in a goal-directed and model-based manner. To demonstrate this, 
animals should navigate toward each goal without searching other locations in the arena. 
Otherwise, animals would likely need to search the arena by producing random activity (random 
in the sense that it is not model-based, directed activity) until the decoded location reaches the 
current goal. Since the goal region only accounts for less than 7.1% or 12.6% of the arena for a 
15 cm or 20 cm goal radius, respectively, not being able to use a world model (i.e., map of the 
environment) should result in BMI trajectories that search through many regions of the arena 
before finally reaching the goal and, thus, longer trial durations. Therefore, we believe 
performance in the Jumper BMI task is sufficient to determine whether animals can navigate 
using their learned world model in a goal-directed manner.  

However, the Jumper task, which was designed as a first-person perspective game, 
makes it difficult to answer three additional and potentially important questions: first, whether 
animals can perform BMI navigation while remaining stationary; second, whether animals can 
hold remote locations in mind for extended periods of time, similar to what occurs in human 
mental time travel; third, whether animals can control an external object using the same world 
model (here, the same spatial map) as when controlling their own location during BMI 
navigation. The continuous updating of the arena view and associated optical flow in the Jumper 
task encourages animals to move. It also encourages animals to quickly activate 
representations of successive locations on the way to the goal. In addition, because the trial 
ends immediately when the goal is reached, this tends to limit opportunities to observe 
prolonged periods of activation of a given remote location. 

Therefore, we designed the Jedi task as a third-person perspective game that differs 
from Jumper in two key ways. First, the view of the arena is stable since the animal’s location is 
fixed at the center of the arena. Such a fixed first-person perspective view will not produce 
forward-moving optical flow, and thus may reduce animal movement. Second, a Jedi trial does 
not end when the goal cue is reached, which thus allows for a much longer trial duration (here, 
up to 3 min) compared to Jumper trials (which typically last ~15 s) and allows for repeated 
and/or continuous activation of the representation of the goal location. These two features 
enabled us to observe whether animals can activate and maintain non-local representations 
around the goal region while remaining stationary for extended periods of time. Indeed, rats can 
be stationary for tens of seconds (i.e., as long as several Jumper trials) while performing the 
Jedi task, and they can also hold the decoded location (again, without physical movement) near 
or within the goal region for several seconds as well, as shown in the examples in Fig. 3B, Fig. 
4H, fig. S12, and movie S1.  
 
Post-experiment data analysis 
 

Data were analyzed in Anaconda Python 3.8. All confidence intervals are 95% CIs. Two 
types of analyses are used in this study: "in-experiment analysis" and "post-experiment 
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analysis". In-experiment analysis was conducted after the Running task then applied to the BMI 
experiment, and is described above (e.g., semi-automatic spike sorting, selection of place units, 
training the DNN decoder, evaluating the decoder performance). Post-experiment analysis was 
conducted after the experiment and is described below.  

 
The animal’s BMI performance in the Jumper task 
 

The performance in the Jumper task was assessed by the duration of trials compared to 
a randomized goal control (Fig. 2G). In an individual Jumper trial, a new goal cue is randomly 
generated away from the previous one when the last trial has finished (i.e., the animal reaches 
the previous goal and reward is delivered). The new goal cue may be placed behind the rat or 
within the rat’s visual field. When the cue is generated behind the rat, the animal cannot at first 
see where the cue is and typically initiates the trial by turning its body to search for the cue after 
consuming the previous reward (during reward consumption the rat is stationary). The time 
between finishing the reward and turning the body to search for the goal cue is variable, as this 
behavior is self-initiated by the rat. For example, the rat can groom between trials. To accurately 
quantify the trial duration, the trial start is defined as the moment the animal starts to engage in 
the task during that trial. Specifically, when the cue is presented behind the animal, the trial start 
is defined as the moment the rat's body orientation changes by more than 12 degrees per 
second, as the rat needs to turn its body to search for the cue. When the cue is presented within 
the visual field of the rat and the rat does not turn to approach the goal cue, the trial start is 
defined as three seconds after the last trial ended, during which time the rat typically finishes 
consuming the reward. The trial duration is defined as the time elapsed from the trial start to the 
moment the goal cue is reached by the rat. To determine if the animal's behavior in Jumper was 
more goal-directed than chance would predict, we performed 1000 independent shuffled goal 
simulations and compared the mean trial duration of each simulation with the actual mean trial 
duration. In each simulation, the goal locations were randomly shuffled for each trial while the 
animal's BMI trajectories remained unchanged from the original data. A simulated trial ends 
when the BMI trajectory reaches the randomly shuffled goal cue (i.e., within the goal radius) and 
the simulation ends when the BMI trajectory of the entire session has been completely used. 
We then compared the mean trial duration of the actual Jumper session (containing ~50 trials) 
to the distribution of simulated mean trial durations. The p-value was estimated from the Z score 
of the actual mean duration compared to the shuffle distribution. A low p-value from this test 
(along with a shorter actual mean trial duration) indicates that the animal's behavior in the 
Jumper task was significantly more goal-directed than chance would predict. 

As a further measure of goal-directed control, we computed the angle between the 
instantaneous direction of movement along the BMI trajectory and the direction from the current 
location to the center of the goal. The trajectory along each trial was divided into ~20 samples 
equally spaced in time during the trial. For each sample, the angle between the direction from 
the last movement step and the direction from the current location to the goal’s center was 
computed. The distribution of angles from all samples of all trials were plotted in polar 
coordinates. An analogous distribution was computed for all Running trials. Both Jumper and 
Running task distributions were concentrated around a value that was near 0 degrees (where 0 
represents movement directly toward the center of the goal). Interestingly, when the peak of the 
Running task angle distribution for an animal was shifted slightly away from 0, that animal’s 
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Jumper task angle distribution was similarly shifted (Fig. 2H), which indicates that animals 
preferred to approach goals in a similar manner when running and during BMI behavior. 

In addition, performance was assessed by the duration of trials compared to a shuffled 
unit control. In each of 200 independent shuffles, the spike trains of each unit were randomly 
assigned (once across all trials) to different units, the shuffled data was input into the original 
decoder, and the resulting BMI trajectory determined. Then the simulated durations of each trial 
were computed based on how this trajectory reached the original sequence of goals locations. 
We then compared the mean trial duration of the actual Jumper session to the distribution of 
simulated mean trial durations, and estimated a p-value based on the Z score. A low p-value 
(along with a shorter actual mean trial duration) indicates that the animal’s performance in the 
Jumper task depended on the specific activity of place units, as opposed to non-spatially-
specific modulation of the aggregate activity across units. 
 
The animal’s BMI performance in Jedi tasks 
 

The performance in the Jedi task was evaluated using the Euclidean distance between 
the controlled object and the goal cue compared to a randomized goal control (Fig. 3C). The 
trial duration is not used as a performance metric in Jedi as a trial does not end when the object 
reaches the goal the first time, and a trial can last up to 3 min even if the controlled object is 
statistically close to (but not always within) the goal region. Like in Jumper tasks, periods of non-
task-engagement, such as grooming or “trying to run out of the arena” (i.e., periods of constant 
running into a wall), are excluded from the analysis. Additionally, because the Jedi task was 
intended to evaluate the animal's ability to control a remote object while remaining as stationary 
as possible, low angular movement was utilized as an indicator of task engagement, and 
therefore periods during which the rat's body orientation changed by more than 12 degrees per 
second were excluded from the analysis. Note that, after removing these excluded periods, the 
majority of the time the animal did not move the treadmill (Fig. 3D). After excluding such non-
engagement periods, a 2D histogram (with 2 × 2 cm spatial bins, smoothed by a 4 cm Gaussian 
kernel) of the decoded location distribution or controlled object location distribution (which were 
virtually identical, see fig. S11) during each trial was plotted as a visual assessment of how 
close the object was to the goal. To determine whether the decoded locations were closer to the 
goal locations than chance would predict, we compared decoded-location-to-goal distances to 
those from 1000 independent simulated control experiments. In each simulation, we first 
randomly selected a starting frame within the first 7 seconds of the Jedi session. Then, we 
subsampled the animal's decoded location every 7 s (i.e., every 70th frame). This 7 s interval 
ensured that the decoded locations were independent of each other because the decoding 
window was 5 s and we used an additional 2 s moving average for determining the location of 
the controlled object. For each subsampled decoded location, a random goal location was 
generated at least 30 cm from the center of the arena (this is because in the actual Jedi 
experiment each goal was at least 30 cm from the center). The distance between the decoded 
location and the goal location was determined and 15 cm was subtracted and, if the value was 
less than 0, the result was set to 0. This was done because it reflects the true distance from the 
decoded location to the goal as far as receiving reward is concerned by accounting for the goal 
radius. Then, for each simulated session (1000 simulations) and the actual Jedi session, a 
mean distance to goal averaged across all the of the subsampled decoded locations was 
calculated. The actual session’s mean distance to goal was then compared to the distribution of 
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1000 simulated mean distance to goal values. The p-value was estimated from the Z score of 
the actual mean distance compared to the distribution of simulated mean distances. A low p-
value (along with a smaller actual mean distance) indicates that the animal’s behavior in the 
Jedi task was significantly more goal-directed than chance would predict. 

In addition, performance was assessed by the object-goal distance compared to a 
shuffled unit control. In each of 200 independent shuffles, the spike trains of each unit were 
randomly assigned (once across all trials) to different units, the shuffled data was input into the 
original decoder, and the resulting BMI object locations determined. Then the simulated object-
goal distances were computed between these object locations and the original sequence of goal 
locations. We then compared the mean distance for the actual Jedi session to the distribution of 
simulated mean distances and estimated a p-value based on the Z score. 
 
Re-decoding of Jumper or Jedi experiment with shorter decoding window 
 

To estimate the effect of a shorter decoding window on decoded locations, the 
experiments using a 5 s decoding window were re-decoded by using the original decoder, but 
using as input the most recent 1.5 s (15 100 ms bins) of spike count data at each time point and 
setting the first 3.5 s (35 bins) of data in each window to 0.  
 
Re-decoding of Jumper or Jedi experiment with population bursts events (PBEs) excluded 
 

To investigate the contribution of population burst events (PBEs) to the high 
performance of navigation in Jumper trials in which animals did not move the treadmill, or the 
high performance of controlling remote objects in the Jedi experiments, we detected and 
excluded these PBEs then applied the location decoder to the remaining neural activity and 
assessed the task performance post-hoc. A histogram of all place units was created with 10 ms 
bins and smoothed using a Gaussian kernel (with a 10 ms standard deviation). Segments where 
the peak of the smoothed histogram exceeded the mean plus 1.8 standard deviations were 
identified as candidate PBEs, with the start and end boundaries determined when the smoothed 
histogram crossed its mean value. Candidate PBEs of less than or equal to 10 ms duration were 
not counted as PBEs to reduce false positives, and the rest were counted as PBEs. Finally, the 
spike counts of all units in any 100 ms bin that overlapped with any PBE were set to zero, the 
original decoders used in each BMI experiment were then used to re-decode the data, and the 
navigational trajectory (fig. S10) or spatial distribution of resulting controlled object or decoded 
locations with respect to the goal location (figs. S11 and S12) in each trial was computed. 
 
Population vector analysis 
 

The fact that our deep neural network (DNN) performed well during the Jumper and Jedi 
tasks suggests that animals can voluntarily generate goal-directed, non-local spatial activity. In 
addition, it suggests that the DNN generalizes well from the training set (physical navigation 
activity during the Running task) to new unseen data (navigation and object location control 
activity during the BMI tasks). To explore what information our DNN might be relying on for this 
generalization, we considered the evidence for one reasonable hypothesis, which is that the 
animal is generating, and the DNN is using, spiking patterns similar to the population vectors of 
the spatial firing rate maps for the units at each location (Fig. 4A). We first binned the arena into 
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4 × 4 cm spatial bins, as we did when calculating place fields. For each spatial bin, we 
constructed a reference population vector (rPV), which is a vector of the averaged firing rates of 
all units at that spatial bin during the Running task. Next, for each moment (T = 500 ms windows 
each 100 ms) during the Jumper and Jedi tasks, we calculated the Pearson correlation 
coefficient between the current PV (i.e., the vector of average firing rates of the units during that 
500 ms) and the rPV of the DNN's current decoded location. For comparison, we also calculated 
the Pearson correlation coefficient between the PV at each (T = 500 ms) moment in the 
Running task (using the 20 additional Running task trials after the animal was returned to the 
VR system and immediately before the BMI task started, which were not included in spike 
sorting or decoder training, or used to compute the rPVs) and the rPV of the animal’s current 
location in the environment, which provides a benchmark for the “maximum” PV-rPV correlation 
values that can be expected when taking into account the natural variability of neural activity 
(especially over a timescale of 500 ms). Note that for the Running and BMI task PVs, we first 
performed a global normalization of firing rates so that the overall firing rate of each unit during 
the post-sorting/decoder-training/rPV-determination period (consisting of the 20 additional 
Running task trials and the BMI task) was scaled to match the overall rate of that unit during the 
Running task period that was used to determine the rPVs. We then compared the distribution of 
correlation coefficients across all moments during a session (Jumper, Jedi, or Running task) to 
the distribution of coefficients between the PV at each moment and the rPVs of random 
locations. Our results show that instantaneous PVs corresponding to each decoded location in 
Jumper or Jedi displayed significant (versus random levels of) similarity to the rPVs at those 
locations (Fig. 4B,C and fig. S14) and matched the highest similarity achieved by Running task 
PVs when considering a range of time windows (T = 0.5-5 s, Fig. 4D,E). This is consistent with 
the animal generating PVs for each location that are similar to the rPVs for those locations in the 
place field map, and with the DNN extracting that PV information to estimate the animal’s 
current location in the Running task and generated location in the BMI tasks.  
 
Assessing DNN decoder response to rPVs with and without noise 
 

Although DNNs are essentially black boxes, to further test the hypothesis that our DNN 
decoder had been trained to detect activity patterns that are similar to the place map rPVs, we 
examined the DNN decoder’s response to a single, constant, noiseless rPV input, where each 
rPV is associated with a known location. The trajectory in the Running task was used to provide 
a series of locations to test over. For each location in the trajectory (at each 100 ms step), there 
is an associated rPV. An identical copy of that current location’s rPV was placed in each of the 
last 5 bins (500 ms) of the 50-bin (for 5 s decoding window) or 15-bin (for 1.5 s decoding 
window) input to the DNN, with the first 45 or 10 bins, respectively, set to 0. The R2 score 
between the decoded outputs and actual locations were computed over the trajectory (with the 
results shown in Fig 4G with noise = 0). As a comparison, this same rPV was input into a 
Bayesian decoder (45) and the R2 score determined. Both the DNN and Bayesian decoder 
accurately decoded noiseless rPV inputs, with high R2 scores in each case. This demonstrates 
that the “ideal” PV input (the rPV for a location) is sufficient to have the DNN output that 
location, without requiring any temporal activity patterns. To assess and compare the noise 
robustness of both decoders, we tested their performance on rPVs with added noise. The 
maximum amplitude of noise added ranged from A = 0 to 10 Hz. For a given A, a value was 
randomly drawn from a uniform distribution between [-A, A]. Five noise vectors were 
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independently sampled (i.i.d. for each unit and each 100 ms time bin) and added to the 5 
duplicate rPVs for each of the 5 bins, with any resulting negative firing rates in a bin set to 0. 
The noise axis in Fig. 4G displays A/2, since this is the upper bound of the averaged noise 
applied to the rPV (it is an upper bound since the final rate values are bounded by 0). The 5 
noisy versions of the rPV were input to the DNN (with the first 45 bins set to 0 and last 5 bins set 
to the noisy rPV) or averaged in the case of the Bayesian decoder. In these simulations, the 
DNN decoder was much more robust to noise than the Bayesian decoder (Fig. 4G), as the DNN 
was trained to be robust to noise using data augmentation. 
 
Local field potential (LFP) and wavelet analysis 
 

In our real-time FPGA-based NSP system, only band-pass filtered raw data within the 
frequency range of 500-3000 Hz was recorded. To recover the full-band raw data, a Wiener 
deconvolution, which was validated on both ground-truth and simulated data, was applied to the 
saved filtered raw data. Subsequently, one electrode in the pyramidal layer where many spikes 
from place units were detected was selected for LFP analysis per session. The LFP signal was 
obtained by applying a low-pass Butterworth filter (cutoff frequency of 400 Hz, order of 5) to the 
reconstructed raw data from the selected channel (sampled at 25000 Hz). LFP signals were 
then downsampled from 25000 Hz to 1000 Hz. Wavelet spectrograms were then obtained using 
complex Morlet wavelets (𝜎 = 5) across a range of frequencies from 0-60 Hz for specific time 
segments. The magnitude of the spectrogram was Z-scored. For computing the power spectral 
density (Fig. 4I), the LFP traces were first Z-scored so that the resulting PSDs could be pooled 
across animals. 
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Fig. S1. Electrode locations. Schematic of location of silicon probe shanks (each red point 
represents a shank) with respect to top view of brain and hippocampus (shaded) (left). Example 
of electrode recording site location in hippocampal CA1 pyramidal cell layer (right). 
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Fig. S2. Architecture and training of deep network that accurately decodes the animal’s current 
location during the Running task and is used to translate hippocampal activity into control 
signals during the BMI tasks. (A) Population activity (spike counts per unit) in windows of 1.5 or 
5 s were binned in 100 ms bins and input to the decoder. Windows were advanced in steps of 
100 ms to give a series of inputs. (B) The layers and operations of the deep net decoder. (C) 
The outputs of the decoder were an x and y location value. (D) and (E) show details of gating 
unit and sine net layers. (F) The decoder was trained by minimizing the error between the 
current location of the animal (smoothed with a zero-lag 3 s boxcar window) and the decoder 
output. The training data was augmented by adding noise, which varied as shown as a 
sinusoidal function of training epoch. See methods for details. 
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Fig. S3. All trials of the Jumper BMI experiment for rat 1. Note trials 1-12 and 53-55 are also 
shown in Fig. 2F. 
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Fig. S4. All trials of the Jumper BMI experiment for rat 2. 
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Fig. S5. All trials of the Jumper BMI experiment for rat 3. 
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Fig. S6. All trials of the Jumper BMI experiment for rat 1 with locations re-decoded post-hoc 
using a shorter decoding window and without subsequent smoothing. Same trials as shown in 
fig. S3. Gray boxes: unsuccessful trials in which the animal did not reach the goal in time. Red 
outlined boxes: trials in which the animal did not move the treadmill. To re-decode the data, the 
original neural activity was run through the original decoder, except only the most recent 1.5 s of 
activity in each decoding window was used, while the first 3.5 s of activity was set to 0. The re-
decoded location output every 100 ms was plotted as individual points here, without passing it 
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through the 3 s smoothing window used in the original experiment. The results show that the 
locations decoded based on more instantaneous activity yield similar trajectories to the original 
experiment (though with more jitter, as expected without smoothing). In a few trials—notably 
some of the non-treadmill-movement trials—at the start of the trial, these more instantaneously 
decoded locations were already near the goal and away from the animal. Note: In some cases, 
the decoded trajectories got near to but did not reach the goal. *In some cases, we removed the 
last few decoded locations in the trial because they passed through the goal at the end since 
the smoothing that was present in the actual experiment had been removed. Results were 
similar for rats 2 and 3 (fig. S7 and S8). 
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Fig. S7. Same as fig. S6 except for rat 2. 
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Fig. S8. All trials of the Jumper BMI experiment for rat 3 without smoothing of decoded 
locations. Note that, unlike for rats 1 and 2, the decoding window was 1.5 s in the original 
experiment for rat 3 so no re-decoding was necessary here. Otherwise, the description of what 
is displayed is the same as in fig. S6 and S7. Note that the trajectories jitter somewhat less than 
in fig. S6 and S7, likely because the decoding window here is the same window used in the 
original closed-loop experiment and the animal had learned to control its activity on this 
timescale. 
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Fig. S9. Mean treadmill speed during each Jumper trial and linear regression for rats 1-3. Here 
and elsewhere all CIs are 95% CIs. For rats 1 and 2, treadmill movement decreased as the 
session progressed, while for rat 3 movement at the beginning was lower and remained at that 
level.  
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Fig. S10. All 10 Jumper trials during which there was little or no movement of the treadmill 
(continues on next page). In all of these trials the animal successfully navigated to the goal. 
Trajectory of decoded locations (column 1) and re-decoded locations after PBEs removed 
(column 2), showing each decoded location (every 100 ms, i.e. no smoothing). Right, from top 
for each trial: unit activity with PBEs (blue), treadmill speed, and distance of decoded location 
from goal. (Small differences in distance to goal in the 2 curves without visible PBEs are due to 
the effect of removing earlier PBEs on the running mean and variance which affect the input to 
the decoder.) The first 5 trials are from rat 1, the next 2 from rat 2, and the last 4 are from rat 3. 
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Fig. S10 (continued). The last (11th) trial contains significant treadmill movement, but the 
decoded location moves to the goal during a period of non-movement. 
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Fig. S11. Distribution of real-time decoded location (i.e., DNN output), real-time controlled 
object location, controlled object location after excluding activity during population burst events 
(PBEs) during the Jedi task, and re-decoded location using only the most recent 1.5 s of activity 
in each decoding window (with the first 3.5 s of activity set to 0) and excluding activity during 
PBEs. For each animal, the four rows represent the same 8 consecutive trials. Top row per 
animal is the same as shown in Fig. 3A. Numbers in each panel indicate duration of trial 
excluding periods when animal’s angular velocity was >12˚/s (a measure of task 
disengagement) (numerator) and total duration of trial (denominator), in seconds. The mean 
values for these were 88.3 s and 141.8 s (out of a maximum possible 187.4 s), respectively. In 
the bottom two rows per animal, spiking activity during detected PBEs was eliminated, then the 
location decoder was applied to the remaining data post-hoc. Comparison with the rows above 
shows that goal-directed control of the location of a remote object does not depend on this brief 
hippocampal population burst activity. Overall, the distributions are very similar across all 
conditions (rows).  
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Fig. S12. Example longer segments during the Jedi task with little or no treadmill movement 
(continues on next page). There were 38 such segments in total (≥8 s long in which the 1 s-
smoothed treadmill was ≤1 cm/s) and 11 are shown here (and Figs. 3B and 4H show 2 others). 
The animal successfully moved the decoded location to the goal and/or held it near there in 34 
of the 38 cases. In 28 cases, PBEs were not required for this performance. In 4 cases 
performance was better if PBEs were included, and in 5 cases performance was better if PBEs 
were excluded. Distribution of decoded locations (column 1) and re-decoded locations after 
PBEs are removed (column 2). Right, from top for each trial: summed activity across all units 
with PBEs (blue), treadmill speed, and distance of decoded location from goal. Segments 1-6 
are from rat 1, segments 7-8 from rat 2, and segments 9-11 from rat 3. 
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Fig. S12 (continued).  
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Fig. S13. (A) Mean firing rate of each unit during Jumper versus Running task trials. Dotted line: 
y = x. (B) Mean firing rate of each unit during Jedi versus Running task trials. Dotted line: y = x. 
Note that average firing rates are lower during the Jedi task compared to the Running task. For 
both (A) and (B), the data for the Running task came from the 20 Running task trials 
immediately before the BMI task (after spike sorting, decoder training, and the animal was 
returned to the VR system), which were the same trials as used for the PV analysis. 
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Fig. S14. Mean correlation of instantaneous (500 ms window) PV during Running or Jedi task 
with rPV for the current location (in Running task), current decoded location (in Jedi task), or 
random location in Running (randRun) or Jedi (randJedi) task for rats 1-3. In the "all" cases, the 
correlation was computed over all periods during the Jedi trial (except when the animal’s body 
rotated >12˚/s). In the “near goal” cases, the correlation was computed only for those periods 
when the decoded location was also near (within 5 cm of) the goal. (The “near goal” correlations 
are the same as shown in Fig. 4C for “Jedi” and “randJedi”.) 
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Rat Day BMI task  Goal radius Goal radius Decoding Reward  Goal cue 
    (Running) (BMI task) window 
______________________________________________________________________________________________ 
 
1 1 Jedi  10 cm      W & SW  visible 
1 2  Jedi  10 cm  20 cm  5 s  W & SW  visible 
1 3  Jedi    20 cm  3 s  W & SW  visible 
1 4  Jumper  10 cm  20 cm  5 s  W  visible 
1 5  Jumper          visible 
1 6  Jedi  15 cm  15 cm  5 s  W  visible 
1 7  Jedi  15 cm  15 cm  5 s  W  visible 
1 8  Jedi  15 cm  15 cm  5 s  W  visible 
1 9  Jedi  15 cm  15 cm  5 s  W  visible 
1 10  Jedi  15 cm  15 cm  5 s  W  visible 
1 11  Jumper  15 cm  15 cm  5 s  SW  visible 
 
2 1 Jumper (2x) 10 cm  20 cm  5 s  W  visible 
2 2 Jumper  10 cm  20 cm  5 s  W  visible 
2 3  Jedi  10 cm  20 cm  5 s  W  visible 
2 4  Jedi  10 cm  20 cm  5 s  W  visible 
2 5  Jumper  10 cm  20 cm  5 s  W  visible 
2 6  Jumper          visible 
2 7  Jedi (2x)  10 cm  20 cm  5 s  W  visible 
2 8  Jumper (2x)         visible 
2 9  Jumper (2x) 15 cm  15 cm  5 s  W  visible 
2 10  Jedi (2x) 15 cm  15 cm  5 s  W  visible 
 
3 1 Jumper  15 cm  15 cm  5 s  W  visible 
3 2 Jedi          invisible 
3 3 Jedi (2x) 15 cm  15 cm  5 s  W & SW  invisible 
3 4 Jumper  10 cm  15 cm  1.5 s  SW  visible 
 
Table S1. BMI experiment details for rats 1-3 starting from the first day we ran these 
experiments up through the 3 Jumper and 3 Jedi experiments included in this study (bold). On 
some days the animal did 2 sessions (2x). For reward, W = water, SW = sweetened water. The 
goal cue was always visible for the Jumper task. Some parameters are missing from our 
records (blanks). 
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Movie S1. Illustration of VR system and environment, phases of experiment, and examples of 
Running task, validation of location decoder in Running task, Jumper BMI task, and Jedi BMI 
task, showing video of behavior, neural activity, and BMI output. Note that in Jumper and Jedi 
the location of the animal or controlled object, respectively, lagged the instantaneous decoded 
location. This was due to the 3 s (for Jumper) or 2 s (for Jedi) causal moving average used to 
smooth the BMI-generated trajectory and associated VR updates. 
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