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and Macukow 1992; Mitra and Sapolsky 2009; Neelakanta 
et al. 1991; Ozawa et al. 1998; Porat 1989; Samardzija 1990; 
Sterne 2012; Trianni and Dorigo 2006; Vandenbout and 
Miller 1989; Vanhulle 1991; Wacholder et al. 1989; Wilson 
and Pawley 1988; Yang and França 2003; Yuille 1989; Zak 
1990; Zheng et al. 2010; Destexhe and Sejnowski 2009; 
Suri and Sejnowski 2002; Sejnowski 1976a, b; Ermentrout 
and Cowan 1979; Ramirez-Moreno and Sejnowski 2012). 
Artificial Intelligence also drew the attention of many of our 
authors (Bardal and Chalmers 2023; Bermudez-Contreras 
2021; Collins 2019; Gershman 2024; Kawato and Cortese 
2021; Kubat et al. 1994; Linhares 1998; Porat 1989; Trianni 
and Dorigo 2006; Zak 1990).

Nobel recognition is a double-edged sword. While it 
validates a large body of established work, there is the risk 
that it could decrease the motivation for researchers to do 
more. On the other hand, it may attract the attention of the 
scientific community to contributions made so far and per-
haps encourage others to leverage this work and use it in 
their future research. We stand firmly convinced that more 
can and will be done. We outline below a few directions we 
believe show great promise, and we, of course, would wel-
come such contributions to our journal.

1- The data centers and computing facilities providing 
the physical infrastructure for modern machine learning 
and artificial intelligence require vast amounts of energy, 
water, and other resources, that may prove unsustainable. 
In contrast, human and animal intelligence require only 
the resources of a living individual. What lessons remain 
to be learned about resource-efficient computation in living 
organisms that can inspire practical innovations leading to 
sustainable industrial computing? Furthermore, what are the 
impacts of climate change (e.g. chronic changes in tempera-
ture or humidity) on the neural mechanisms of perception, 
action or cognition? Can they be modeled and predicted?

2- Mimicking certain neural computations by artificial 
neural networks has been tremendously successful over the 
last 15 years. However, what about a better incorporation of 

Never before has work in Computational Neuroscience 
and Artificial Intelligence been recognized as clearly as 
last month when John Hopfield and Geoffrey Hinton were 
awarded the Nobel Prize in Physics, and David Baker, 
Demis Hassabis and John Jumper were awarded the Nobel 
Prize in Chemistry. As editors-in-chief of Biological Cyber-
netics we must point out that some of the seminal work by 
Hopfield, demonstrating the usefulness of neural networks 
to solve notoriously difficult optimization problems, such 
as, the Travelling Salesman/Salesperson Problem (Hopfield 
and Tank 1985) or their usefulness in understanding oscil-
latory and dynamical firing patterns (Li and Hopfield 1989) 
was in fact published in this journal. These publications 
were directly followed up by many authors (Bizzarri 1991; 
Braham and Hamblen 1988; Breston et al. 2021; Collins 
2019; Daucé et al. 2002; Gershman 2024; Ghosh et al. 1991; 
Greve et al. 2009; Jayadeva and Bhaumik 1992; Kamgar-
parsi et al. 1990; Kamgarparsi and Kamgarparsi 1990; 
Kawato and Cortese 2021; Kononenko 1989; Kubat et al. 
1994; Kunstmann et al. 1994; Kunz 1991; Lei 1990; Li and 
Hopfield 1989; Linhares 1998; Mandziuk 1995; Mandziuk 
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synapses, in particular synaptic dynamics? In a biological 
neural network, firing at high frequencies becomes ineffec-
tive if synapses are depressed and do not transmit informa-
tion. Moreover, memory is stored in synapses, not neurons. 
Synaptic transmission has far richer and more diverse time 
scales than neural or dendritic computations, and the poten-
tial of neuromodulation to influence brain computation (e.g. 
via dopamine or norepinephrine) is at least as important at 
the synaptic level as it is at the neural level. Neuromodula-
tion is known to endow computations with flexibility and 
complexity in ways we are just beginning to understand. 
And there are many more synapses than neurons or glial 
cells. Could the next step beyond neural computation and 
artificial neural networks be synaptic computation and arti-
ficial synaptic networks? What would be the impact of syn-
aptic computations on modern brain-inspired AI algorithms, 
which by and large reduce synapses to a single number?

3- Much effort for the past few decades has been put 
towards understanding cognitive processes such as per-
ception, decision-making or spatial navigation. But what 
about emotion? While emotion plays an undeniable role in 
adaptation, homeostasis, and efficiency, investigations in 
robots and machines have involved ‘add-ons’, addition of 
‘emotional modules’ or ‘mechanisms’, to classical cognitive 
architectures, typically as an afterthought. There are no ded-
icated emotional centers in the brain that one can lesion or 
stimulate to causally prevent or trigger a specific emotion, 
only centers that can bias towards them. We argue that it is 
time to rethink the emotional processing from the ground up 
and build a new generation of neurally-inspired perceptual, 
decision-making and navigational algorithms that use emo-
tional processing intrinsically.

4- One of the major challenges facing AI is the (often 
accurate) perception that it is a black box. Algorithms are 
relatively easy to implement but their outputs, because they 
are based on massive computing power and massive train-
ing datasets, are too complex for a single human being to 
understand. For this reason, AI has faced and may continue 
to face skepticism from users and developers alike. It may 
be time to redesign the current approaches to intrinsically 
include explainability and trustworthiness.

5- Many current AI tools and algorithms such as trans-
formers, deep learning networks or reinforcement learn-
ing approaches are loosely inspired by neurobiology. They 
are however largely simplified. For example, transform-
ers are generally feed-forward networks, where learning 
only involves single synaptic weights between neurons. 
The brain has found solutions (perhaps suboptimal ones, 
but solutions nonetheless) to all the major questions AI is 
trying to answer. Can AI algorithms and architectures use 
the deeper insights that are still being obtained from the 
brains of insects or mammals? Isn’t there more AI can do, 

or do better, if it were more closely inspired by the brain 
and its many forms of computations? Reciprocally, many 
modern neural network architectures were obtained seem-
ingly in an ad hoc fashion, because ‘they work better that 
way’ (e.g. faster convergence, greater robustness, closer to 
human performance). This essentially trial-and-error engi-
neering approach has produced very successful algorithms, 
such as ‘context’ processing and ‘attention’ in transform-
ers, and the use of a reinforcement variable in reinforce-
ment learning. Could these algorithms be in fact those used 
by the brain? For example, could dopamine in fact be one 
of the reinforcement variable postulated by reinforcement 
learning algorithms? Could the principles of engineering be 
similar to that of evolution, albeit operating on a different 
time scale? Should experimentalists pay more attention to 
the details of AI algorithms?

6- The brain is a massively parallel device, tolerating 
a massively large amount of apparent noise. Yet, its com-
putations can be exquisitely precise and reliable (as in the 
auditory system for example). It is clear that noise and sto-
chasticity are features of the system, not merely bugs to be 
compensated for by redundancy. A fundamental rethinking 
of computational and AI models may be called for, and new 
AI architectures built to make use of stochasticity and to 
leverage its benefits. Conversely, experimentalists may gain 
more insights into their data if they minimized the amount 
of averaging and smoothing, and focused on those ‘outliers’ 
as possible source of discovery. New computational meth-
ods in AI (e.g. stochastic AI: AI algorithms with intrinsic 
noise) and neural data analyses (e.g. systematic trial by trial 
analyses methods) may be required.

We stand firmly convinced that the recognition of the 
outstanding contributions of the Nobel laureates and many 
others not cited, is the beginning, not the end, of a long jour-
ney. The opportunity for fundamental and paradigm shift-
ing advancements in both Computational Neuroscience and 
Artificial Intelligence, together, hand-in-hand, is clear. This 
synergy will undoubtedly revolutionize other fields such as 
Robotics, Computer Science, or Biology. This is an excit-
ing time, and Biological Cybernetics stands ready to sup-
port this progress by providing a powerful venue to publish 
impactful research.
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