The effects of multiple firing events on pattern stability in continuous attractor networks without lateral excitation
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Background/Motivation:

® Continuous attractor networks have been used to model

persistent neural activity in several contexts - e.g.
working memory, head direction cells, and grid cells
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Results

Stability of activity patterns:

Stable bumps can form in both types of network architectures:

® Networks form “bumps™ in 1-D and "grids™ in 2-D

® Synchrony induced by lateral excitation has been shown

to adversely affect the stability of patterns in continuous
attractor networks [1]

® Transient, local synchrony can emerge through brief,

rapid firing cascades known as Multiple Firing Events
(MFEs) [0]

® Experiments suggest that some systems (head direction

cells, grid cells) can be modeled by continuous attractor
networks without lateral excitation [7,8]

Stable bump w/o lateral excitation (100% NMDA) Stable bump in center-surround network (100% NMDA)
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Bumps in networks without lateral excitation remain stable
across a broader range of excitatory synaptic timescales:

Are attractor networks with no lateral
excitation more stable? What factors
affect their stability?
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Goals:

® Compare the stability properties of spiking continuous
attractor networks with and without lateral excitation

® Determine the relationship between transient synchrony _ _ -
and pattern ("bump”) stability in networks without lateral Sufficent amount of fast E-l synapses can still destabilize

excitation pattern, leading to bump drift
® Develop a mechanistic understanding of synchrony and
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Dynamical mechanisms?

First, some observations:
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Expected conseqguences:

1. Larger MFEs -> more drift

2. Lots of (smaller) MFEs, e.g., at high input rates, average out -> less drift

Proposed mechanism:

Ingredient 1: indirect I-l interaction

Vth

Vth

Vth

E voltage

I E

| voltage

i

Spike!

Vth

Vth

Ingredient 2: Multiple firing events (MFEs)

MFEs become more prominent with fast synapses,

also affected by input rates:

MFE measure

Bumps drift more with faster synapses, less at higher input rates:
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MFEs are correlated with bump drift:

Data obtained by varying Data obtained by varying

AMPA/NMDA ratio input firing rate
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Conclusions

® Attractor networks without lateral excitation are stable
across a broader range of excitatory timescales

®\With sufficiently fast excitatory synapses, bumps can still
become unstable and wander

®\We propose a dynamical mechanism based on indirect [->|
interactions and MFEs

On-going/future work:

*Other relevant dynamical features, e.g., spatial voltage
distibution
*Quantitative analysis?
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