Emergence of Reliable Spike Patterns in Models of CA1 Cells Contacted by Unreliable Synapses
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RESULTS
INTRODUCTION

© The firing of CA1 neurons during place field traversal 1s elicited at
specific phases of EEG theta cycle with a high degree of precision.

The emergence of reliable spike patterns depends on the Gaussian Reconstructed CAl cells also generate spike patterns in response
profile of the CA3 inputs, their theta modulation, and their bursts. to real CA3 inputs.

The model predicts the number of synapses recruited in vitro.
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