A method for the precise detection and validation of spindle timing in rodents
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- Number of detected
spindles varies across raters.

Combining raters: AND, OR, and AND/OR rules
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# of Spindles

= Previous studies have not evaluated spindle
detection quality in rodent data’.

- Both false positive and false
negative spindles tend to have - Human failures favored false
durations shorter than 1 second. negatives.

AND rule: “all raters”
OR rule: “any rater”
AND/OR rule: “any X of these raters”
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> Establish a valdation and testing procedure A combination AND/OR rule using
' gp three out of six raters performs best

to optimize algorithm parameters. S in our data. Spindle Duration - Putative artifact rejection measures
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- Spindle frequencies did not differ - Different parameter sets in the
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- Assessment of spindle rating by
humans (intra/inter-rater reliability)
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- Development of new artifact
identification measures and databases
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