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active state generation, however specific interactions between ripples and slow oscillation
remain unknown. In the present study, we develop a model of ripple generation to explore
Interaction between cortical slow oscillation and hippocampal ripples during sleep.
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With every ripple, CAl produces a stereotyped “package” of
Information to project downstream.

A R P ) AN P i o

| I I !
|
1 PN o T ST A [y
| b

Within this package, Pyramidal cells spiking is organized by selectivity
of CA3 input more than local inhibitory mechanisms.

Ripples have many shapes, but only one duration

Properties of ripples:

» Ripples are identified by large amplitude excursion of the band-passed LFP. s Ripple frequency ~180Hz

s Frequencies are guantified as the inverse of the average peak-to-peak time within a ripple
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