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N E U R O S C I E N C E

Distinct manifold encoding of navigational information 
in the subiculum and hippocampus
Shinya Nakai1,2, Takuma Kitanishi2,3,4,5*, Kenji Mizuseki1,2*

The subiculum (SUB) plays a crucial role in spatial navigation and encodes navigational information differently 
from the hippocampal CA1 area. However, the representation of subicular population activity remains unknown. 
Here, we investigated the neuronal population activity recorded extracellularly from the CA1 and SUB of rats per-
forming T-maze and open-field tasks. The trajectory of population activity in both areas was confined to low-
dimensional neural manifolds homoeomorphic to external space. The manifolds conveyed position, speed, and 
future path information with higher decoding accuracy in the SUB than in the CA1. The manifolds exhibited com-
mon geometry across rats and regions for the CA1 and SUB and between tasks in the SUB. During post-task ripples 
in slow-wave sleep, population activity represented reward locations/events more frequently in the SUB than in 
CA1. Thus, the CA1 and SUB encode information distinctly into the neural manifolds that underlie navigational 
information processing during wakefulness and sleep.

INTRODUCTION
Spatial navigation is essential for survival. Information supporting 
spatial navigation is expressed in terms of position, speed, and head 
direction (1–3). The hippocampal formation, consisting of the den-
tate gyrus, CA3, CA2, CA1, and subiculum (SUB), plays an essen-
tial role in processing navigational information (4). This processing 
occurs at different levels of neural activity, including single-neuron 
activity (1), pairwise neuron activity (5), and neuronal population 
activity, which is often represented as neural manifolds (6). Infor-
mation conveyed by the hippocampus has been extensively studied 
and is involved in spatial navigation and memory (7–9). However, 
the SUB had been investigated much less until recently, and its neu-
ronal representation, particularly as a population, remains poorly 
understood.

The anatomical connections between the SUB and other regions 
suggest that the SUB plays an important role in navigational informa-
tion processing (10, 11). The SUB receives afferent projections from 
the brain regions conveying spatial information, including the hip-
pocampal CA1 area, entorhinal cortex, retrosplenial cortex, and nu-
cleus reuniens (12, 13). This information can be integrated via dense 
recurrent connections in the SUB (14) and sent to various regions, 
including the retrosplenial cortex, nucleus accumbens, medial mam-
millary body, and anteroventral thalamic nucleus (15–19). These 
downstream areas are involved in spatial memory, reward processing, 
and emotional systems, suggesting that the SUB acts as a functional 
hub by providing navigational information (20–22). Loss-of-function 
studies have shown that the SUB serves as a unique computational 
unit (23–25).

The SUB contains neurons representing diverse navigational in-
formation, including position, speed, movement axes, reward, and 
task structure (26–32). In addition, there are cells representing the 
future choice of path or boundary/landmarks in the environment 

(31, 33, 34). Such spatial representation is reminiscent of the CA1 
area, containing cells representing position, speed, and future choice 
of the path (1, 2, 35). However, the coding strategies of CA1 and SUB 
neurons differ substantially (11, 27). SUB neurons generally have low 
selectivity and multiple receptive fields (26, 27, 36, 37) but exhibit 
high firing rates and mixed selectivity (31, 32, 37). These features 
contribute to the noise-resistant and efficient information transfer 
from the SUB to its downstream regions (31, 32, 37). In addition, 
during sharp-wave ripples (SWRs), SUB neurons accurately transmit 
information in a projection-specific manner (31). In contrast to such 
representations at the single-neuron level, data for this at the popula-
tion level remain limited. The spike times of a given neuron are more 
precisely predicted using spike times of simultaneously recorded 
neurons in addition to the features of the receptive field of that neu-
ron, input from the external environment, and the animal's behavior 
(38, 39). Therefore, exploring neuronal population dynamics is es-
sential to understanding information processing in the brain.

The time series of neuronal population activity can be described 
as a trajectory in a high-dimensional space in which the instanta-
neous activity of individual neurons is represented by their respec-
tive coordinate axes. Owing to the neuronal network and its input 
properties, a high degree of correlation and redundancy exists be-
tween the activities of individual neurons (40, 41); hence, potential 
trajectories of population activity are often confined to a subregion of 
this space: a neural manifold embedded within the high-dimensional 
space (42, 43). Neural manifolds have been identified in various 
systems, including head direction cells in the anterodorsal thalamic 
nucleus (44), value-coding cells in the retrosplenial cortex (45), grid 
cells in the entorhinal cortex (46), and place cells in the CA1 (47–49). 
Neural manifolds in the CA1 of mice performing a linear-track task 
in a real environment (47) and an accumulating-tower task in a vir-
tual space (48) represent physical and abstract variables relevant to 
the task, respectively. The information representation of single neu-
rons in the SUB and CA1 has similarities and differences; however, 
the representation of the SUB population activity remains unknown. 
Because the neural manifold reflects not only the tuning of single 
neurons but also higher-order coactive relationships between neu-
rons, the neural manifold does not necessarily inherit a specific neuro-
nal tuning (50–52). Therefore, similarities and differences in neuronal 
manifolds between the SUB and CA1 cannot be inferred from the 
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similarities and differences in representations of individual neurons 
between the SUB and CA1. We investigated the neuronal population 
activity recorded from the CA1 and SUB of rats performing T-maze 
and open-field tasks. Here, we found that the low-dimensional neural 
manifolds formed by the SUB encode various types of navigational 
information more accurately than the CA1 and exhibit common 
structures across rats and tasks, providing the basis for information 
processing in spatial navigation.

RESULTS
CA1 and SUB form low-dimensional neural manifolds during 
spatial tasks
We used large-scale recoding data obtained via 256-channel silicon 
probes to monitor neuronal firing from the CA1 and SUB in rats 
performing the T-maze and open-field tasks (31). For the T-maze 
task, we analyzed 302 and 282 putative principal neurons in the CA1 
and SUB from 13 and 15 recording sessions in eight and nine rats, 
respectively. For the open-field task, we analyzed 265 and 282 puta-
tive principal neurons in the CA1 and SUB from 10 and 15 record-
ing sessions in six and nine rats, respectively.

The time series of neuronal population activity can be captured 
as point clouds in a high-dimensional space with the firing activity 
of each neuron as the axis. This neuronal activity is often restricted 
to a subregion of this high-dimensional space: a low-dimensional 
neural manifold (42–49). Therefore, we first examined the latent 
dimensions of neuronal population activity in the CA1 and SUB of 

rats performing the T-maze task (Fig. 1, A and B). For this, we used 
the Grassberger-Procaccia (GP) algorithm (47, 48, 53), which esti-
mates the dimensions of the point cloud based on a function that 
accumulates the number of neighboring points in a hypersphere of 
a certain radius (Fig. 1C). This revealed that the activity of the neu-
ronal population consisting of dozens of neurons was represented in 
approximately three and five dimensions in the CA1 and SUB, re-
spectively (Fig. 1, D and E; CA1, 3.07 ± 1.32; and SUB, 5.24 ± 0.70; 
means ± SD). The dimensions were significantly higher in the SUB 
than in the CA1 (Fig. 1E). One of the characteristics of SUB principal 
neurons is their high firing rate (26, 31). To remove the effects of the 
dynamic range of firing rates, we estimated the dimensionality using 
z-scored firing rates instead of firing rates. We observed no change 
in the dimensionality and consistent differences between the re-
gions (CA1, 3.01 ± 1.30; and SUB, 5.73 ± 0.87). Similar dimension-
ality values were observed in the open-field task (CA1, 3.61 ± 1.10; 
and SUB, 5.84 ± 0.79).

We visualized low-dimensional neural manifolds using the Isomap 
method, one of the nonlinear dimensionality reduction methods, 
which potentially extracts low-dimensional structures embedded in 
higher-dimensional spaces. This analysis revealed that the trajectory of 
population activity during the T-maze task in three-dimensional space 
displayed a figure-8 structure (Fig. 1F). In addition, the population ac-
tivity during the open-field task displayed a square-shaped structure 
(Fig. 1G), indicating a similarity to the external environment. Hereafter, 
we analyzed population activity during the T-maze task unless other-
wise specified.
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Fig. 1. Low-dimensional neural manifold during the T-maze and open-field tasks in the CA1 and SUB. (A) Schematic illustration of the T-maze task. The numbers 
indicate linearized positions along the maze. (B) Rate maps of all CA1 (left) and SUB (right) neurons, excluding silent neurons (average firing rate is 0 Hz) on the left and 
right trials. The maps were normalized by peak firing rates and sorted by the position showing the peak firing rate. Left [top panels (L)] and right [bottom panels (R)] trials 
are shown separately. (C) Schematic illustration of the GP algorithm used to estimate dimensionality. Points inside and outside the hypersphere are indicated by circles 
and triangles, respectively. (D) Representative estimation of the latent dimensionality of population activity during the T-maze task embedded in a high-dimensional 
space. The slope of the radius r versus the correlation integral C(r) plotted on a log-log scale corresponds to dimensionality. The red line indicates the slope obtained using 
the least squares method. (E) Dimensionality estimates during the T-maze task in the CA1 and SUB. P < 0.001, Welch’s t test. (F) Low-dimensional neural manifolds during 
a single T-maze task session in the CA1 (left) and SUB (right) visualized using Isomap in a three-dimensional space. Single points correspond to the neuronal population 
activity at each time bin [same for (G)]. The plots are color-coded according to the rat position in the T-maze, distinguishing between right-handed (cool colors) and left-
handed (warm colors) turns. Color bars show the linearized positions. (G) Same as (F) but for the open-field task. The plots are color-coded according to the rat position in 
the open field.
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Structural features of the low-dimensional neural manifold
We characterized the structural features of the low-dimensional 
neural manifold during the T-maze task visualized via the Isomap 
method using persistent homology (54, 55) and D2 shape distribu-
tion (56). Persistent homology, often used in the analysis of neural 
manifolds, extracts the topological features by finding holes of vari-
ous dimensions on a point cloud (44, 46). Using persistent homology, 
we generated barcode plots for low-dimensional neural manifolds 
represented in a three-dimensional space (Fig. 2A). The barcode 
plots show the lifetimes of the holes, with holes with 0, 1, and 2 di-
mensions corresponding to the components, rings, and cavities, re-
spectively. Null distributions of hole lifetimes were generated by 
randomly and circularly shifting the spike train of individual neu-
rons independently. The holes with lifetimes longer than the 99.9th 
percentile of the null distributions were considered robust (Fig. 2A). 
The neural manifolds in the CA1 and SUB had approximately two to 
three ring structures on average across all sessions (Fig. 2B), which 
is consistent with the shape of the figure-8 maze (Fig. 1F).

The D2 shape distribution represents the shape signatures of 
structures, and the dissimilarity of the structures can be evaluated by 
comparing shape distributions (56). First, we generated the D2 shape 
distribution by calculating the distances of all combinations of points 
on the neural manifold embedded in a three-dimensional space 
(Fig. 3A). Next, we generated feature models and examined their D2 
shape distribution. The sum of the absolute probability difference be-
tween the data and model was quantified to estimate the dissimilarity. 
The D2 shape distribution appeared bimodal (Fig. 3A), with similar 
bimodality coefficients between the CA1 and SUB (CA1, 0.48 ± 0.051; 
and SUB, 0.45 ± 0.041; P = 0.11, Welch’s t test). The shape of the 
neural manifold during the T-maze task was similar to the figure-8 
shape in both the CA1 and SUB (Fig. 3B). In particular, the shape of 
the neural manifold in the SUB was more similar to the bent figure-8 
shape than to the planar figure-8 shape (Fig. 3B). Within the bent 
figure-8 shape, the distances between points on the manifold for the 
left and right arms/reward zones can be small. Consistent with this, 
the correlations between left- and right-turn trial population vectors 
(PVs) of SUB neurons were higher than those of CA1 neurons at the 
arms locations (Fig. 3C). Moreover, the SUB neurons showed higher 
spatial tuning correlation between the left and right arms/reward 
zones than CA1 neurons (CA1, 0.26 ± 0.090; and SUB, 0.41 ± 0.13; 
P = 0.0016 by Welch’s t test). These results show that the neuronal 

population activity in the CA1 and SUB forms a low-dimensional 
neural manifold that is homoeomorphic to the external task environ-
ment. The difference in the geometry of neural manifolds between 
the CA1 and SUB suggests that the encoding of information to the 
neural manifolds differs between the regions.

The low-dimensional neural manifold represents diverse 
navigational information
As CA1 and SUB neurons represent various types of navigational in-
formation (11), we examined whether the neural manifold in these 
regions conveyed such navigational information. The neural mani-
fold reflects the activity of both individual neurons and neuronal en-
sembles. Therefore, even if some individual neurons in the CA1 and 
SUB encode position, speed, and path, it is not obvious whether 
these types of information are encoded in the CA1 and SUB mani-
folds, which are extracted from population activities in an unsuper-
vised manner without any information on the animal’s behavior.

We used Gaussian process regression (GPR) analysis (57) to de-
code the position of rats from the coordinates on the neural manifold 
in the three-dimensional space (48) and performed twofold cross-
validation, in which data in each session were randomly sorted into 
two groups with the same size; each group was used as test data, while 
the remaining group was used as training data. The results showed 
that the rat’s position during the T-maze task was successfully decoded 
from the neural manifold (Fig. 4, A to D). The speed of the movement 
during the T-maze task was also decodable (Fig. 4, E to H). When we 
performed the decoding from the nine-dimensional neural manifold, 
the noisiness of the decoding plots (Fig. 4, B, D, F, and H; measured as 
the SD of the difference between the predicted variable and the diago-
nal) decreased for both position [CA1: 5.62 ± 1.76 versus 5.09 ± 1.95 
(three versus nine dimensions), P = 0.0047 by paired t test; and SUB: 
5.65  ±  1.81 versus 3.92  ±  1.86, P  =  0.0020] and speed (CA1: 
5.44 ± 1.31 versus 4.66 ± 1.70, P = 0.0024; and SUB: 4.86 ± 1.31 ver-
sus 3.54 ± 0.93, P < 0.001). Thus, the neural manifolds with three 
dimensions retain fundamental, decodable position and speed infor-
mation, while the high-dimensional population activity is likely to 
contain fine navigational information.

The decoding performance is influenced by the number of neu-
rons included in the dataset (31). Therefore, we evaluated the decod-
ing accuracy of position and speed by matching the number of 
neurons to generate the neural manifold. Our results indicated that 
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the SUB manifold showed higher decoding accuracy for both position 
and speed than the CA1 manifold (Fig. 5, A and B). SUB neurons 
have higher mean firing rates than CA1 neurons (26, 31). Therefore, 
we equated the mean firing rate of CA1 (1.43 Hz) and SUB (5.80 Hz) 
neurons by randomly removing 75% of the spikes from individual 
SUB neurons (thinned SUB in Fig. 5). Thinned SUB exhibited less 
accurate decoding than CA1 for position (Fig. 5A) and a decoding 
as inaccurate as that of the CA1 for speed (Fig. 5B). Thus, the higher 
firing rate contributes to the accurate decoding of information from 
the SUB manifold.

Next, we determined whether neural manifolds convey naviga-
tional information linked to spatial memory, such as future paths in 
the alternation task. Previous studies have identified neurons in the 
CA1 and SUB that represent future choices (31, 35). Specifically, SUB 
neurons have higher decoding accuracy than CA1 neurons (31). We 
decoded the path (left or right arm) that the rats chose at the future 
T-junction using the coordinates on the manifold during their stay in 
the start box immediately preceding the choice of that path. Our re-
sults showed that the path was decodable from the neural manifold 
and that decoding accuracy was higher for the SUB than for the CA1 
(Fig. 5C). The thinned SUB showed less accurate decoding than the 
SUB (Fig. 5C). The distributions of the head direction in the start box 
before left- and right-turn trials appeared similar but showed signifi-
cant differences (Fig. 5D). This variability in the distributions may 
have potentially contributed to the observed path decoding result. 
Therefore, for each session, we equated the head-direction distribu-
tions in the box before constructing the neural manifold and decod-
ing the future path. The resultant decoding accuracy in the SUB was 
only moderately better than that in the CA1 with an embedding di-
mension of three [F1,61 = 5.17, P = 0.027, two-way analysis of vari-
ance (ANOVA)]. However, the latent dimensionality of the SUB was 
larger than three (Fig. 1E); when higher embedding dimensions were 
included, the SUB showed a prominently greater decoding accuracy 
than the CA1 (Fig. 5E). Thus, the SUB manifold, although predomi-
nantly evident at higher dimensionality, carries a larger amount of 
decodable path information than the CA1 manifold, which cannot 
be attributed to the different head directions.

Both the activity of individual neurons and the coordinated activ-
ity between neurons, including pairwise coactivation, are involved in 
forming neural manifolds. The path choice could also be decoded 
using the pairwise coactivation between neurons in the start box 
(Fig. 5F), suggesting that navigational information is not solely rep-
resented by the activity of individual neurons but also by the coordi-
nated activity between neurons. Moreover, the decoding accuracy of 
pairwise coactivation was higher for the SUB than for the CA1 
(Fig. 5F). Together, these results indicate that the neural manifolds in 
the SUB represent various types of navigational information and 
achieve higher decoding accuracy than those in the CA1.

Differences in decoding accuracy between CA1 and SUB are 
consistent irrespective of parameters
We investigated the consistency of the differences in decoding accu-
racy of the neural manifolds between the CA1 and SUB by varying 
the number of embedding dimensions of neuronal population activ-
ity and the size of time bins to decode the animal’s position. As for 
the number of embedding dimensions, we compared the decoding 
accuracy of the rat’s position with three, five, seven, and nine embed-
ding dimensions. The decoding accuracy gradually improved as the 
number of embedding dimensions increased, and the improvement 
became smaller when approximately five dimensions were reached 
in both regions (Fig. 6A). A comparison of decoding accuracy with 
matching the number of neurons used to generate the neural mani-
fold showed that the SUB had consistently higher decoding accuracy 
than the CA1 regardless of the dimension (Fig. 6B).

We also observed that, as the time bin size increased, the decod-
ing accuracy improved, which was similar for both regions (Fig. 6C). 
Furthermore, a comparison of decoding accuracy with matching the 
number of neurons used to generate the neural manifold for each 
time bin size revealed that the SUB exhibited higher decoding accu-
racy than the CA1 regardless of time bin size, indicating the consis-
tency of between-region differences (Fig. 6D).

To remove the effects of the dynamic range of firing rates on the 
decoding accuracy, we next generated neural manifolds using the 
z-scored firing rates of individual neurons and compared the decoding 
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accuracy between regions. Again, the decoding accuracy was higher 
in the SUB than in the CA1 (Fig. 6E). These results indicate that the 
between-region differences in decoding accuracy are consistent ir-
respective of the analysis parameters and, therefore, would reflect 
distinct coding strategies between the CA1 and SUB.

Last, to examine the influence of dimensionality reduction methods 
on decoding accuracy, we compared the Isomap and principal compo-
nent analysis, which are nonlinear and linear dimensionality reduction 
methods, respectively. Similar to previous findings on the anterodorsal 
thalamic nucleus (44), Isomap resulted in a more accurate decoding of 

the rat’s position for both the CA1 and SUB (Fig. 6F), suggesting that 
Isomap better extracts neural manifolds in the present experimental 
systems.

Structural similarity of low-dimensional neural manifolds 
across rats
Our results indicated that the neural manifolds in the CA1 and SUB 
are similar to the external environment. These results and those of 
previous studies suggest that the structure of the neural manifold 
is task-specific rather than individual-specific (48). Therefore, we 
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determined whether the neural manifolds had a common structure 
across rats, regions (i.e., CA1 and SUB), and tasks (i.e., T-maze and 
open-field tasks). To this end, we first trained a regression model to 
predict the position from the neural manifold coordinates in one rat 
and then applied this model to decode another rat’s position after 
aligning its neural manifold with optimal rotation parameters in a 
three-dimensional embedding space (Fig. 7A). The regression models 
achieved higher-than-chance level decoding accuracies for “across-
rat” and “across-region” decoding for the CA1 and for across-rat, 
across-region, and “across-task” decoding for the SUB (Fig. 7B). To 
evaluate the similarity of the neural manifold structure, we divided 
the decoding accuracy of across-rat, across-region, or across-task 
decoding by that of “self ” decoding (48). The results revealed par-
tially similar neural manifold structures across rats and regions 
(Fig. 7C). The structural similarity between the neural manifolds in 
the T-maze and open-field tasks was higher for the SUB than for the 
CA1 (Fig. 7C), suggesting that the structure of the neural manifolds 
in these regions were common across individuals and dependent on 
the task, particularly in the CA1. Furthermore, common structures 
between different spatial tasks were observed in the SUB.

Neural manifold in the SUB better predicts single 
neuronal activity
The higher decoding accuracy with the SUB neural manifold (Figs. 5 
and 6) prompted us to investigate whether the SUB neural manifold 
can better recognize the activity of peer neurons. To test this, we 
performed the decoding of single-neuron activity from a neural 
manifold constructed from the remaining neurons (Fig. 8A). We 

first compared the decoding of single-neuron activity with the neu-
ral manifold in the same region (i.e., either the CA1 or SUB) and 
found that the manifold in the SUB had higher decoding accuracy 
than that in the CA1 (orange and blue dashed lines in Fig. 8B). Next, 
we compared the decoding of single-neuron activity from the CA1 
and SUB manifolds and found that, regardless of whether the single 
cells to be decoded were in the CA1 or the SUB, the decoding ac-
curacy was higher when decoding was performed using the SUB 
manifold (comparison of dashed and solid lines with the same col-
ors in Fig. 8B). These results suggest that the SUB manifold better 
integrates the activity of peer SUB neurons and upstream CA1 neu-
rons than the CA1 manifold, which potentially contributes to the 
higher decoding accuracy of behavioral variables.

Population dynamics during ripples in post-task sleep and 
its association with awake neural manifold
The CA1 activity during post-task sleep is involved in memory con-
solidation (58). Particular focus has been placed on the replay of 
population activity during hippocampal SWRs (58, 59). However, 
the activity in the SUB during SWRs has received limited attention. 
Therefore, we explored the association between neuronal popula-
tion activity during wakefulness and post-task sleep ripples in the 
SUB and CA1.

To achieve this, we mapped the population activity during the 
T-maze task and ripples in post-task sleep into the same embedding 
space (Fig. 9A). The ripple event distribution differed between the 
CA1 and SUB. Specifically, the embedded ripple activities in the 
CA1 were more dispersed and located closer to the awake manifold, 
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Fig. 6. Consistency of the difference in position decoding accuracy between the CA1 and SUB. (A) Decoding accuracy of position for the CA1 and SUB [same for 
(C) and (F)] calculated from three-, five-, seven-, and nine-dimensional neural manifolds, respectively. *P < 0.05, paired t test with Bonferroni correction following one-way 
repeated-measures ANOVA. Right: The increase rate of decoding accuracy with dimensionality increases. The same data are plotted for dimension 3 (A), 512-ms bin size 
(C), and Isomap (F) for both the CA1 and SUB. (B) Decoding accuracy of position for the CA1 and SUB using neural manifolds embedded in five (left), seven (middle), and 
nine (right) dimensions (solid lines and shaded area, means ± SD). The x axis indicates the number of units used to construct the neural manifold [same for (D)(D) and 
(E)]. Left: region, F1,302 = 104.71, *P < 0.001; middle: region, F1,250 = 106.07, *P < 0.001; right: region, F1,198 = 100.51, *P < 0.001, two-way ANOVA. (C) Decoding accuracy 
calculated for three-dimensional neural manifolds constructed with 256-, 512-, 768-, and 1024-ms time bin sizes. *P < 0.05, paired t test with Bonferroni correction follow-
ing one-way repeated-measures ANOVA. Right: The increase rate of decoding accuracy with time bin size increase. (D) Decoding accuracy using three-dimensional neural 
manifolds constructed with 256-ms (left), 768-ms (middle), and 1024-ms (right) time bin sizes. Left: region, F1,354 = 65.03, *P < 0.001; middle: region, F1,354 = 72.17, 
*P < 0.001; right: region, F1,354 = 70.40, *P < 0.001, two-way ANOVA. (E) Decoding accuracy using three-dimensional neural manifolds constructed with z-scored firing 
rates. Region, F1,354 = 54.73, *P < 0.001, two-way ANOVA. (F) Decoding accuracy using the three-dimensional neural manifold constructed by Isomap and PCA. CA1, 
P = 0.026; and SUB, P < 0.001, paired t test.
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while those in the SUB were more strongly clustered away from the 
awake manifold (Fig. 9, B to D).

Thus, we postulated that the patterns of neuronal ensemble re-
cruitment from the awake state to the ripple events in the post-task 
sleep would differ between regions. To investigate this, we compared 
the pairwise correlations between neurons during the T-maze task 
versus during ripples in post-task sleep. The differences in pairwise 
correlations between the two states were larger in the SUB than in the 
CA1 (Fig. 9, E and F). This finding suggests that the patterns of neu-
ronal population activity during ripples in post-task sleep versus dur-
ing wakefulness are distinctly configured in the SUB, in contrast to 
the CA1, in which the activity during ripples often replays the awake 
activity patterns (58, 59). Next, we examined the similarity of the rip-
ple activity pattern in post-task sleep to that during the T-maze task. 
First, we segmented the points on the awake manifold based on the 
linearized rat position and identified the nearest neighbor segments 

of the ripple points. We focused on the behaviorally salient segments 
(i.e., box, choice, arm, and reward areas). The CA1 ripple activities 
were associated with a wide range of behavioral segments, whereas 
the SUB ripple activities were concentrated near the reward area 
(Fig. 9G), with similar proportion to the left and right reward areas 
(left, 51.0%; and right, 49.0%). The fraction of ripple events associated 
with the reward area (Fig. 9G) did not correlate with the bimodality 
coefficient of D2 shape distributions (CA1: R = −0.21, P = 0.51; and 
SUB: R = 0.52, P = 0.057). In addition, this fraction in the SUB did not 
correlate with the speed decoding accuracy calculated using either all 
(R = 0.28, P = 0.33), low-speed (below median, R = 0.25, P = 0.39), or 
high-speed (above median, R = 0.30, P = 0.30) time bins. Therefore, 
the association with the reward area is a unique feature of post-task 
SUB ripples independent of behavioral variables.

Last, we investigated the peri-ripple dynamics of population ac-
tivity in post-task sleep. We embedded the population activity 200 ms 
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before, during, and 200 ms after the ripples in the same space with 
the population activity during the T-maze task and analyzed the peri-
ripple trajectory over time (Fig. 9H). The CA1 tended to change its 
activity pattern during ripples more extensively than the SUB (Fig. 9I). 
To investigate the relationship between the peri-ripple dynamics and 
awake manifold, we identified the nearest neighbor segment for the 
peri-ripple activity and measured its change over time. The dynamics 
along awake manifold segments during peri-ripple events were lower 
in the SUB than in the CA1, suggesting that the SUB stably represents 
information relevant to specific behaviors (Fig. 9J). In summary, the 
CA1 exhibited activity patterns closely associated with states of wake-
fulness, while the SUB displayed distinct activity patterns associated 
with behaviorally salient events, such as reward acquisition.

DISCUSSION
We found that SUB population activities during spatial tasks form a 
low-dimensional neural manifold that encodes diverse navigational in-
formation. In both CA1 and SUB, the navigational information could 
be decoded from the neural manifold. Furthermore, the neural mani-
folds shared structures across rats and between regions. Given that pre-
vious studies have reported diverse tuning of individual SUB neurons 
(26–34, 36, 37), it has remained unclear whether the SUB forms a neu-
ral manifold reflecting the external environment. Moreover, with no 
correspondence among individual neurons across rats, the across-
animal commonality is a finding obtained by the present analysis. 
Compared with the CA1 manifold, the SUB manifold was characteris-
tic in several aspects: its higher dimensionality, structural similarity to 
the bent figure-8 shape, shared structure between tasks, and higher de-
coding accuracy for all types of information examined. During post-
task ripples, the population dynamics in the CA1 showed an on/
near-manifold, replay-like activity, whereas that in the SUB exhibited 
off-manifold activity anchored to behaviorally salient information. Col-
lectively, the population activity in the CA1 and SUB distinctly en-
coded information into neural manifolds. We argue that the SUB acts 
as a common and efficient carrier of navigational information during 
tasks and reconfigures the behaviorally salient information into a dis-
tinct representation during post-task ripple events.

The activity of dozens of neurons in the CA1 and SUB was repre-
sented in approximately three and five dimensions, respectively, dur-
ing the T-maze task; the higher dimensionality in the SUB was 
maintained in the open-field task. This finding suggests that, although 
we identified three types of information (i.e., position, speed, and 
path) represented on the manifold, the SUB can effectively encode at 
least two more unknown variables. Thus, the high dimensionality 
suggests that the SUB integrates multiple types of navigational/non-
navigational information. The full extent of information encoded in 
the SUB remains to be determined. The information for time (60–62), 
object (63), border (33, 64, 65), head direction (3, 66), and other cog-
nitive variables distributed in the CA1 and medial/lateral entorhinal 
neurons, which directly project to the SUB, would be candidates. The 
high dimensionality in the SUB as a neuronal population may be 
closely related to the conjunctive representation of multiple variables 
in single neurons. The SUB has abundant conjunctive neurons that 
enable efficient information coding (32).

Analyses using persistent homology and D2 shape distribution 
revealed that the CA1 and SUB neural manifolds had a structure 
homoeomorphic to the external space through which the animal 
explored. Such neural manifolds reflecting the external environ-
ment would constitute a cognitive map in the brain. We also found 
that, unlike the CA1 manifold, the SUB manifold was more similar 
to the bent than planar figure-8 shape during the T-maze task. With 
this shape, the distances between points in the left and right arms/
reward zones can be small on the manifold, which is likely to reflect 
more similar single-neuron and population activity at these zones in 
the SUB than in the CA1. Similar activity may be attributed to the 
axis-tuned and reward cells (28, 29), both of which would be active 
irrespective of the left/right arms. In addition, the difference be-
tween the task demand-bound schematic representation in the SUB 
and location-bound spatial representation in the CA1 (30) may also 
account for the distinct geometries of the manifold in the SUB and 
CA1. In any event, the different manifold structures suggest that the 
population activities of the SUB and CA1 distinctly represent be-
haviorally relevant information.

A marked finding was that the neural manifold in the SUB 
achieved higher decoding accuracy than that in the CA1 for all types 
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of navigational information examined. The SUB has fewer principal 
neurons than the CA1 in rats (~26% fewer), monkeys (~42% fewer), 
and humans (~57% fewer) (67). Therefore, to completely inherit the 
CA1 information, the SUB requires denser information coding in 
rats, and we predict that the coding becomes even denser in mon-
keys and humans. Previous studies have demonstrated that SUB 
neurons represent speed and path more accurately than CA1 neu-
rons (31, 32), consistent with the present results obtained from the 
neural manifolds. However, regarding the position, CA1 and SUB 
individual neurons contain the equivalent amount of decodable in-
formation (31), which differs from the present result. Notably, the 

neural manifold reflects not only the activity of individual neurons 
but also the activity of neuronal ensembles. The observed higher de-
coding accuracy for pairwise coactivation in the SUB (Fig. 5F) sup-
ports this notion. Moreover, the decoding method in this study did 
not assume the independence of individual neurons but could ex-
tract information from the activity of mutually interacting neurons. 
These effects of neuronal ensembles potentially contribute to the 
denser manifold encoding in the SUB. In addition, it has been sug-
gested that, as dimensionality increases, the representational space 
becomes sparser, and, thus, the decoding accuracy improves when 
individual neurons have broad tuning curves (68). Hence, the wide 

CA1A SUB

0

1

2

No
rm

al
ize

d 
di

st
an

ce

Nearest distance

SUBCA1

P = 0.032

0

1

2

3

No
rm

al
ize

d 
di

st
an

ce

VariabilityB C D

0

4

8

12

Co
nc

en
tra

tio
n 

fa
ct

or

Directionality

16

SUBCA1

P = 0.0034

SUBCA1

P = 0.015

H CA1 SUB I

SUBCA10

0.5

1

1.5

2

No
rm

al
ize

d 
di

st
an

ce

Distance from
pre-ripples to ripples

P = 0.051

SUBCA10

0.5

1

1.5

2

Distance from
ripples to post-ripples

P = 0.030

J

SUBCA10

2

4

6

Di
ffe

re
nc

e 
in

 aw
ak

e 
se

gm
en

ts

Difference from
pre-ripples to ripples

SUBCA10

2

4

6

Difference from
pre- to post-ripples

P = 0.0028 P = 0.017

E

CA
1

SU
B

Awake Ripples
1

−0.2

1

−0.2

0.7

0Neurons

Ne
ur

on
s

1

−0.2

1

−0.2

0.7

0Neurons

Ne
ur

on
s

F

SUBCA1

0.04

0.08

0.12
|A

w
ak

e 
- R

ip
pl

es
|

0.16

G

Box
Choice Arm

Reward Box
Choice Arm

Reward
0

0.2

0.4

0.6

Fr
ac

tio
n 

of
 ri

pp
le

 e
ve

nt
s

**

*

Nearest awake segments

|Awake - Ripples|
P = 0.0066

0

Fig. 9. Population dynamics during ripples in post-task sleep. (A) Low-dimensional neural manifolds during wakefulness and ripples in the CA1 (left) and SUB (right) 
visualized using Isomap in a three-dimensional space. Red dots indicate population activity for each ripple event. (B) First three nearest neighbor distances from ripples 
to the awake manifold in the CA1 and SUB. P = 0.032, Welch’s t test. (C) Average of all pairwise distances of ripple events in the CA1 and SUB. P = 0.0034, Welch’s t test. 
(D) Concentration factors indicating the directionality of ripple points from the awake manifold. P = 0.015, Welch’s t test. (E) Awake (left) and ripple (middle) pairwise 
correlations and absolute values of differences (right) in the CA1 (top) and SUB (bottom). (F) Absolute values of differences in pairwise correlations during wakefulness 
and ripples. P = 0.0066, Welch’s t test. (G) Nearest neighbor segments from ripples to awake manifold, especially box (first), choice (second), arm (third), and reward (fourth) 
in the CA1 (blue) and SUB (orange). The gray dashed line shows the null obtained by randomly scattering ripple points. Interaction, F3,96 = 8.65, P < 0.001, two-way 
ANOVA; **P < 0.005, Bonferroni test following two-way ANOVA; *P = 0.039, paired t test. (H) Low-dimensional neural manifolds during wakefulness and peri-ripple events 
(pre-ripple, ripple, and post-ripple) visualized in three-dimensional space using Isomap. Gray, red, and black indicate pre-ripple, ripple, and post-ripple periods, respec-
tively, and black lines indicate the trajectory of each series of events. (I) Normalized Euclidean distances between pre-ripple and ripple periods (left) and between ripple 
and post-ripple periods (right). Left, P = 0.051; and right, P = 0.030, Welch’s t test. (J) Distance of nearest awake manifold segments between pre-ripple and ripple periods 
(left) and between pre-ripple and post-ripple periods (right). Left, P = 0.0028; and right, P = 0.017, Welch’s t test.
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range of tuning curves and conjunctive representations in the SUB 
(31, 32) may be the additional reasons for the observed higher de-
coding accuracy. Previous studies (27, 30–32) performed neither the 
manifold analysis nor information decoding from the manifolds. 
Our study expands the understanding of information representa-
tion from the single-neuron and population-activity levels to the 
dimension-reduced manifold level.

What would be the functional significance of the higher decoding 
accuracy in the SUB? By matching the numbers of neurons used for 
decoding, we found that size-matched neuronal populations con-
tained more decodable information in the SUB than in the CA1. 
Consistently, the SUB neural manifold better predicted the activity of 
peer SUB neurons and even CA1 neurons than the CA1 neural man-
ifold (Fig. 8). The SUB contains several populations of projection 
neurons that send axons to different downstream regions (15–19). 
Therefore, the downstream regions must read out information from 
a limited number of SUB neurons; hence, the dense manifold encod-
ing in the SUB would contribute to efficient information transfer to 
downstream regions.

The population dynamics during ripples in post-task sleep dif-
fered between the CA1 and SUB. The CA1 activity during ripples 
was closely related to the activity during wakefulness. In contrast, 
the SUB representation was away from the awake manifold but was 
anchored to the behaviorally salient, reward locations. This pattern 
is reminiscent of the off-manifold activity that deviates from exist-
ing patterns during learning (69, 70).

The SUB may, therefore, reconfigure the information obtained 
during wakefulness into a distinct representation during post-task 
ripples, for instance, by uniquely recruiting reward cells (29). In our 
experimental system, it was difficult to disentangle the representation 
of reward from that of the location of the reward or cessation of move-
ment, which should be clarified in future studies. While the CA1 fa-
cilitates memory consolidation by replaying past experiences during 
ripples (58, 59), the function of the SUB ripples remains unknown. 
Our results highlight the differences in ripple-associated population 
activity between these regions. Further research remains warranted to 
reveal how this difference impacts memory and behavior.

The ring-shaped manifold of the head direction cells (44) and toroi-
dal manifold of the grid cells (46) are preserved across different envi-
ronments and brain states (wakefulness versus sleep). In contrast, the 
shape of the CA1 and SUB manifolds depended on the task (Fig. 1), 
and the dimension of the CA1 manifolds depends on the task com-
plexity (48). The anatomical connectivity supporting flexible mani-
folds of the hippocampus and SUB might differ fundamentally from 
the connectivity of head direction cells (71) and grid cells, which sup-
port rigid manifolds. The relatively random connectivity of the CA3-
CA3 recurrent and CA3-CA1 feed-forward connection (58, 72, 73) 
may account for the flexible manifolds in the hippocampus, which are 
likely crucial for adapting to various environments and life demands. 
Finding anatomical connectivity supporting the mechanisms of gener-
ating low-dimensional neural manifolds remains to be fully investi-
gated to deepen our understanding of neural computations (74).

From the viewpoint of applied research, the shared manifold 
structures across rats, regions, and tasks would help to improve brain-
computer interfaces (BCIs). Manifold stability has been applied to 
BCIs to maintain their performance over time (75), and the network 
state across rats can be extracted (47, 48). Furthermore, decoding 
across regions enables the extraction of information from one region 
by measuring the neuronal activity of another region: for instance, 

extracting CA1 information using the neuronal activity of the SUB. Such 
extraction will facilitate the development of a less invasive BCI that 
can interpret multiregion information from the recordings of a sin-
gle region.

Although not addressed in this study, the following should be 
pursued in future research: First, while this study analyzed dozens 
of neurons recorded simultaneously, determining how the neural 
manifold’s estimated dimension, geometry, and decoding accuracy 
change as the number of recorded neurons increases is important. 
Whether the complexity or memory demand of the task affects the 
dimension of neuronal population activity in a brain region–specific 
manner should also be determined, along with how the dimension 
and geometry of neural manifolds are associated with the anatomi-
cal connectivity among members of the neuronal population. Fur-
ther, this study analyzed the data recorded after the animals had 
fully learned the task. Determining whether the dimensions of 
population activity change and how the neural manifolds evolve as 
the animal learns the task would help elucidate the involvement of 
neural manifolds in learning and memory. In addition, circuit in-
tervention using optogenetics would be useful to elucidate how the 
neural manifold is generated, maintained, and modified in the hip-
pocampal formation. Last, investigating how the dense manifold 
encoding of the SUB contributes to efficient information transfer to 
downstream regions will help delineate neuronal communication 
across brain regions.

MATERIALS AND METHODS
Data obtained from a previous study (31) were used. Analyses of low-
dimensional neural manifolds were not reported in that study. All 
animal care and use procedures were approved by the Institutional 
Animal Care and Use Committee of Osaka City University (approval 
no. 15030) and performed in accordance with the National Institutes 
of Health Guide for the Care and Use of Laboratory Animals. Detailed 
experimental procedures have been previously reported (31). Below, 
we detail analytical methods and relevant experimental procedures 
described in the original publication. Data were analyzed using cus-
tom scripts written in Python (version 3.8.5), MATLAB (R2018b), 
and EZR (version 1.40) (76).

Animals and surgery
Eleven male Long-Evans rats (8.9 to 15.3 weeks old on the day of sur-
gery) were used. Under isoflurane anesthesia, rats were implanted 
with 256-channel silicon probes of eight shanks, with each shank con-
taining 32 recoding sites (Buzsaki256, A8 × 32-5 mm-35-300-160, 
A8 × 32-Edge-5 mm-25-200-177, NeuroNexus) above the left dorsal 
SUB and distal CA1 (center of the eight shanks anteroposterior from 
the bregma, −5.9 to −6.1 mm; mediolateral from the bregma, 2.7 to 
3.3 mm; and dorsoventral from the cortical surface, 2.4 mm, with 
shanks parallel to the coronal plane). Two stainless steel screws were 
inserted above the cerebellum as indifferent and ground elec-
trodes. The silicon probes were mounted on a three-dimensional–
printed microdrive and gradually lowered to the SUB and CA1 
after implantation.

Data collection
Extracellular electrophysiological data were acquired using a 256-channel 
multiplexed recording system (KJE-1001, Amplipex, Szeged, Hungary). 
Signals were amplified using a preamplifier module (HS-10, Amplipex) 
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and acquired at 20 kHz with a 16-bit resolution. An overhead camera 
(c930e, Logicool) was used to track the animal’s position by monitoring 
two light-emitting diodes (green and red, 5-cm separation) mounted 
on a head-stage at a sampling rate of ~30 Hz. One pixel in the camera 
corresponded to 0.52 cm for the open-field and alternating T-maze 
tasks. LED locations were extracted and resampled to 39.0625 Hz (i.e., 
25.6-ms intervals). Spike sorting was first performed automatically 
using Kilosort (https://github.com/cortex-lab/KiloSort and https://
github.com/MouseLand/Kilosort2); thereafter, clusters were man-
ually curated using the Phy graphical user interface (https://github.
com/cortex-lab/phy). We used units that met all the following crite-
ria for further analysis: isolation distance (77) of >20, interspike in-
terval index (31) of <0.2, trough-to-peak amplitude of >50 μV, and 
overall mean firing rate of >0.1 Hz.

Behavioral procedures
We trained the rats daily for 7 to 9 days before surgery and 4 to 
8 days after surgery on four water-rewarded spatial tasks: open-
field, linear-track, alternating T-maze, and zigzag maze tasks. Re-
cording sessions were conducted for two to three consecutive days 
in which the four behavioral tasks lasted 20 min each with 40- to 
80-min rest sessions before, between, and after the tasks per day. We 
only analyzed the open-field and alternating T-maze tasks. During 
the behavioral experiments, the rats were deprived of water to 
maintain ~90% of their free-feeding body weight. All behavioral ex-
periments were performed during the light period of a 12-hour 
light/dark cycle. In the open-field task, rats freely foraged to obtain 
randomly scattered water drops in a black square arena (118 cm by 
118 cm, depth of 40 cm, A4 size white cue card on one wall). For the 
alternating T-maze task, we used a square arena (118 cm by 118 cm, 
depth of 40 cm) consisting of a start box (30 cm by 10 cm), stem 
(98 cm by 10 cm), and left/right arms (10-cm width). Rats were en-
closed for ~8 s in the start box before running through the stem and 
had to select the alternative arm from that chosen in the previous 
trial to obtain a water reward at the end of the arm.

Histology
After making electrical lesions for the localization of silicone probes, 
rats were transcardially perfused with 0.9% saline, followed by 4% 
paraformaldehyde in 0.1 M phosphate buffer. Rat brains were post-
fixed overnight in the same fixative at 4°C and sectioned coronally at 
a thickness of 50 μm using a vibratome (VT1200S, Leica, Wetzlar, 
Germany). Sections were stained with 4′,6-diamidino-2-phenylindole 
(0.5 μg/ml; D1306, Thermo Fisher Scientific, Waltham, MA, USA) 
and fluorescent Nissl (1:200, N21482, Thermo Fisher Scientific) to 
identify the recoding sites based on the electrical-lesion locations.

Cell classification
Putative principal neurons were classified according to the spike 
width and overall mean firing rate. Putative CA1 principal neurons 
were defined as units with >0.4-ms spike width and <10-Hz mean 
firing rate, while putative SUB principal neurons were defined as 
units with >0.4-ms spike width. We did not set a threshold for the 
firing rate for the SUB principal neurons, as these cells can exhibit 
high firing rates (26, 31). We validated the above classification crite-
ria by detecting putative monosynaptic connections using cross-
correlograms of the spike trains of two neurons (31). In total, 315 CA1 
principal neurons and 319 SUB principal neurons were identified 
and analyzed.

Preprocessing
For subsequent analyses, we used sessions including ≥10 simultane-
ously recorded principal neurons with a mean firing rate of >0.1 Hz 
in each region for each task. We calculated the instantaneous firing 
rate of each neuron using 512-ms bins unless otherwise stated. To 
comprehensively capture the population dynamics during the behav-
ioral tasks, we used the entire 20-min task periods for analyses in-
cluding both theta and non-theta epochs. The construction of the 
neural manifolds was performed using the square root of the instan-
taneous firing rate to stabilize the variance (44) unless otherwise 
stated. Rat positions were obtained every 512 ms by extracting a bin 
in every 20 bins from the 25.6-ms interval position data. The instan-
taneous X and Y positions were smoothed separately with a Gaussian 
filter (σ = 1 bin). The instantaneous running speed was calculated by 
dividing the distance between the smoothed positions in adjacent 
time bins by bin size (512 ms) and smoothed with a Gaussian filter 
(σ = 1 bin). In Fig. 6 (C and D), rat positions were obtained by mod-
ifying the number of bins extracted from the 25.6-ms interval posi-
tion data such that the bin sizes for computing the speed and neural 
manifold were the same.

Dimensionality estimation
The time series of neuronal activity can be described as a point 
cloud in a high-dimensional space with dimensions equivalent to 
the number of simultaneously recorded neurons. Single points in 
space represent population activity at the corresponding time 
points. We estimated the latent dimensionality of population ac-
tivity, consisting of the instantaneous firing rate of each neuron, 
embedded in a high-dimensional space using the GP algorithm 
(47, 48, 53). The GP algorithm estimates dimensionality using a 
function of the correlation integral C(r), which represents the pro-
portion of data point pairs whose constituent points are within 
distance r of each other. The C(r) was obtained by placing a hyper-
sphere of radius r centered at a point and counting the points con-
tained in the hypersphere as follows

where N is the number of points, Npair is the number of combina-
tions, xi is the vector pointing from the origin to the ith point, and 
H is the Heaviside function. The following relationship exists across 
C(r), r, and the latent dimension α

Thus, the slope of the log-log plot of C(r) as a function of r cor-
responds to the dimensionality. We calculated the slope with the 
least squares method using points with C(r) values in the range of 
20th to 80th percentile to estimate α. To estimate the latent dimen-
sionality of CA1 and SUB population activity, 23.23 ± 12.34 CA1 
and 18.80 ± 5.95 SUB principal cells were used for the T-maze task, 
and 26.50 ± 12.29 CA1 and 18.80 ± 5.95 SUB principal cells were 
used for the open-field task.

Dimensionality reduction
To visualize the geometry of high-dimensional point clouds of pop-
ulation activity, we used Isomap, a nonlinear dimensionality reduc-
tion method (44, 78) and embedded population activity, consisting 

C(r) =
1

Npair

�N

i, j=1

i< j

H(r − ‖xi − xj ‖ )
(1)

C(r) ∝ rα (2)
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of the square root of the instantaneous firing rate with ≥10 dimensions, 
corresponding to the number of simultaneously recorded neurons, into 
three dimensions. We used the Gaussian-filtered (σ = 2-time bins) 
square root of instantaneous firing rates for the analyses in Figs. 1 
(F and G), 2, 3, and 9 (A and H) and unsmoothed square root of instan-
taneous firing rates for the other analyses. The Isomap procedure was 
performed using the Python package scikit-learn (version 0.23.2) with 
default settings except for the hyperparameter; the number of neigh-
bors to consider for each point was set to 20.

Persistent homology
We computed persistent homology to characterize the topological 
geometry of neural manifolds embedded in a three-dimensional 
space. We used the Python package Ripser (https://github.com/
ctralie/ripser) (44, 46, 54, 55) with default settings, except for the 
hyperparameter “maxdim” that was set to 2. For each point, we set 
up a sphere whose radius is the first percentile of the distribution 
of the pairwise distances of all point combinations in the three-
dimensional embedding space and excluded points whose number 
of points in the sphere was below the 20th percentile of neighbor-
hood point distribution (44). We considered a sphere centered at 
every point in the three-dimensional embedding space and gradu-
ally increased its radius. At a certain radius, a hole surrounded by 
these spheres can be generated; as the radius is further increased, the 
generated hole disappears. The lifetime between the hole’s appear-
ance and disappearance indicates its robustness. Thus, robust and 
noisy structures have long and short lifetimes, respectively. We used 
shuffled data to statistically distinguish between robust and noisy 
geometric structures. The shuffled data were generated by a circular 
shift of the spike trains of each neuron with uniformly distributed 
random intervals between 0 and the session length, independent of 
other neurons. The shuffled data were processed in the same man-
ner as the unshuffled data. We obtained a null distribution by re-
peating this procedure 50 times, where at least 100 holes for each 
dimension were generated per procedure. We defined robust holes 
as geometric structures with lifetimes exceeding the 99.9th percentile 
of the null distribution. In topology, holes with 0, 1, and 2 dimen-
sions represent components, rings, and cavities, respectively (79).

D2 shape distribution
We characterized the shape signatures of the low-dimensional neu-
ral manifold in a three-dimensional embedding space based on the 
D2 shape distribution (56). As in the analysis of persistent homolo-
gy, points whose neighborhood point density was lower than the 
20th percentile of the neighborhood point density distribution were 
excluded. We computed the distance between two points for all 
combinations and normalized the distances such that the minimum 
value was zero and the maximum value was one. We constructed a 
histogram of distances with 1200 bins. The resulting histogram was 
smoothed with a Gaussian filter (σ = 10 bins) and used as shape 
signatures. To compare the shape signatures between the two point 
clouds, we defined “dissimilarity” as the sum of the absolute value of 
the probability difference between the data and model for each bin. 
“Sphere” was created by distributing the point clouds uniformly on 
a sphere. “Figure-8 shape” was created with two donut shapes with 
the same radius touching in a plane, and “Bent figure-8 shape” was 
created with two donut shapes touching at an angle of 90°. We quan-
tified the bimodality of the shape signatures using bimodality coef-
ficient b, defined as

where n, g, and k are the number of samples, skewness, and excess 
kurtosis, respectively (80).

We calculated PVs as the firing rates of a neuronal population at 
each linearized position for the left and right trials separately and 
then calculated the PV correlation as the correlation coefficient of 
PVs between the left and right trials (Fig. 3C).

Decoding position and speed
We used GPR to predict the position and speed from coordinates on 
a low-dimensional neural manifold constructed from the square 
root of unsmoothed instantaneous firing rates (48, 57). GPR is a re-
gression method characterized by nonlinearity and Bayesian esti-
mation. GPR was performed using the Python package scikit-learn 
(version 0.23.2) with default settings except for the following hyper-
parameters: “normalize_y” = True and “kernel” = Constant Kernel * 
RBF + White Kernel. We predicted position and speed by per-
forming twofold cross-validation, in which time bins in each session 
were randomly sorted into two groups with 50% of the bins; each 
group was used as test data, and the remaining group was used as 
training data to obtain the predicted position and speed, and the 
decoding accuracies were averaged across groups. The decoding ac-
curacy was defined as the coefficient of determination (R2) between 
the predicted and observed values as follows

where n is the number of time bins, yi is the ith value of the observed 
variable, ýi is the ith value of the predicted variable, and y is the mean 
value of the observed variable. Notably, the decoding accuracy of the 
position was calculated by decoding the X and Y positions separately 
and averaging the two decoding accuracy values. For position decod-
ing, we also performed twofold cross-validation, in which each session 
was divided into the first and second halves; each half was used as test 
data, and the remaining half was used as training data. Then, the R2 
calculated for each half was averaged across halves to obtain a decod-
ing accuracy for that session; the SUB showed higher decoding accu-
racy than the CA1 when the number of units constructing the neural 
manifolds was matched (10 units) (CA1, 0.13 ± 0.078; and SUB, 
0.25 ± 0.11; P = 0.010, Welch’s t test). We compared the decoding ac-
curacy of the neural manifolds constructed from the same number of 
neurons. To obtain the decoding accuracy, we randomly selected a 
given number of neurons from the simultaneously recorded neurons 
independently 50 times, performed the decoding analysis described 
above, and averaged across the repetition. To investigate the effect of 
the higher mean firing rates in the SUB than in the CA1 (26, 31), we 
performed the above-described decoding after equating the mean fir-
ing rates of SUB and CA1 neurons by randomly removing spikes from 
SUB neurons. The chance level of the decoding accuracy was estimated 
using a shuffling procedure repeated 20 times. The shuffled data were 
generated by a circular shift of the spike trains of each neuron with a 
uniformly distributed random interval between 0 and the session 
length independent of other neurons. Thereafter, the shuffled data 
were processed in the same manner as the unshuffled data.

b =
g2 + 1

k + 3(n−1)2

(n− 2)(n− 3)

R2
= 1 −

∑n

i=1
(yi− ýi)

2

∑n

i=1
(yi−y)2
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Decoding path
We performed Gaussian process classification (GPC) to predict the 
next choice (left/right arms) using the neural manifold coordinates 
constructed from the square root of unsmoothed instantaneous fir-
ing rates during the stay in the start box at the beginning of each 
correct trial of the T-maze task. GPC was performed using the Py-
thon package scikit-learn (version 0.23.2) with default settings, ex-
cept for the following hyperparameter: “kernel” = Constant Kernel * 
RBF + White Kernel. Using leave-one-out cross-validation, we cal-
culated the choice probability for each time bin and averaged it 
across time bins for each trial; a turn direction with the resultant 
higher choice probability was assigned as a predicted choice for that 
trial. To compare the accuracy of path decoding with the neural 
manifolds of the CA1 versus the SUB, we randomly and indepen-
dently selected the same number of CA1 and SUB neurons five 
times to obtain the averaged decoding accuracy for a given number 
of neurons.

To predict the choice from pairwise coactivity, we calculated the 
covariance of the square root of the instantaneous firing rate in the 
start box of each correct trial for all combinations of neurons. GPC 
with leave-one-out cross-validation was used to predict the choice 
from the obtained covariances. To compare the CA1 versus SUB de-
coding accuracies, we randomly selected the same number of CA1 
and SUB neurons 50 times to obtain the averaged decoding accura-
cy for a given number of neurons.

Decoding across rats, regions, and tasks
We performed position prediction to determine whether structures 
of the neural manifold are similar across rats, brain regions, and 
tasks. Only sessions with ≥0.2 decoding accuracies for the position 
were included. First, we trained a regression model using the neural 
manifold coordinates in a three-dimensional space and the position 
of one rat (“rat A”) using GPR. Subsequently, we applied this regres-
sion model to the dataset of another rat (“rat B”) to predict the posi-
tion from the coordinates on the neural manifold after aligning it 
with optimal rotation parameters in a three-dimensional embedding 
space. To this end, we searched for the rotation parameters that pre-
dicted the position of rat B using randomly selected data (50% of the 
total data) with the highest accuracy by systematically rotating the 
relevant neural manifold of rat B in three dimensions with a special 
orthogonal group of degree 3 (48). We used the optimized rotation 
parameters to predict the position of rat B from the remaining 50% 
of the data from the rat B (48). For each rat B, the best decoding ac-
curacy obtained using a regression model trained on other rats (as rat 
A) was assigned as the decoding accuracy of that rat. For across-rat 
decoding, the data from the same brain regions (CA1 or SUB) during 
the T-maze task were used for regression model training and decod-
ing. For across-region decoding, neural manifolds from different 
brain regions during the T-maze task were used for regression model 
training and decoding. For across-task decoding, neural manifolds 
from the same brain region were used for regression model training 
and decoding; the data during the open-field task were used to train 
the regression model, and the data during the T-maze task were used 
for decoding.

The chance level of decoding accuracy was estimated using a 
shuffling procedure. First, we shuffled spike trains of the training da-
taset by a circular shift of the spike trains of each neuron with a uni-
formly distributed random interval from 0 to the session length, 
independent of other neurons and then trained the regression model 

using the shuffled data in the same manner as that for the unshuffled 
data. Subsequently, we applied this regression model to the unshuf-
fled dataset of another rat (rat B) in the same manner as that for 
across-rat and across-region decoding. We repeated the above shuf-
fling, model training, and decoding procedures 100 times for each 
“rat A–rat B” pair. For each rat (as rat B), we determined the best 
decoding accuracy achieved by a regression model trained on the 
shuffled dataset of other rats (as rat A). This best decoding accuracy 
was assigned as the decoding accuracy of that rat for the shuf-
fling method.

We calculated structural similarity by dividing the decoding ac-
curacy of across-rat, across-region, or across-task decoding by that 
of self decoding. The self decoding was performed as described in 
the “Decoding position and speed” section.

Decoding of single-neuron activity
First, we excluded silent neurons (average firing rate of <0.001 Hz) 
during the T-maze performance and only considered eight sessions 
in which at least 10 principal neurons from both the CA1 and SUB 
were recorded simultaneously. We then randomly selected a neuron 
as the test data from N simultaneously recorded neurons and used 
the remaining N − 1 neurons to construct the neural manifold. The 
instantaneous firing rate of the selected neuron was smoothed using 
a Gaussian filter (σ = 1 time bin). Similar to the method described in 
the “Decoding position and speed” section, we decoded the smoothed 
instantaneous firing rate of the selected neuron from the neural man-
ifold generated by N − 1 neurons. To compare the CA1 and SUB 
decoding accuracies with the same number of neurons, we randomly 
selected a given number of neurons from N − 1 neurons indepen-
dently twice, performed the decoding analysis described above, and 
averaged across the repetition. The chance level of the decoding ac-
curacy was estimated using a shuffling procedure repeated 10 times. 
We repeated the above process N times and averaged the resultant 
decoding accuracy. The shuffled data were generated by circularly 
shifting the spike trains of N − 1 neurons with uniformly distributed 
random intervals from 0 to the session length, independent of the 
other neurons. Thereafter, the shuffled data were processed in the 
same manner as the unshuffled data to obtain the decoding accuracy 
of the shuffled data.

Ripple detection
Ripple activity was examined during post-task slow-wave sleep. As 
the frequency and duration of ripple events are comparable be-
tween the SUB and CA1 (81), we adopted the ripple event detec-
tion method (58) to detect ripples in the SUB. We obtained the 
ripple-band local field potential (LFP) signal from the center of the 
SUB cell layer by applying band-pass filtering (140 to 230 Hz). To 
calculate the normalized ripple power, we used the z-scored mov-
ing average of the square of the ripple-band LFP signal with a win-
dow size of 11 samples. We identified candidate ripple events as 
periods with a normalized ripple power of >3. We combined can-
didate events that occurred within 30 ms of each other into a single 
event, discarded those with a low peak normalized ripple power 
(<7) and duration that was too short (<15 ms) or too long (>300 ms), 
and considered the remaining as ripple events. The time of the 
negative peak of the band-pass–filtered LFP signal of each ripple 
event was regarded as the ripple peak time. In subsequent analy-
ses, we only included sessions with >100 ripples during post-task 
slow-wave sleep.
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Pairwise correlations
We calculated pairwise correlations based on the instantaneous fir-
ing rates of neurons in the 512-ms time window during wakeful-
ness and in the 76.8-ms time window centered on the ripple peaks 
in post-task sleep. During wakefulness, we used all time points dur-
ing task execution, while, during ripples, we randomly selected 100 
events for analysis. Neurons with no firing during wakefulness or 
ripple were excluded.

Population activity during ripples in post-task sleep
We randomly selected 100 ripple events in post-task sleep and cal-
culated instantaneous firing rates using 76.8-ms bins centered on 
the ripple peak. Instantaneous firing rates during ripples (76.8-ms 
bins) and wakefulness (512-ms bins) were square-rooted to stabilize 
variance and embedded in the same three-dimensional space using 
Isomap. For visualization (Fig. 9A), we smoothed the square root of 
instantaneous firing rates during wakefulness with a Gaussian filter 
(σ = 1024 ms). The coordinate values were z-scored. The first three 
nearest neighbor distances were calculated as the average of the 
three smallest distances from each activity point during ripples to 
that during wakefulness. Variability was assessed by calculating all 
pairwise distances of the activity during ripples and averaging them. 
Directionality was obtained as follows

where R is the mean resultant length of the unit vector from the cen-
ter of mass of the awake manifold to each ripple point and p is the 
dimension (p = 3 in this study) (82). For the nearest neighbor seg-
ment analysis, we divided the T-maze into 20 equally sized segments 
along the animal’s path for right and left turn trials separately and 
identified the center of mass of the manifold points corresponding to 
each segment. For each ripple event, a segment with a center of mass 
nearest to the ripple in the manifold was assigned as the nearest 
neighbor segment, and the fraction of ripple points was quantified 
for salient positions (i.e., box, choice, arm, and reward positions) 
without distinguishing between left and right trials.

Dynamics of peri-ripple population activity during 
post-task sleep
For each post-task sleep session, we randomly selected 30 ripple 
events without replacement. For each ripple event, we calculated in-
stantaneous firing rates during, before, and after ripple events using 
76.8-ms bins centered on the ripple peak, 200 ms before the ripple 
peak, and 200 ms after the ripple peak, respectively. Instantaneous 
firing rates during, before, and after ripples (76.8-ms bins) and wake-
fulness (512-ms bins) were square-rooted to stabilize variance and 
embedded in the same three-dimensional space using Isomap. The 
coordinate values were z-scored. For visualization (Fig. 9H), we 
smoothed the square root of instantaneous firing rates during wake-
fulness with a Gaussian filter (σ = 1024 ms) and displayed only 10 
peri-ripple events. To quantify changes in the population activity 
around a given ripple event, we calculated the Euclidean distances of 
the peri-ripple event in the embedding space. To quantify transitions 
of the nearest neighbor segments of peri-ripple activities (pre-ripple, 
ripple, and post-ripple), we assigned the nearest neighbor segment to 
each period and calculated the difference between the nearest neigh-
bor segments. We repeated the random selection of 30 ripple events 

after the replacement of the previously selected 30 ripple events 
10 times to include the most ripple events in the analysis and re-
ported the mean of the resultant distance values.

Statistical analyses
Statistical analyses were performed using Python and EZR (76). Data 
are expressed as the means ± SD. We used the paired t test for within-
group comparisons and Welch’s t test for between-group compari-
sons. Paired t tests with Bonferroni correction following one-way 
repeated-measures ANOVA were used to evaluate the differences 
among multiple paired groups. The Bonferroni test, following two-
way ANOVA, was used for multiple comparisons. All tests were two-
sided, and P values of <0.05 indicated statistical significance.

Supplementary Materials
This PDF file includes:
Legend for data S1

Other Supplementary Material for this manuscript includes the following:
Data S1
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