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ABSTRACT 

We are constantly faced with the trade-off between exploiting past actions with known 

outcomes and exploring novel actions whose outcomes may be better. The balance between 

exploitation and exploration has been hypothesized to rely on multiple neuromodulator 

systems, namely dopaminergic neurons of the substantia nigra pars compacta (SNc) and 

noradrenergic neurons of the locus coeruleus (LC). However, little is known about the 

dynamics of these neuromodulator systems during exploitative and exploratory states, or 

how they interact. We developed a novel behavioral paradigm to capture exploitative and 

exploratory behavioral states, and imaged calcium dynamics in genetically-identified 

dopaminergic SNc neurons and noradrenergic LC neurons during the transitions between 

these states. We found dichotomous changes in sustained activity in SNc and LC during 

exploitative bouts of action-reward, with SNc showing higher and LC showing lower 

sustained activity. Exploitative states were also marked by a lengthening of positive SNc 

response plateaus and negative LC response depressions, as well as hysteretic dynamics in 

SNc networks. Chemogenetic enhancement of dopaminergic and noradrenergic excitability 

favored exploitative and exploratory states, respectively. Together, these data suggest that 

opponent changes in dopaminergic and noradrenergic activity states modulate the 

transitions between exploitative and exploratory behavioral states, with important 

implications for downstream circuit dynamics. 

 

INTRODUCTION 

At any given moment, animals must choose their next action from a vast repertoire of 

possible behavioral responses. Some actions have been performed repeatedly in the past and 
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therefore have well-known outcomes, while others have less certain but potentially better 

outcomes. In addition, there are fluctuations in the motivational drive to perform some actions 

over others, depending on the current state of both the environment and the animal. This trade-off 

between exploiting past actions and exploring novel ones gives humans and animals the amazing 

ability to explore new environments and develop novel behavioral responses following 

environmental changes.  This balance has been proposed to rely on midbrain dopaminergic 

neurons of the substantia nigra pars compacta (SNc)1 and noradrenergic neurons of the locus 

coeruleus (LC)2-3.  

A role for dopamine (DA) in low-level motor variability has been reported4-6, and a 

growing body of work suggests that DA also affects variability in action selection7. SNc neurons 

fire strongly during the initiation of self-paced action sequences8 and patients with PD exhibit 

deficits in action initiation9, suggesting a role for DA in the volitional initiation of learned actions. 

In addition, deficits in choice reversal learning10 and attentional set switching11 have been 

demonstrated following DA depletion. Computational modeling work has also predicted a central 

role for DA signaling in modifying the action selection probabilities associated with two-choice 

tasks12. Similarly, recent work suggests that levels of norepinephrine (NE), and specifically 

activity of the noradrenergic projections to prefrontal cortices, modulate levels of stochastic 

responding in rodents13-14. Both dopaminergic and noradrenergic systems therefore appear to play 

a role in the balance between exploitative and exploratory responding. 

Although past work has studied isolated exploitative and exploratory choices22-24 and 

computational modeling work has predicted a role for catecholamines in these decisions12, the 

majority of this work has focused on single-trial decisions, thus obscuring the longer-term state 

changes that define exploitative and exploratory states of action selection. These exploitative 
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states, characterized by engaged and motivated performance of a well-learned skill to achieve a 

desired outcome, might be similar to what is colloquially referred to as “being in the zone” or the 

“hot hand effect”25-26.  

We developed a novel behavioral paradigm in mice that probes action selection among 

many possible actions over long time scales and allows us to bias behavior towards exploitative or 

exploratory states using environmental change. This paradigm permitted us to the study the 

behavior of animals away from ceiling or floor performance, and hence to study the emergence of 

bouts of exploitative or exploratory choices. We imaged the activity of populations of individual 

dopamine neurons of the sustantia nigra pars compacta (SNc) and noradrenergic neurons of the 

locus coeruleus (LC) and found striking changes in sustained dopaminergic and noradrenergic 

activity that cumulatively emerge when animals are in exploitative behavioral states, repeatedly 

performing well-known skills to achieve desired outcomes. These exploitative states are marked 

by lengthened response plateaus and hysteretic network dynamics in SNc neurons, as well as 

lengthened response depressions in LC neurons. Finally, we induced sustained changes in the 

excitability of SNc dopaminergic neurons and LC noradrenergic neurons and found that this biased 

the balance between exploitative and exploratory behavioral states. 

 

RESULTS 

A Novel Task for Probing Exploitative and Exploratory Behavioral States 

Theoretical work suggests that novel or unstable environments enhance exploration, while 

stable or known environments favor exploitation27. This suggests that animals’ choices will be 

more exploratory following an unexpected change in the environmental reward structure and 

choices will become exploitative as the animals become acquainted with the new structure. If the 
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probabilities of selecting a range of actions are known, then the entropy of this distribution captures 

levels of exploitative and exploratory behavior. 

To develop a framework for studying exploitative and exploratory states in mice, we 

created a nose poke sequence task in which mice can choose between many possible actions. Mice 

were placed in an operant chamber with 3 equidistant nose pokes (Fig. 1a). A sequence of 3 pokes 

in a specific order was rewarded. Importantly, mice were given no trials and few cues to guide 

learning, but instead had to actively explore the environment to determine the reward structure. 

When mice performed the target sequence, reward was supplied via a central reward port. There 

are 27 possible sequences, providing a broad distribution of potentially selectable actions.  

Performance improved significantly over the course of roughly one month of training, as 

seen both in an increase in reward rate (Fig. 1b) and an increase in the proportion of pokes that 

compose the rewarded sequence relative to total pokes (Fig. 1c). Chance levels of performance 

were assessed by modeling an agent that performs the same number of pokes as the mice on each 

day, but selects each poke randomly (Fig. 1b-e, red lines). Animals performed significantly above 

this assessment of chance levels for all behavioral measures. Importantly, after training, mice were 

well above floor performance but also below ceiling performance, allowing us to study the 

transitions between exploitative and exploratory bouts. Over the course of training, we observed a 

decrease in the entropy of the animals’ selected sequences (Fig. 1d), as well as a decrease in the 

entropy of the animals’ transitions between nose pokes (Fig. 1e), suggesting that animals are 

initially sampling a relatively wide range of possible actions, but gradually refine these choices to 

focus more on the rewarded sequence. When examining the number of pokes at response ports 

between checks for reward at the reward port (“Inter-Check Interval”), we observed that animals 

check for reward after a majority of response pokes in early learning, but begin to chunk behavior 
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into groups of three nose pokes in late learning (Fig. 1f), suggesting that they have learned to 

mostly perform three-poke sequences and understand the structure of the task. The time that mice 

took to perform the rewarded sequence also decreased significantly with training (Fig. 1g).  

When the animals were proficient at performing a target sequence, we changed the target 

sequence to be rewarded. This sequence change occurred within a behavioral session, and we 

found that the prevalence of the previously-rewarded sequence decreased following the sequence 

change (Fig. 1h, top, blue) and the entropy of selected sequences increased (Fig. 1h, bottom). The 

prevalence of the newly-rewarded sequence gradually increased as mice discovered the new 

reward structure (Fig. 1h, top, red) and the entropy returned to lower levels (Fig. 1h, bottom). 

Across all animals, we observed a significant decrease in performance (Fig. 1i) and an increase in 

entropy (Fig. 1j) immediately following the rule change, suggesting that we were successfully 

driving animals into a more exploratory behavioral state by changing the reward structure of the 

environment.  

 

Sustained Dopaminergic and Noradrenergic Modulations During Exploitative States 

 We next imaged calcium dynamics in genetically-identified dopaminergic and 

noradrenergic cells of the SNc and LC, respectively, through chronically-implanted gradient index 

(GRIN) lenses (Fig. 2a). We first examined phasic bursting in the populations before and after a 

change in the rewarded sequence (Fig. 2b), with a focus on three conditions. Namely, “Exploit” 

designates the epoch before the rule change when mice were exploiting a well-known reward 

structure, with PSTHs time-locked to performance of the target sequence. The “Explore” 

conditions, in contrast, designate the epoch after the rule change when mice were exploring a novel 

reward structure, and this is subdivided into two conditions. “Explore - Old” represents trials when 
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mice exhibited perseverative errors during the exploratory epoch and performed the previously-

rewarded action that is no longer rewarded, and Explore-Old therefore includes the same action as 

Exploit, but a different outcome. Conversely, “Explore - New” represents trials when mice 

performed the newly-rewarded action, and Explore-New therefore includes the same outcome as 

Exploit, but a different action. In both regions, we observed qualitatively similar phasic responses 

to rewards during exploitative and exploratory epochs. However, these phasic responses appeared 

to begin from different baseline levels of activity during exploitation and exploration, with SNc 

baseline activity enhanced during exploitation and LC baseline activity reduced during 

exploitation (Fig. 2b). In SNc, we noted that exploitative and exploratory rewards result in 

comparable peak magnitudes, despite the change in baseline sustained activity, which is consistent 

with recent reports suggesting that reward expectation is marked by increases in baseline activity 

rather than decreases in peak amplitude28. When we expanded the time axis, we found that these 

baseline changes develop leading up to reward and fade afterwards, lasting for a total of 

approximately 60 seconds surrounding exploitative rewards (Fig. 2c).  

 We first asked whether these baseline changes were due to the averaging of many brief, 

staggered bursts of activity or were instead a slowly-varying component of the activity. To 

disambiguate between these possibilities, we preprocessed our calcium data in a manner that 

separates quickly-varying and slowly-varying components of the signal (Fig. 2d and Methods) and 

we then used these component traces to create peri-stimulus time histograms (PSTHs) that are 

analogous to those we created with the full calcium traces. For both SNc and LC, we found that 

the changes in baseline activity were not observed when using only the quickly-varying 

components (Fig. 2d, right, red), suggesting that the observed baseline shifts are not due to the 
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averaging of many brief, jittered bursts. However, the sustained effects were still present when 

using only the slowly-varying components of the activity (Fig. 2d, right, blue). 

We next asked whether these sustained activity changes were due simply to differences in 

reward rate during exploitation and exploration. We therefore ran animals on a version of the task 

in which all possible three-poke sequences are rewarded with either high probability (“Day H”; 

80%) or low probability (“Day L”; 20%). We did not observe changes in baseline activity in either 

SNc or LC on either Day H or Day L (Fig. 2e). Importantly, the reward rate on Day H was 

comparable to that during exploitation, but the entropy was significantly higher (Supp. Fig. 1), 

suggesting that the baseline shifts are more closely related to changes in choice entropy than they 

are to changes in reward rate. In addition, we did not observe baseline activity changes in early 

learning (Supp. Fig. 2) or in the ventral tegmental area dopaminergic neurons (VTA; Supp. Fig. 

3). This phenomenon was also not the result of averaging across neurons. We found that roughly 

20-25% of individual neurons in SNc and LC exhibit these sustained changes in baseline activity, 

with clearly distinct activity profiles relative to other neurons in the network during exploitative 

states or to all neurons during exploratory states (Fig. 2f).  

Due to the slowly-varying nature of these baseline changes, we wondered whether they 

could be representing behavioral variables in a reinforcement learning (RL) context. We therefore 

fit a basic RL model to our behavioral data to extract estimates of action value (Q), state value (V), 

and reward prediction error (RPE). We found that the overall peri-event correlation of activity in 

all neurons and the different RL variables was strikingly low (Supp. Fig. 4a-b). In addition, we 

constructed reward-locked PSTHs using the estimates of Q, V, and RPE, and found these to exhibit 

very little activity at time points distant from reward (Supp. Fig. 4c). Finally, we correlated the full 

time-courses of Q, V, and RPE with smoothed fluorescence traces from SNc and found these 
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correlations to also be very weak (Supp. Fig. 4d). We found, as expected, that individual cells vary 

greatly in the strength and direction of their correlations with these RL parameter estimates, with 

some cells showing strong positive correlations and others showing negative correlations (Fig. 2g). 

We therefore asked whether cells that are positively correlated with these RL parameters exhibited 

different levels of sustained activity than cells that are negatively correlated with these parameters, 

and found there to be very little difference in the sustained reward-locked activity of neurons 

correlated with estimates of either action value, state value, or RPE (Fig. 2h). Finally, we found 

no strong relationship between the cells that we classified as exhibiting sustained effects (in Fig. 

2f) and the distribution of their correlations with these RL parameter estimates (mean±SD, Q: 

0.198±0.295, V: 0.142±0.299, RPE: 0.059±0.249). Together, these results suggest that, although 

the activity of many cells in the network was correlated with classic RL parameters, the observed 

changes in sustained activity cannot be accounted for simply by slowly-changing estimates of 

action and state value. 

 

Sustained Activity Cumulatively Emerges in Dopaminergic and Noradrenergic Networks 

During Reward Bouts 

 Although we found that the sustained activity changes were not due to average reward rate 

(Fig. 2e), we investigated whether the structure of “target action-reward” events changed following 

the sequence change. We therefore performed a “reward autocorrelation”, where time 0 indicates 

the occurrence of a reward and the occurrence of other rewards is averaged time-locked to this 

point. We found no change in the overall temporal structure of reward occurrence before or after 

the sequence change (Fig. 3a).  
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We therefore asked whether there was instead a change in the neural responses to rewards. 

To address this, we defined “target action-reward bouts” (hereafter “action-reward bouts”) as 

clusters of action-reward pairs that are separated from each other by less than 10 seconds and 

separated from other action-reward pairs by more than 20 seconds, and we then averaged activity 

based on the action-reward pair’s position within a bout (Fig. 3b). Because the inter-event timing 

within action-reward bouts is not required to be constant, we investigated whether the number of 

action-reward bouts changed across behavioral states, despite previously observing no shift in the 

overall temporal pattern of action-reward events (Fig. 3a). We found that the rate of occurrence of 

action-reward bouts increased significantly in exploitative relative to exploratory states (Fig. 3c), 

suggesting that action-reward bouts could be an important characteristic of the transitions between 

these behavioral states. We therefore investigated neural responses throughout these bouts during 

exploitation and we found that dopaminergic activity accumulated over the course of a bout and 

returned to low levels by the end of the bout (Fig. 3c, top, and Supp. Fig. 5), while LC activity 

decreased consistently over the course of the bout (Fig. 3c, bottom). These patterns were not 

present during exploration (Fig. 3d), on Day H (Fig. 3e), or on Day L (Fig. 3f). Importantly, reward 

bouts are common on Day H, but they are preceded by different actions. Intriguingly, the base-to-

peak of activity within an action-reward bout remains fairly constant throughout the bout (Fig. 3c, 

upper inset). However, this measure decreases significantly over the course of a bout, similar to 

the classic effects of RPE on DA cell activity29, when performing the analysis using traces that 

contain only quickly-varying components of the signal to mimic data preprocessing methods in 

which baseline activity is corrected on a short timescale (Fig. 3c, lower inset). This is in-line with 

recent proposals that, with increased reward predictability, DA cells exhibit enhanced baseline 

activity rather than decreased bursting activity28.  
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We next asked whether the activity profile we observed during action-reward bouts was 

sufficiently characteristic of these bouts to enable prediction of bout occurrences from neural 

activity. We found that prediction of action-reward bouts by single neurons was significantly better 

than chance (Supp. Fig. 6). Furthermore, if we considered only neurons whose activity was most 

predictive of action-reward bouts, we found that these predictive neurons exhibited stronger 

sustained changes in activity surrounding exploitative action-reward pairs than the rest of the 

population in both SNc and LC (Fig. 3g). Together, these data suggest that sustained activity 

accumulates positively in SNc and negatively in LC as animals perform bouts of the target 

sequence in exploitative, but not exploratory, states. Furthermore, these bouts define an 

exploitative behavioral state, whereby animals are engaged in repeatedly performing a well-known 

skill to achieve a favorable outcome. 

 

Altered Neuronal Response Dynamics Drive Sustained Activity 

 We next asked what neuronal response differences during exploitative and exploratory 

states could produce the distinct ways in which activity accumulates over the course of action-

reward bouts to produce sustained activity shifts. We therefore quantified the average length of all 

positive and negative response transients during exploitative and exploratory epochs. We found an 

increase in the duration of positive response transients in SNc neurons during exploitative relative 

to exploratory behavioral states, resulting in response plateaus (Fig. 4a). There was no concomitant 

change in the duration of negative response transients. The duration of positive response transients 

in SNc neurons during exploratory states was similar to that observed during early learning (Supp. 

Fig. 2), on Day H or Day L (Supp. Fig. 1), or in the VTA (Supp. Fig. 3). In contrast, in LC neurons, 

we found no change in the duration of positive response transients across these behavioral states, 
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but the duration of negative response transients was significantly longer in exploitative relative to 

exploratory states, resulting in response depressions (Fig. 4c). To examine whether these activity 

changes in individual neurons were also reflected in changing network interactions, we created 

cross-correlation histograms, where activity from all cells was time-locked to large fluorescence 

bursts in other simultaneously-recorded cells. Importantly, in SNc during exploitative states, we 

found that cells in the network tend to increase activity together, but then continue to fire 

afterwards, exhibiting network-level hysteretic effects (Fig. 4b). In LC, correlated activity was 

generally increased during exploitation, but the shape of this response was unchanged (Fig. 4l). 

The asymmetry seen in SNc during exploitative states is also not present in early learning (Supp. 

Fig. 2), on Day H or Day L (Supp. Fig. 1), or in the VTA (Supp. Fig. 3). Dopaminergic and 

noradrenergic networks therefore exhibit striking changes in response dynamics across 

exploitative and exploratory behavioral states. 

To investigate whether these changing response dynamics could produce the observed 

changes in sustained activity, we created reward convolution traces by convolving an impulse 

response function (IRF) with the occurrences of rewards in our behavioral data (Fig. 4e-f). For 

SNc, this IRF was a simple exponential of varying length (Fig. 4e), while for LC, this IRF was 

created by smoothing the average population response to unexpected rewards (Fig. 4f). As we 

increased the duration of the IRFs, we observed the emergence of sustained activity surrounding 

reward that matches that observed during exploitative states in SNc (Fig. 4h,j). This was not 

observed if we more closely match the IRF exponential duration to the statistics of our neural data 

in baseline settings (Fig. 4g,i). However, for IRFs matched to our neural data, the addition of 

hysteretic network dynamics to the model results in model responses nearly identical to those seen 

in our data during exploitative states (Fig. 4h, inset). The LC IRF, on the other hand, is biphasic, 
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with both a positive and negative phase. Intriguingly, in baseline settings, this IRF is asymmetric, 

with the negative phase of the response lasting 1.5 times the duration of the positive phase (Fig. 

4f), suggesting the possibility of an innate bias towards negative activity accumulations in the LC 

network. If we then alter the length of the negative phase of this IRF while holding the positive 

phase constant in our reward convolution model, we again see the emergence of sustained changes 

in activity with longer IRFs (Fig. 4j). This suggests that the observed modifications to the dynamics 

of plateau and depression responses in either SNc or LC can recapitulate the observed changes in 

baseline activity that we see during exploitative behavioral states. Importantly, the amplitude of 

positive and negative transients does not change between exploitative and exploratory states (Supp. 

Fig. 7), demonstrating that the sustained activity changes cannot be accounted for by differences 

in the amplitude of transients. For both SNc and LC, if we look across all conditions (Exploit, 

Explore - Old, and Explore - New), we see that these extended IRFs produce analogous changes 

in baseline activity in response to both exploitative (Exploit) and exploratory (Explore - New) 

rewards (Fig. 4k-l), which is inconsistent with our data (Fig. 2c). Flexible transitions between these 

distinct regimes of neuronal response dynamics are therefore necessary to produce the neuronal 

response patterns that we observed across exploitative and exploratory behavioral states. 

 

Increasing Dopaminergic or Noradrenergic Excitability Biases Transitions between 

Exploitative and Exploratory States 

 We next asked whether these sustained changes in baseline activity levels play a causal 

role in modulating the transitions between exploitative and exploratory states. Because these 

baseline shifts were due to changes in neural response dynamics that accumulate over the course 

of exploitative bouts, we used chemogenetic manipulations to modulate the excitability of 
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dopaminergic and noradrenergic populations, rather than using optogenetic manipulations that 

drive excitability briefly. We used the designer receptor exclusively activated by designer drugs 

(DREADD) hM3Dq to enhance excitability in genetically-identified dopaminergic or 

noradrenergic populations30-31.  

 Animals expressing either hM3Dq or mCherry were trained on the task and given 

intraperitoneal injections of either clozapine-N-oxide (CNO; the hM3Dq ligand) or vehicle (VEH) 

during exploitative states, exploratory states, and on Day H (Fig. 5a). During exploitative states, 

we found that enhancing LC excitability with CNO produced an increase in transition entropy and 

a decrease in reward rate relative to VEH, and this effect was not seen in control animals expressing 

mCherry in LC (Fig. 5c,e). The same LC manipulation during exploratory states, when animals 

still do not know the correct action sequence, did not produce any effect, showing that this was not 

a general effect of LC manipulations on behavior. We found no change in transition entropy or 

reward rate when enhancing SNc excitability during exploitative states, potentially because 

animals were already in exploitative states and could not be pushed further in performance (Fig. 

5b and Supp. Fig. 8). Similarly, we found no difference when enhancing SNc excitability during 

exploratory states, before animals had learned which action sequence would lead to reward. We 

therefore tested the same manipulation on Day H, when animals could perform a wider range of 

actions to get the same rate of reward. We found that enhancing SNc activity with CNO produced 

marked changes in the structure of their responses. A significantly higher proportion of the total 

rewards were in action-reward bouts following CNO injection relative to VEH, and this effect was 

not present in animals expressing mCherry in SNc (Fig. 5b,d). The mean number of action-reward 

pairs per action-reward bout was also increased significantly following CNO (Fig. 5b,d). This 

restructuring of action-reward bouts following CNO injections in animals expressing hM3Dq in 
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SNc was not seen in animals expressing hM3Dq in LC (Supp. Fig. 8). Enhanced noradrenergic 

activity therefore appears to increase levels of response entropy and disrupt performance of a well-

learned skill, driving transitions into exploratory behavioral states, while enhanced dopaminergic 

activity results in the restructuring of task performance into exploitative action-reward bouts. 

 

DISCUSSION 

 We developed a novel behavioral framework in rodents to capture exploitative and 

exploratory states of action selection, and we found marked changes in sustained activity in both 

dopaminergic and noradrenergic populations across these states. We found these sustained 

baseline changes to be due to enhanced response plateaus and depressions during exploitative 

states in both SNc and LC, as well as hysteretic network dynamics in SNc, that resulted in 

accumulations of activity during exploitative bouts, when animals repeatedly perform well-learned 

skills to achieve desired outcomes. Increasing neuronal excitability in dopaminergic and 

noradrenergic populations changed the structure of behavior in accordance with these theorized 

behavioral states. Together, our results suggest that sustained plateaus in dopaminergic networks 

and sustained depressions in noradrenergic networks increase the likelihood of transitioning into 

an exploitative state: a state of inspired engagement in performing a well-known skill that might 

be colloquially referred to as “being in the zone”. 

 

Intermediate-Scale Behavioral States  

 The design of our task and experiments allowed us to investigate behavioral and neural 

states that occur on an intermediate-timescale between the scale of synaptic signaling 

(milliseconds) and the scale of long-term potentiation (hours to days), a timescale that is much 
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more similar to that experienced during ongoing behavior and perhaps more relevant to slower-

acting neuromodulator systems. By expanding the time axis out to multiple minutes, we were able 

to identify these intermediate-scale neural effects, as well as the enhanced responses to exploitative 

bouts that exist on these intermediate timescales. Further work is necessary to more fully 

characterize the composite changes to widespread neural circuits that accompany and define these 

intermediate-scale behavioral states. 

 

Differential Downstream Effects of Sustained Versus Brief Changes  

 There are a number of ways that the sustained changes we found in dopaminergic and 

noradrenergic activity could impact downstream circuits for action selection in the dorsal striatum 

(DS), in the case of DA, and the anterior cingulate cortex (ACC), in the case of NE. Both systems 

are known to contain a range of receptor subtypes with distinct postsynaptic effects32-35. In the DS, 

the main DA receptor types, D1R and D2R, are expressed in segregated neuronal populations32-33, 

and modeling work has suggested that D1Rs respond preferentially to brief fluctuations in DA, 

while D2Rs track more sustained changes34. Accordingly, recent work has demonstrated distinct 

effects on prefrontal dynamics when dopaminergic networks are stimulated on different temporal 

scales36. Similarly, ACC cells contain both α1 and α2 NE receptors35. While α2Rs are high affinity 

and respond at low rates of NE release, α1Rs are low affinity and are only engaged at high rates 

of release37. Both systems therefore contain receptors tuned to either brief or sustained changes in 

neuromodulator levels. These receptors are also associated with distinct behavioral effects32-37, 

suggesting that brief and sustained changes in DA and NE could have profoundly different effects 

on downstream network dynamics and, in turn, the behavioral state of the animal. These 

possibilities are currently being investigated.  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/822650doi: bioRxiv preprint first posted online Oct. 29, 2019; 

http://dx.doi.org/10.1101/822650
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Potential Biological Substrates of Response Plateaus and Depressions 

 The response plateaus and depressions observed in the current work using calcium imaging 

have a number of possible biological underpinnings. Most simply, these enhanced response 

functions and network dynamics could reflect a change in the excitability or gain of individual 

neurons, which would be consistent with the observed behavioral effects following chemogenetic 

manipulations. This could, as one example, involve a change in the probability of neuronal up- or 

down-states across the population44. Alternatively, these plateaus and depressions could reflect 

changing lateral interactions within the network, which is also consistent with the observed 

hysteretic network effects45. More granular investigations with physiological methods are 

necessary to disentangle these possibilities. 

 

Relationship to Pathological States 

 Our results could have important implications for a range of mental disorders and 

maladaptive behavioral states marked by aberrant action selection, such as obsessive-compulsive 

disorder15-16, schizophrenia17-18, and addiction19-21, among others38-40. These syndromes can all be 

viewed as disorders of exploitative or exploratory responding, and our results suggest that 

alterations to the dopaminergic and noradrenergic systems could be part of the pathological 

mechanism or useful for managing symptomatology. In addition, our results suggest the possibility 

that modulations of the dopaminergic and noradrenergic systems could alleviate perseverative 

states in non-pathological populations, or even enhance creativity in the search for novel behaviors. 

These data therefore point to a number of therapeutic targets worthy of further investigation. 
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Conclusion  

 In summary, we developed and validated a novel behavioral paradigm for probing 

exploitative and exploratory behavioral states, and we found that neuronal populations in SNc and 

LC exhibited marked changes in sustained activity levels across these two states. These sustained 

effects were due to enhanced response plateaus and hysteretic population activity in SNc, as well 

as enhanced response depressions in LC, that both produced accumulations of activity during 

exploitative bouts of responding. Artificially enhancing dopaminergic or noradrenergic 

excitability modulated the likelihood of transitioning into these exploitative states, providing 

causal evidence for the role of sustained response properties in shaping behavior. Together, these 

results clarify the neural processes that modulate our choice of behaviors to either maintain a series 

of successes and capitalize on our learned skills or, conversely, to explore alternative actions and 

discover novel, creative behavioral responses to a complex and nuanced environment. 
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FIGURE LEGENDS 

Figure 1. A novel task for probing action selection.  a. Task schematic. Mice are presented with 

three equidistant nose poke ports and must discover a rewarded sequence of three nose pokes in 

order. There are no trials, but instead a moving buffer of the last 3 nose pokes is monitored for the 

rewarded sequence. Over the course of training, b. reward rate increases, c. the prevalence of the 

rewarded sequence increases, d. the entropy of the distribution of selected actions decreases, and 

e. the entropy of the transitions between pokes decreases. Red lines indicate estimates of chance 

performance. f. Early in learning, mice check for reward after every response poke, but late in 

learning they begin to make 3 response pokes before checking for reward, suggesting that they are 

adapting their behavior to the task statistics. g. The average time necessary to complete the 

rewarded sequence decreases with training. h. Animals begin reversal sessions exploiting a well-

known sequence and the rewarded sequence is changed during the session. Top: Prevalence of the 

sequence that was rewarded before (blue) or after (red) the change in rewarded sequence (dotted 

line). Bottom: The entropy of selected actions rises after the change in rewarded sequence (dotted 

line) and falls again as animals discover the new rewarded sequence. i. Reward rate decreases and 

j. entropy increases following a change in the rewarded sequence. Error bars denote s.e.m. 

 

Figure 2. Sustained dopaminergic and noradrenergic activity modulations. a. Schematic of 

endoscope imaging. b-c. PSTHs time-locked to exploitative rewards before the sequence change 

(“Exploit”; black), perseverative errors after the sequence change (“Explore-Old”; blue), and 

exploratory rewards after the sequence change (“Explore-New”; red) in SNc (top row) and LC 

(bottom row) with a short (b) or long (c) time axis. d. Left: Schematic showing full trace (black), 

slowly-varying component (blue), and quickly-varying component (red). Right: PSTHs time-
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locked to reward for SNc (top row) and LC (bottom row) using the slowly-varying components 

(left column, blue) or quickly-varying components (right column, red). e. PSTHs of activity when 

all sequences are rewarded with high (80%; blue) or low (20%; red) probability relative to effects 

seen in exploitative states (black) in SNc (top) or in LC (bottom). f. PSTHs of individual neurons 

that exhibit changes in sustained levels of activity during exploitative states (black) in SNc (top) 

and LC (bottom) time-locked to performance of the rewarded sequence. The mean activity of other 

neurons in the network during exploitative states (red) and the mean activity of all cells during 

exploratory states (blue) are shown for comparison. Insets: Proportion of the network exhibiting 

sustained activity during exploitative and exploratory states in SNc (top) and in LC (bottom). g. 

Individual neurons exhibit a range of correlations with RL estimates of action value (black), state 

value (red), or RPE (blue). h. Neurons with positive activity correlations (>0.1) with either action 

value (left), state value (middle), or RPE (right) do not exhibit different levels of sustained activity 

relative to cells with negative correlations (<-0.1). Error bars denote s.e.m. 

 

Figure 3. Activity accumulates positively in SNc and negatively in LC during exploitative 

action-reward bouts. a. Average occurrence of action-reward events time-locked to the 

occurrence of other action-reward events.  There is no change in the mean temporal profile of 

action-reward occurrences between exploitative and exploratory states. b. Action-reward bouts are 

defined as clusters of action-reward pairs separated from each other by less than 10 seconds and 

separated from other action-reward pairs by more than 20 seconds. c. The raw number of action-

reward bouts is increased in exploitative relative to exploratory states. Bottom: Example raster 

showing occurrences of action-reward pairs clustering more in bouts during exploitation relative 

to exploration. d-g. Mean baseline activity preceding action-reward events separated by position 
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within action-reward bouts in SNc (top) and LC (bottom) during exploitative states (c), during 

exploratory states (d), on Day H (e), and on Day L (f), h. Neurons in SNc (top) and LC (bottom) 

whose activity is predictive (blue) and non-predictive (red) of reward bouts using a wiener filter. 

Error bars denote s.e.m. 

 

Figure 4. Extended response plateaus in SNc and depressions in LC produce sustained 

accumulations of activity. a,c. Mean durations of positive and negative transients in SNc (a), and 

in LC (c). Insets: Examples of extended response plateaus (a) and depressions (c). b,d. Cross-

correlation histogram of neuronal activity time-locked to large fluorescence bursts in other cells 

during exploitative (blue) and exploratory (red) states in SNc (j) and LC (l). e-f. Schematics 

showing IRFs used to produce reward convolution traces for SNc (a) and LC (b). g-j. Reward 

convolution traces with typical IRFs in SNc (g) and LC (i), and with varying length IRFs in SNc 

(h) and LC (j). Inset (h): Reward convolution traces including hysteretic dynamics. k-l. Reward 

convolution model responses to Exploit (black), Explore-Old (blue), and Explore-New (red) with 

a range of IRFs in SNc (k) and LC (l). Error bars denote s.e.m. 

 

Figure 5. Increasing excitability in dopaminergic and noradrenergic neurons modulates 

exploitative and exploratory states. a. Experimental timeline. b. CNO injections result in an 

increase in the proportion of action-reward pairs that occur in bouts (left) and an increase in the 

number of action-reward pairs per bout (right) in animals expressing hM3Dq in SNc on Day H, 

but not in animals expressing mCherry in SNc or on other experimental days. Bottom: Example 

raster showing the timing and clustering of action-reward events following injections of VEH (top) 

or CNO (bottom). c. CNO injections result in an increase in transition entropy (left) and a decrease 
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in reward rate (right) in animals expressing hM3Dq in LC during exploitative states, but not in 

animals expressing mCherry in LC or on other experimental days. Bottom: Example raster 

showing the selected transitions between nose pokes following injections of VEH (top) or CNO 

(bottom). Transitions are less stereotyped following CNO.  d. Proportion of action-reward pairs 

that are in bouts (left column) and mean number of action-reward pairs per bout (right column) in 

animals expressing hM3Dq (red) or mCherry (black) in SNc following injections of either VEH 

or CNO, normalized to levels seen following VEH injections. e. Transition entropy (left column) 

and reward rate (right column) in all animals expressing hM3Dq (red) or mCherry (black) in LC 

following injections of either VEH or CNO, normalized to levels seen following VEH injections. 

Error bars denote s.e.m. 
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MATERIALS AND METHODS 

Animals 

 All experiments were performed in compliance with the regulations of the Institutional 

Animal Care and Use Committee (IACUC) at Columbia University. A total of forty-eight mice 

(13 female, 35 male) of roughly 3 months of age were used for the experiments. Transgenic mice 

expressed Cre recombinase under the control of the tyrosine hydroxylase promoter (Tg(Th-

cre)FI12Gsat/Mmucd) for targeting of dopaminergic and noradrenergic cells, or Cre recombinase 

under the control of the dopamine transporter promoter (B6.SJL-Slc6a3tm1.1(cre)Bkmn/J) for 

targeting of dopaminergic cells.  

 

Virus Injections 

 Surgeries were performed under sterile conditions using isoflurane anesthesia (1-3%). 

Stereotactic coordinates relative to bregma were used to target the SNc (anteroposterior -3.16 mm, 

mediolateral ±1.4 mm, dorsoventral -4.2 mm) and stereotactic coordinates relative to lambda were 

used to target the LC (anteroposterior -0.8 mm, mediolateral ±0.8 mm, dorsoventral -3.2 mm). For 

imaging experiments, animals were injected unilaterally with 500 µL of 

AAV5.CAG.Flex.GCaMP6f.WPRE.SV40 (University of Pennsylvania Vector Core) into the right 

SNc or LC. For chemogenetic experiments, experimental animals were injected bilaterally with 

500 µL of AAV5-hSyn-DIO-hM3D(Gq)-mCherry (Addgene plasmid #44361), while control 

animals were injected bilaterally with 500 µL of AAV5-hSyn-DIO-mCherry (Addgene plasmid 

#50459). All injections were performed using a Nanoject II Injector (Drummond Scientific, 

Broomall, PA, USA) at a rate of 4.6 nL every 5 seconds. Injection pipettes were left in place for 

10 minutes post-injection to allow for virus absorption, and incisions were closed with Vetbond 
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tissue adhesive (3M, Maplewood, MN, USA) for chemogenetic experiments in which no lens was 

implanted. Animals were given a minimum of 5 days to recover from surgery before behavioral 

training. 

 

Chronic Lens Implantation 

 For imaging experiments, virus injections were followed by implantation of a gradient 

index (GRIN) lens (Inscopix, Inc., Palo Alto, CA, USA) into the SNc or LC. Overlying tissue was 

first removed by insertion of a 30-gauge blunt needle to the target site, with care taken to minimize 

damage. GRIN lenses were then implanted unilaterally and secured to the skull using dental acrylic 

(Lang Dental, Wheeling, IL, USA). 2-3 weeks were allowed for virus expression before attachment 

of microendoscope baseplates (Inscopix, Inc.) to the dental acrylic at the correct focal plane for 

imaging.  

 

Chemogenetics 

 For chemogenetic experiments, mice were briefly anesthetized with 1-3% isoflurane and 

injected intraperitoneally with 5 mg/kg clozapine-N-oxide (CNO) before behavioral sessions. 

Mice were given 15 minutes following CNO injection to allow for the CNO to take effect and for 

the isoflurane effects to subside. 

 

Behavioral Task 

 Animals were trained in custom-made operant boxes (5 in x 6 in) controlled by a python-

based framework (PyControl, https://pycontrol.readthedocs.io) that supplies all cues and rewards, 

as well as recording all behavioral timestamps. Behavior was also monitored with overhead 
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cameras (Flea3, Point Grey Research, Richmond, Canada) recording at 15-30 frames per second. 

Operant boxes were placed inside sound attenuating chambers during training. Timestamps from 

the behavioral task were synchronized with calcium imaging data using TTL pulses sent from the 

behavioral chambers to the Inscopix data acquisition system via a BNC cable. 

 Operant chambers contained three equidistant nose poke ports surrounding a central reward 

port. Mice had to discover a rewarded sequence of three pokes in a specific order with no 

intervening pokes. Importantly, the task contains no trial structure and few cues, ensuring that mice 

actively explore the environment to discover what is rewarding. When a correct sequence was 

performed, water rewards of 5-15 µL were supplied through the opening of a solenoid. Throughout 

the paper, when trials are mentioned, they refer to the performance of single nose pokes. 

Mice were initially pre-trained in a setting in which any possible three-poke sequence that 

includes all three nose poke ports was rewarded. Following roughly one week of pre-training, mice 

were exposed to the full task, in which only one target sequence was rewarded. Once mice achieved 

proficiency on a particular target sequence, the rewarded sequence was changed. For experiments 

on Day H, all three-poke sequences were rewarded with 80% probability. For experiments on Day 

L, all three-poke sequences were rewarded with 20% probability. In all cases, rewards could not 

be cached and had to be consumed prior to earning further rewards. 

During calcium imaging experiments, fluorescence images were acquired at a frame rate 

of 10 hz. 

 

Data Analysis 

 Analyses were performed in Matlab (Mathworks, Natick, MA) with custom-written 

routines.  Behavioral data were sampled in 1 ms bins. For sliding window analyses of behavioral 
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data, a window size of 100 trials with a step size of 5 trials was used. For each behavioral session, 

histograms were created for the empirical probability of performing each sequence (“Sequence 

Entropy”), as well as for the empirical probability of transitions between nose pokes (“Transition 

Entropy”), and entropy was calculated as: 

Η(𝑋) = −∑𝑃(𝑥𝑖)

𝑛

𝑖=1

log2 𝑃(𝑥𝑖) 

 Corrections for finite sample sizes13,42 were tested by sampling from a known distribution 

with a structure similar to that seen in our behavioral data, and these corrections were found to be 

less accurate than the above formula in measuring the entropy of the parent distribution. These 

corrections were therefore not used in subsequent analyses. 

A basic reinforcement learning (RL) model was also applied to the behavioral data. 

Expected action values, Q, were updated on each trial according to: 

𝑄𝑡+1(𝑐𝑡) = 𝑄𝑡(𝑐𝑡) + 𝛼𝛿𝑡 

where 𝑐𝑡 is the choice on trial t, 𝛿𝑡is the reward prediction error on trial t, and 𝛼 is the learning rate 

of the model. Expected action values were related to choices by the following equation: 

𝑝(𝑐𝑡(𝑎)) =
𝑒𝛽𝑄𝑡(𝑎)

∑ 𝑒𝛽𝑄𝑡(𝑏)𝑛
𝑏=1

 

where 𝛽 is the inverse temperature parameter. Finally, expected state values, V, were estimated as 

the sum of all current action values in that state weighted by their probability of occurrence: 

𝑉𝑡(𝑠𝑡) =∑𝑄𝑡(𝑐𝑡)𝑝(𝑐𝑡)

𝑛

𝑖=1

 

The learning rate and inverse temperature were fit using maximum likelihood estimation. 

 Occurrences of reward bouts were predicted from neural data using a wiener filter. Five 

lags were used occurring every 500 milliseconds starting 2 seconds before bout start and ending 
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at bout start. Prediction was done for each cell individually to assess their contribution. Prediction 

performance was assessed using the area-under-the-curve (AUC) from a receiver operating 

characteristic (ROC) curve. Results were also compared to results obtained when the behavioral 

category labels were shuffled. 

 For reward convolution models, pure exponentials of varying lengths were used to model 

the SNc impulse response function. For the LC impulse response function, the average response 

from all LC cells to unexpected rewards was smoothed by a 1 second moving average. To model 

hysteretic network dynamics, multiple convolution traces were created for each animal with the 

addition of a random temporal jitter in the response to reward for each trace that preferentially 

shifts responses positively in time by a random fraction of a maximum of 5 seconds. 

 To quantify response plateau and depression durations, positive and negative threshold 

crossings (3SD) were located. A 5 second window before threshold crossing was defined as 

baseline activity, and a 5 second window after threshold crossing was then advanced until the 

average activity in this window matched the average activity in the baseline window. The number 

of timepoints by which the second window had to be advanced was defined as the response plateau 

or depression duration. 

Calcium imaging data were first preprocessed using Mosaic (Inscopix, Inc.) to apply 4x 

spatial downsampling and motion correction. Constrained non-negative matrix factorization 

(CNMF-E)43-44 was then applied for denoising and demixing of the data. The footprints and activity 

profiles of all putative neurons were inspected manually before inclusion in the dataset. For the 

extraction of quickly-varying components of fluorescence signals, dF/F was calculated on these 

traces with a sliding window of 5 seconds. For the extraction of slowly-varying (tonic) components 

of the fluorescence signals, traces were smoothed with a moving average of 60 seconds.  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Behavioral and neural metrics on Day H and Day L. a. Reward rate 

(left) and response entropy (right) during exploitation, exploration, on Day H, and on Day L. b. 

Cross-correlation histograms of activity in SNc time-locked to large fluorescence bursts in other 

cells in the network on Day H (left) and Day L (right). c. Duration of plateaus on Day H and Day 

L.  
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Supplementary Figure 2. SNc effects are not present early in training. PSTH of SNc activity 

time-locked to exploitative rewards (Left), cross-correlation histogram (center), and plateau 

duration (right) early in training. 
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Supplementary Figure 3. Effects observed in SNc are not present in VTA. PSTH of VTA 

activity time-locked to rewards (Left), cross-correlation histogram (center), and plateau duration 

(right) during exploitative states. 
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Supplementary Figure 4. SNc activity is not correlated with basic RL parameters. a. Scatter 

plots showing mean neuronal activity within 2 seconds of an action versus that trial’s current 

estimate of action value (left), state value (center), and reward prediction error (right). b. Mean 

correlations of peri-event neuronal activity in individual cells with action-by-action estimates of 

action value, state value, and reward prediction error. c. PSTHs time-locked to reward using action-

by-action estimates of current action value (Q, left), state value (V, center), or reward prediction 

error (RPE, right). d. Mean correlation of full session time courses of action value, state value, and 

reward prediction error with smoothed SNc neuronal activity.  
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Supplementary Figure 5. Activity accumulations within reward bouts. a. PSTHs of SNc 

activity time-locked to reward during exploitative (left) and exploratory (right) states. b. PSTHs 

of LC activity time-locked to reward during exploitative (left) and exploratory (right) states. 
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Supplementary Figure 6. Wiener filter prediction performance. Area-under-the-curve 

assessment of wiener filter performance using activity from individual SNc (left) or LC (right) 

cells relative to prediction performance in cases in which the category labels were shuffled. 
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Supplementary Figure 7. Positive and negative transient amplitude does not change across 

behavioral states. Amplitude of positive and negative transients in exploitative and exploratory 

behavioral states in SNc (left) and LC (right). The amplitude of transients does not change and 

cannot account for the observed changes in sustained activity. 
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Supplementary Figure 8. Chemogenetic effects are specific to dopaminergic and 

noradrenergic systems. a. The proportion of rewards that are in reward bouts does not change 

when animals expressing hM3Dq in LC are given CNO versus VEH. b. The mean number of 

action-reward pairs in action-reward bouts does not change when animals expressing hM3Dq in 

LC are given CNO versus VEH. c. The transition entropy does not change when animals 

expressing hM3Dq in SNc are given CNO versus VEH. d. The overall reward rate does not change 

when animals expressing hM3Dq in SNc are given CNO versus VEH.  
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