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Our goal is to provide theoretical understanding of how the

higher-order IG measures are affected by correlated and

uncorrelated inputs. In addition, we also investigate how the 1-

neuron IG measure is related to those inputs.

Neurons in the brain process information by exchanging action

potentials. To better understand how information is presented and

processed, it is important to record many neurons from behaving

animals. Multiple-electrode recordings have become an

increasingly widespread tool in electrophysiology, enabling the

simultaneous recording of spiking activity from tens to hundreds of

neurons. These spike patterns have been analyzed by various

statistical methods. Nevertheless, the detection of cell assemblies,

the quantification of their correlations and estimation of synaptic

interactions occurring in the underlying neural networks remain

difficult problems.

Information geometry (IG) has been proposed as a novel and

powerful tool for multiple neural data analysis (Amari, 2001). We

have shown that the 2-neuron IG measure can infer the strength

of connection weights under both correlated and uncorrelated

inputs (Tatsuno et al. 2009, Nie & Tatsuno, 2012). This property is

useful in neuroscience because it may provide a way to estimate

the learning-induced changes in synaptic strengths from

extracellular neuronal recordings. However, the influence of

correlated and uncorrelated inputs to higher-order IG measures

has not be investigated yet.

How to compute IG measures from spike train (2- and 3-neuron cases)

1. Convert spike trains to binary trains using a small time bin. 

2. For 2-neuron system between #1 and #2, count the 

probability of occurrence for each pattern over all bins  

The IG measures are given by

are related to firing property of #1 and     

#2 respectively, and      is a measure for connection weights.

3. For 3-neuron system, 3-neuron IG measure is calculated as,

which indicates a triple-wise interaction between 3 neurons.
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• Estimation of neural interaction is important for understanding information processing in the brain. However, it is

influenced by correlated and uncorrelated external inputs. We investigated how the IG measures are affected by

these factors.

• We found that the 2-neuron IG measure with 4th -order LLM for larger networks (N=1000-10000) is robust to

correlated inputs and is able to estimate connection weights (Nie & Tatsuno, 2012).

• We found that the higher-order IG measures are also influenced by correlated inputs but lesser degrees.

• We found that 1-neuron IG measure can detect uncorrelated inputs separately from correlated inputs.

• These result suggest the IG measures provide useful information on neural interactions.

Spike trains

Binary Binning 

1-neuron IG measure is nonlinearly related to correlated inputs W in a small network (Figure A) but becomes

insensitive in a large network (Figure D, red curve). 1-neuron IG measure is always linearly related to

uncorrelated inputs H (Figures B, C and blue curves in Figures D, E). These results suggest that 1-neuron IG

measure can estimate the relative amount of uncorrelated inputs H separately from W, even if a network receives

both correlated and uncorrelated external inputs.

A: 10-neuron network with uniform recurrent 

connection (J) for theoretical calculation.  

The network receives both correlated input 

W and uncorrelated input H.  The figures 

below use J=0.1.
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B: 2-neuron IG with LLM of 

different orders (2-10, from 

top to bottom) as the 

function of W.

C: 3-neuron IG with LLM of 

different orders (3-10, from 

top to bottom) as the 

function of W.

D: 4-neuron IG with LLM of 

different orders (4-10, from top 

to bottom) as the function of W.

E: 5-neuron IG with LLM of 

different orders (5-10, from 

top to bottom) as the 

function of W.

F: 6-neuron IG with LLM of 

different orders (6-10, from 

top to bottom) as the 

function of W.

G: 7-neuron IG with LLM of 

different orders (7-10, from top 

to bottom) as the function of W.

A: 1-neuron IG with LLM of 

different orders (1-10, from 

top to bottom) as the function 

of W

B: 1-neuron IG with LLM of 

different orders (1-10, from 

top to bottom) as the function 

of H (W=0).

C: 1-neuron IG with LLM of 

different orders (1-10, from 

top to bottom) as the 

function of H (W=50J).

D: Numerical simulation of 1-neuron IG measure with 4th-

order LLM for a 1000-neuron symmetric network. The 

measure is insensitive to correlated input W (Red curve) 

but is linearly related to uncorrelated input H (Blue curve). 

The parameters are h=0.500, 2J=0.002 and m=1.
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We calculated analytical solutions for the higher-order IG measures (2-7 neuron IGs) with

different orders of the log linear model (LLM). The network consists of 10 neurons with

uniform recurrent connections (J), receiving both correlated inputs (W) and uncorrelated

inputs (H=5J) (Figure A). Figure B shows that the 2-neuron IG measure is strongly influenced

by correlated inputs (Nie & Tatsuno, 2012). Figures C-G show that the higher-order IG

measures are also affected by correlated inputs in a complex way. However we found that

the effect of correlated inputs becomes smaller for higher-order IG measures and higher-

order LLMs.

1-neuron IG measure can estimate the uncorrelated inputs
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Information-geometric (IG) measure provides a way to estimate

neuronal interactions in a hierarchical manner by different orders

of log linear model (LLM). For instance, the 2nd-order LLM of an

N-neuron system provides the probability dist. of neuron and

as,

where represent IG measures.

𝜃1
(4,𝑁)

= log
𝑝1000∗

𝑝0000∗
, 𝜃2

(4,𝑁)
= log

𝑝0100∗

𝑝0000∗
, 𝜃12

(4,𝑁)
= log

p1100∗p0000∗

p1000∗p0100∗
.

2-neuron IG measure as a robust estimator of connection weights
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Figure1 Figure 2

Recently we investigated influence of correlated inputs on IG measures (Nie & Tatsuno, 2012).

For both high (m=0) and low firing probability (m=1), the 2-neuron IG measure with 4th-order

LLM, , is affected by a correlated input for a small network (N=100, Figs 1A, 1B) but not for

a large network (N=1000, Figs. 1C, 1D). Numerical simulation confirmed that will provide

an estimation of connection strength within a 10% error for a realistically large network (N=1000

to 10000).

m=0 m=1

E: Numerical simulation of 1-neuron IG measure with 4th-

order LLM for a 1000-neuron asymmetric network. The 

measure is insensitive to correlated input W (Red curve) 

but is linearly related to uncorrelated input H (Blue curve). 

The parameters are h=0.500, 2J=0.002 and m=1.
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