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Summary

• We present preliminary experimental evidence for three
cholinergically-induced oscillatory regimes in the hippocampal 
slice observed using field recordings in CA1. Frequencies are 
within the delta (.5-2Hz), theta (5-10Hz) and gamma (50-90Hz) 
bands, and depend on the concentration of the neuromodulator 
(carbachol). We show that these oscillations can occur in a 
superimposed manner. Moreover, theta can be initiated terminated
and phase-reset by afferent stimulations. 
• We also show that these oscillations occur with markedly 
different patterns in the longitudinal slice, in CA3. 
• We suggest that the hippocampal circuitry is capable of 
‘resonating’ at three frequencies, in the same neuromodulatory 
conditions. This system offers a framework for the computational
modeling of the neuromodulation of a single circuit yielding 
multiple oscillatory modes.
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Method

We use young (20-30 days) Long-Evans rats from which 400µm thick slices are obtained. Slices are 
submerged in ACSF (mM: NACl, 124; NaH2CO3, 26; D-glucose, 10; KCl, 5; CaCl2, 2; MgSO4, 2; 
NaH2PO4, 1.2) at 31-32 oC and perfused at constant flow (2ml/min). Electrophysiological recordings 
in CA1 are achieved using extra-cellular recording microelectrodes (ACSF filled, 300-400 KΩ). All 
drugs are freshly prepared in ACSF and bath applied. Stimulation are administred through a unipolar
glass electrode, filled with ACSF, and placed in the Stratum Radiatum. Stimulation and recording are 
monitored by oscilloscope and computer, and saved on disk for off-line analysis. Data analyses are 
performed by programs written in C, and using the Matlab software in a Windows95 environment. 
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Theta (5-10 Hz) Oscillations

When carbachol is added to the perfusion medium, background 
activity increases and spontaneous theta episodes emerge as “waxing 
and waning” patterns of synchronized populations bursts.
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Excitatory Transmission
CNQX reversibly blocks CCH-induced theta.
High concentrations of APV (> 40µM) have no effects.
Low concentrations of APV (<10µM) turn theta into delta.
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Theta Initiation and Termination
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Strong Schaeffer Collaterals stimulations terminate theta.

Repeated stimulations can initiate a theta episode.
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Theta Reset

Medium stimulus strengths reset an ongoing theta episode.
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Delta (.5 - 2 Hz)
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Delta and theta might involve 
different population sizes.
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Gamma (50-90 Hz) Oscillations
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Longitudinal Slice

In longitudinal slices, both theta and delta 
rhythms coexist, at CCH concentrations 
where they would not in transverse slices.

Theta oscillations are longer-lasting and more pronounced in 
longitudinal slices.
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Cellular Effects of Carbachol

• Second messenger systems (IP3).
• Presynaptically depresses synaptic transmission.
• Directly depolarizes pyramidal cells and interneurons.

• IM - Iahp.

Adapted from (Madison et al. 1987)



11

Conclusions

- Underlying circuit: The only modeling study of CCH-induced rhythms has focussed on theta (Traub
et al 1992) elicited in high CCH concentrations (40-50µM). The model only accounts for the ‘waxing’ 
phase of the oscillation. Further work is required to account for the waning phase, and to explain the 
other rhythms found at lower CCH concentrations.

- Relevance to in vivo EEG. In vivo and in vitro delta, theta and gamma rhythms are possibly of 
different nature. However, the fact that a single neuromodulatory substance is capable of activating 
these 3 distinct rhythms in vitro is remarkable. We suggest that the hippocampus features a circuitry 
which is capable of ‘resonating’ at specific frequencies.

- The computational roles of these oscillatory modes are still largely unknown (but see Brad Wyble’s
workshop).
Theta has been involved in induction and reversal of LTP or LTD (Barr et al 1995; Huerta Lisman 1995). 
Theta can be used to synchronize pyramidal cells (Cobb et al, 1995), and may play a role in learning 
(Liljenstrom and Hasselmo 1995; Hasselmo et al 1996) and memory buffering (Jensen et al 1997).

- We presented experimental evidence for 3 cholinergically
induced oscillations in the hippocampal slices: Delta (.5-2 Hz), 
Theta (5-10Hz) and Gamma (50-90Hz). These rhythms can 
coexist in pairs. 10 20 30 40 50
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Conclusions
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