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The human hippocampus receives distinct signals via the lateral entorhinal cortex, typically associated with object features, and the
medial entorhinal cortex, associated with spatial or contextual information.The existence of these distinct types of information calls
for some means by which they can be managed in an appropriate way, by integrating them or keeping them separate as required to
improve recognition.We hypothesize that several anatomical features of the hippocampus, including differentiation in connectivity
between the superior/inferior blades of DG and the distal/proximal regions of CA3 and CA1, work together to play this information
managing role. We construct a set of neural network models with these features and compare their recognition performance when
given noisy or partial versions of contexts and their associated objects. We found that the anterior and posterior regions of the
hippocampus naturally require different ratios of object and context input for optimal performance, due to the greater number of
objects versus contexts. Additionally, we found that having separate processing regions in DG significantly aided recognition in
situations where object inputs were degraded. However, split processing in both DG and CA3 resulted in performance tradeoffs,
though the actual hippocampus may have ways of mitigating such losses.

1. Introduction

We make sense of the world by comparing our immediate
sensations with memories of similar situations. A very basic
type of situation is an encounter with objects in a context.
For example, objects such as a salt shaker, a glass, and a
sink are expected in a kitchen. Even if these objects are
encountered in an office, they suggest a kitchen-like function
to the area (e.g., it is a kitchenette—not a work cubicle). In
other words, the objects evoke the context in which they have
been experienced in the past, and the context evokes objects
that have been experienced there. The hippocampus, which
is essential for the storage and retrieval of memories, is likely
to play a central role in this associational process.

In rats, the hippocampus is oriented along a dorsal-
ventral axis, while in primates this axis becomes an anterior-
posterior axis. In both species, signals reach the hippocampus
via the entorhinal cortex (EC layers II and III), which can
be divided into lateral and medial portions (denoted LEC

and MEC, resp.). Both the LEC and MEC can be further
subdivided into caudolateral and rostromedial bands, with
the caudolateral bands projectingmainly to the posterior half
of the hippocampus and the rostromedial bands projecting
mainly to the anterior half [1].Within the hippocampus, these
entorhinal projections reach the dentate gyrus (DG) andCA3
via the perforant path, as well as CA1. Because of the low
probability of activation of its neurons, DG is thought to be
responsible for producing a sparse representation of a given
input which has minimal overlap with other input patterns,
thereby reducing interference [2]; however the role of DG
in memory is still in question [3–5]. DG projects to CA3
via the mossy fibers, a set of very strong but sparse connec-
tions. In addition to receiving inputs from DG and EC, CA3
also has many recurrent connections which are believed to
serve a pattern completion purpose, allowing details lost in
the sparse DG representation to be recovered in CA3 via
recurrent activity and the help of EC perforant path inputs
[6, 7]. The proximal region of CA3 (relative to DG) then
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projects to the distal portion of CA1, while the distal region
of CA3 projects to the proximal portion of CA1 [8]. These
connections occur in both the anterior and posterior sections
of the hippocampus, with each having its own relatively inde-
pendent (except in the intermediate area between anterior
and posterior) DG, CA3, and CA1 subareas.

CA1 receives input from EC, with the distal portion of
CA1 receiving input from LEC and proximal CA1 receiving
MEC input. CA1 is essential for proper hippocampus func-
tion, since CA1 lesions result in anterograde amnesia [9].
The function of CA1 is not fully known however, although
several ideas have been suggested based on theoretical [6, 7]
or experimental considerations [10, 11]. We propose below a
novel role for the distal and proximal areas of CA1. Each of
these CA1 regions then sends output to other parts of the
brain via two main pathways. The first is via the subiculum
(where CA1 proximal connects to the distal part of subiculum
and vice versa for CA1 distal) and to EC layers V and VI.
The second pathway is via the fornix, which projects to the
mammillary bodies and the thalamus.

LEC receives input mainly from perirhinal cortex and
MEC receives most of its inputs from parahippocampal
cortex (or postrhinal cortex in rats) which receives highly
processed sensory information [12]. In this paper, we will
refer to information about both the surrounding environ-
ment and spatial position within this environment, carried
by the MEC, as the “context,” and the information carried
by LEC as the “object,” which may include relational and
configural information about objects [13]. It has been shown
that in rats, MEC neurons display highly specific spatial grid
fields, whereas LECneurons have onlyweak spatial specificity
[14]. This supports the notion that spatial environmental
information arrives at the hippocampus primarily through
MEC, whereas nonspatial information (what we call object
information) is conveyed through LEC [10, 14]. Note that
although our definition of context is based on the physical
environment, other equally valid definitions are possible. For
example, in a word list memorization task, context can refer
either to the list in which a word appears (if there aremultiple
lists) or to a “processing context” that describes the actions
done during the processing of the word, such as counting the
number of vowels. It can also refer to a “temporal context”
that describes, for example, whether a word was learned later
or earlier during a session [15]. In the temporal contextmodel
(TCM) [12] and context maintenance and retrieval (CMR)
framework [13], context is defined as an internallymaintained
pattern of activity different from the one corresponding
to perception of the item itself. This context, consisting of
background information about the object, changes over time
and becomes associated with other coactive patterns.

The most obvious use of this incoming object and
context information would be to associate and store object
and context memories in hippocampus. However, while the
necessity of hippocampus for spatial context recognition and
navigation is well documented in rats [16, 17], various studies
on the role of the rat hippocampus in object recognition
have returned surprisingly mixed results. Several studies
have found that novel object recognition in rats is impaired
following hippocampal damage [18], temporary inactivation

of the dorsal region [19], or attenuation of LEC inputs to
the dorsal region [10]. These experimental results suggest
that detailed information about the world may indeed be
represented within the dorsal hippocampus and may be
dissociable from contexts, while other studies have concluded
that only contextual information is stored in hippocampus
[20, 21], or that the hippocampus is not required for intact
spontaneous object recognition memory [22]. Analysis of
neural spike data during an object recognition memory task
in rats showed that hippocampal pyramidal cells primarily
encode information about object location but also encode
object identity as a secondary dimension [23]. Manns sug-
gested that objects were represented mainly as points of
interest on the hippocampal cognitivemap, and that this map
might aid the rat in recognizing encounters with particular
objects [23].

In humans, the question of where memory for objects is
stored is still debated, although patients such as H.M. and
K.C. who have had bilateral hippocampus removals demon-
strate that the hippocampus is required for the formation of
new object memories and recall of most short- and medium-
term memories (those formed within the last several years)
[24, 25]. It is known that the human hippocampus is active
during object-type recall [26]. Specifically, during success-
ful memorization of word lists, there is significantly more
activation of the posterior hippocampus than the anterior
hippocampus [27]. A greater degree of posterior activation
is also seen during the encoding of novel pictures [28].
However, the posterior region often responds to spatial tasks
as well, particularly those concerning local spatial detail (see
[29] for a review of differences in spatial and other types of
processing between the anterior and posterior regions). In
this study we assume that both specific object and context
representations exist and are stored as memories within the
hippocampus. While both regions seem to process spatial
contextual information, only the posterior region has been
strongly implicated in object memory as well. We therefore
hypothesize that the anterior region of the primate hip-
pocampus is primarily processing contextual information,
while the posterior region is relatively more object oriented.
The models that we develop in this study have explicit object
recognition as a main feature and should therefore mainly be
considered models of the primate hippocampus because of
the evidence for explicit object representations in this case.
We will discuss how our models can be related to the rat
hippocampus in Section 4.

In summary, we assume that object and context memory
are mainly stored in the posterior and anterior regions of
hippocampus, respectively. Recall, however, that the posterior
region also receives input from the caudolateral band of
the MEC (which carries contextual information), and the
anterior region receives input from the rostromedial band of
the LEC (which carries object information). These connec-
tions raise the question of the purpose of having both object
and context information reach the posterior and anterior
subdivisions of the hippocampus. Recent reconsolidation
experiments have shown that spatial contextual information
plays a significant role in object retrieval and encoding [30,
31]. We propose that the MEC connections to the posterior
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streammentioned above are vital for this.The experimentswe
describe next explain why context plays such a pivotal role in
memory. We provide evidence that elements of hippocampal
anatomy such as differentiation between the blades ofDGand
functional separation of the distal and proximal regions of
CA1maywork together to improve the selective use of context
information in object recognition, and that this can in turn
improve memory performance in certain situations.

Overall, we attempt to formulate a coherent explanation
for the role of several distinct anatomical features of the
hippocampus and how they work together. This explanation
centers on the idea that some of these anatomical differences
may have evolved in order to deal with the two intrinsically
different types of information that enter the hippocampus
through LEC and MEC. These two types of information are
“object” information (specific items within an environment,
e.g., a spoon) and contextual information (the environment
itself—generally less numerous than objects and related to
general classes of objects, e.g., the kitchen).

Our hypothesis is that the anatomical features of the
hippocampus can help manage the flow of these two types
of information better than an undifferentiated hippocampus
could—that they allow these two types of information to
come together only in areas where it is beneficial and keep
them apart otherwise. The question we are addressing in this
paper is the following: can these anatomical features actually
improve performance by playing the information managing
role that we have proposed?We determine this by testing on a
number of basic memorization tasks and find that themodels
with these features do indeed performbetter than the baseline
model on some of the tasks.

Why would we want to examine this question? There
has been a large amount of work done on the theoretical
aspects of how the hippocampus stores generic inputs and
what role each of the main subregions (DG, CA3, and CA1)
may play. In recent years, however, anatomical studies have
demonstrated that there is a high degree of differentiation in
terms of connectivity alongmultiple axes of the hippocampus
(posterior-anterior and distal-proximal) and within each of
the subregions. At the same time, experimental studies have
shown that this differentiation has actual consequences for
the memorization ability of different regions, and the studies
above have shown that context plays an important role in
object memorization. Thus, it is important to consider how
these new findings fit into the theoretical picture of how
the hippocampus works. We can no longer just consider the
hippocampus or its subregions as single blocks (CA1, CA3,
. . .) nor consider all inputs as homogeneous if we are to
have any hope of explaining existing behavioral data at the
neural network level. We come at the question of how the
anatomical data can explain the new experimental data with
two important ideas that we believe have not been adequately
expressed up to now: (1) that the anatomical features
mentioned above play an information managing role whose
existence only becomes necessary once we start to consider
at least two different types of information converging in
the hippocampus and (2) that the roles of these individual
features only make sense when looking at their interaction
with everything else; for example, differentiation within DG

on its own would be less useful for managing information if
the rest of the upstream regions like CA1 did not also have
features (like the proximal-distal distinction in our model)
that make use of how DG partitions this information.

2. Methods

2.1. Model Structure and Connectivity. We use an expanded
version of a model of the hippocampus developed by O’Reilly
et al. [32]. The original model is a basic hippocampus
consisting of a single input (EC layers II and III), a DG,
CA3, and CA1 layer and a single output (EC layers V and
VI). This model includes recursive connections within CA3
and DG to CA3 connections that are 10 times stronger
than the EC to CA3 connections to mimic the sparse but
powerful mossy fiber synapses. The smallest computational
element is a “unit,” which simulates a small population of
neurons in a rate-coded fashion [33]. We will use the term
neuron synonymously with unit in the rest of the paper.
The network is trained using the Leabra algorithm, which is
based on the generalized recirculation algorithm. Unlike the
original model, we do not pretrain the EC → CA1 → output
connection. In addition, we did not model an explicit EC
output layer; we simply have an output layer. Further details
of the original model can be found elsewhere [6, 34].

Our model explicitly separates the posterior and anterior
halves of the hippocampus, so that the network has two CA3
regions, two DG regions, and two CA1 regions, each in the
posterior and anterior poles. EC is split into lateral andmedial
regions (LEC and MEC, resp.), with LEC connected to all
three layers on both the posterior and anterior sides to sim-
ulate the outputs of the caudolateral and rostromedial bands,
respectively, and similarly for MEC. As supported by the
neuroanatomy, CA3 proximal (in relation to DG) connects
to CA1 distal and CA3 distal connects to CA1 proximal [8]. In
order to model this distal/proximal connectivity distinction,
we split each of the two CA1 regions into half again, to give
four separate CA1 regions (two on the posterior side and
two on the anterior side). Each CA1 receives input from the
ipsilateral CA3 along with either LEC input (if it is distal) or
MEC input (if it is proximal).This network will be referred to
as the “Baseline” network (Figure 1).

We model inhibition in each layer as a competitive k-
winner-take-all process, where only the top k most active
neurons send their outputs to the next layer. Thus we can set
the activity level in each region to approximately that seen
in experimental results, where the activity level refers to the
percentage of active neurons at any given time. EC, DG, CA3,
and CA1 have experimental activity levels of 7%, 1%, 2.5%,
and 2.5%, respectively [34]. In our model, these levels are set
to 25%, 1.5%, 2.3%, and 2.5%, respectively.The discrepancy in
EC (both LEC and MEC) is because it is serving as our input
layer and does no computation; EC is just large enough to
hold training patterns with 25% of the units active. The LEC
and MEC layers each consist of 64 neurons. The DG, CA3,
and CA1 layers on the posterior side consist of 800, 256, and
800 neurons, respectively (the distal and proximal regions of
CA1 have 400 neurons each).The same numbers apply on the
anterior side.
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Figure 1: Layer and connectivity diagram of the Baseline network.Matrices representing an object and a context are the inputs to the network.
The outputs are an object (O), an object-based context guess (OBCG), a context-based object guess (CBOG), and a context (C). The OBCG
output is the context that the input object is associated with during training, and the CBOG output is the set of objects that were associated
with the input context during training.

As discussed above, the LEC primarily carries object
information while the MEC carries spatial contextual infor-
mation. Hence in ourmodel we conceptualize the LEC inputs
as “objects” and MEC inputs as “context.” In assigning roles
to the output layers corresponding to the distal and proximal
CA1 regions, we first note that these two regions lie on largely
separate output pathways: CA3 proximal connects mainly to
CA1 distal and CA1 distal connects mainly to the proximal
part of the subiculum, which in turn projects back to the LEC
[8, 35]. On the other hand, CA3 distal connects mainly to
CA1 proximal and CA1 proximal connects to the distal part

of the subiculum, which in turn projects back to the MEC
[8, 35]. If these pathways were both carrying the same type
of information, there would be no need for such a wiring
scheme to keep them separate. Since ourmodel only contains
two types of information, object and context, we assume that
one of these pathways is carrying object information and the
other is carrying context.

On the posterior side of hippocampus we are mainly
focused on its object processing capabilities; hencewe assume
that the relevant outputs must be largely dependent on
using object-type information from LEC. We hypothesize
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that these two outputs are an object guess and an object-
based context guess. The object guess pathway does standard
object recognition by taking the input object, matching it
to the closest object in memory, and giving the best match
as its output. The object-based context guess pathway uses
the object input to generate the context that the object is
associated with: if one gives it the object “swing set,” it returns
“playground,” if one gives it “refrigerator,” it returns “kitchen,”
and so forth. We emphasize that not every neuron in the
given regions is doing these operations or using only one
type of information to do them. But, to the extent that we
have neurons that are encoding nonspatial information in
these regions, we predict that there will be more of them
(or alternatively, that the degree to which they are sensitive
to spatial information will be lower) in the distal region of
CA1 compared to the proximal region. Experimental results
by Henriksen et al. provide support for this, showing that
the strongest spatial modulation occurs in the proximal part
of CA1, and that distal CA1 cells are less spatially tuned
[36].

On the anterior side of the hippocampus, since we focus
on its contextual processing capabilities, we require that its
outputs be largely dependent on using context-type informa-
tion from MEC. We hypothesize that these two outputs are a
context guess and a context-based object guess. The context
guess pathway matches the input context to the closest con-
text in memory, and the context-based object guess uses the
input context to generate a list of the set of objects associated
with the given context. For example, given the context input
“playground,” it would output the object list “swings, sand-
box, slide.”

The final question is which of the distal or proximal
CA1 regions is playing each of these roles. It is known that
MEC projects preferentially to the proximal region of CA1,
while LEC projects preferentially to the distal region [37].
Assuming that the purpose of the two CA1 streams is to keep
object and context-type information largely separate, it seems
unlikely that object information from LEC would then be
projected to the context stream at CA1, and similarly forMEC
inputs and the object stream. Thus, on the posterior side, we
conclude that the object guess is output by distal CA1 and
the object-based context guess is output by proximal CA1.
Similarly, on the anterior side, we conclude that the context-
based object guess is output by distal CA1, and the context
guess is output by proximal CA1.

2.2. Model Variants. Variants of the Baseline network were
designed to investigate the effect of two additional anatomical
details. The first is the differentiation between the inferior
and superior blades of DG. As shown in Figure 2, the DG
may be functionally separated into two parts because of
the different strengths of LEC and MEC connections onto
the superior and inferior blades and a postulated dendritic
gating mechanism [38, 39]. Both blades receive proximal
dendritic MEC input via the medial perforant path (MPP)
and distal dendritic LEC input via the lateral perforant path
(LPP). However, the superior blade receives stronger LPP
input whereas the inferior blade receives strongerMPP input.
We further hypothesize that the effect of this connectivity is

Superior blade

Inferior blade

Hippocampus
DG m.l. g.l.

CA3 CA3

LPP

MPP

Figure 2: Connectivity of lateral perforant path (LPP) and medial
perforant path (MPP) inputs to superior and inferior blade of DG.
The LPP andMPP fiber lamina are thicker on the superior blade and
inferior blades, respectively, resulting in higher effective synaptic
weights (adapted from [38]).

different depending on whether the given DG region lies in
the posterior or anterior hippocampus.

In the posterior hippocampus, the object information
contained in the LPP input is more relevant to its task than
the context information coming from theMPP input.Thuswe
would expect that the DG neurons in posterior hippocampus
would be biased toward (or learn to weight more heavily) the
LPP inputs over the MPP inputs. However, the fact remains
that the MPP inputs are more proximal to the soma and thus
cannot be completely ignored.The hypothesized result of this
tug-of-war (more relevant LPP input butmore proximalMPP
input) is that, in the superior blade where the LPP object
inputs are already stronger than theMPP context inputs, LPP
is able to largely control the neurons’ firing. In the inferior
blade where LPP inputs are weaker, they are able to achieve
approximate parity with the MPP input.

In anterior hippocampus the MPP contextual inputs are
both more relevant and more proximal to the soma. We
hypothesize that this allows the MPP inputs to control the
neurons’ firing, though to a greater extent in the inferior blade
than the superior blade, where LPP input cannot be totally
ignored.

Wemodel the two blades of DG as separate layers in both
the anterior and posterior sides of hippocampus in order to
determine their effect on performance. The model with DG
layers split in this way, but with all other architecture the same
as in the Baseline model, will be referred to as the “SplitDG”
model (Figure 3).

The second anatomical detail we consider is differenti-
ation between the proximal and distal regions of CA3. As
mentioned in the introduction, CA3 has distal and proximal
regions just as in CA1 (here distal and proximal refer to dis-
tance from DG, rather than to the location on the dendrite).
These regions receive different amounts of inferior and sup-
erior blade DG input and have distinct patterns of recur-
rent connections [8]. The amount of recurrent versus feed-
forward connections is also different between the two sub-
areas. Thus these two regions of CA3 may be performing
functionally different roles. In order to determine the pur-
pose of such a split and test whether it may confer some
performance advantage, we construct a third network that
has CA3 split into two layers on each of the posterior and
anterior sides, in addition to the DG split described above.
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Figure 3: Layer and connectivity diagram of the SplitDG network.

Anatomically, the inferior blade of DG projects to proximal
CA3, while the superior blade projects to both proximal and
distal portions of CA3 [8]. As a modeling approximation we
connect the inferior blade to proximal CA3 and the superior
blade to distal CA3 only. Although our model does not cap-
ture the detailed connectivity of CA3, we believe it serves as a
good starting point for understanding the purpose of having

distinct CA3 regions. We will refer to this network as the
“AllSplit” network (Figure 4).

2.3. The “+” Networks. We constructed two additional net-
works, SplitDG+ and AllSplit+, for the purposes of compar-
ison across networks with equal training set error. SplitDG+
is the same as SplitDG, except that each of the DG layers is
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Figure 4: Layer and connectivity diagram of the AllSplit network.

doubled in size. Similarly, AllSplit+ is the same as AllSplit,
except that both the CA3 and DG layers have been doubled
in size. The relevance of these networks is addressed in more
detail in the discussion.

2.4. Training and Test Sets. The training set consists of object
patterns and context patterns (Figure 5). Each object is a
random 8 × 8 matrix of zeros and ones, consisting of 16
ones (active units) and 48 zeros (inactive units). Contexts are
constructed the same way. There are 120 unique objects and
40 unique contexts (3 unique objects per context).

The output layers of the network are referred to as “object”
(O), “object-based context guess” (OBCG), “context-based
object guess” (CBOG), and “context” (C). The correct output
for the object output layer (used as a training signal and
ground truth for the error metric) is the object matrix for the
input object. For the OBCG layer, the correct output is the
context matrix associated with the given object input. For the
CBOG layer, the correct output is the three object matrices
for the three objects associatedwith the given context. Finally,
for the context output layer, the correct output is the context
matrix for the input context.
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Figure 5: Training and test sets. The training set consists of 120 objects and 40 contexts, with 3 objects per context. The test sets are the same
as the training set, except with either noise added (additive or nonadditive noise), part of the pattern missing (partial cue), or an object and
context mismatch.

The network is trained for 20 epochs, where each epoch
consists of presenting all 120 object-context pairs in a random
order and applying the Leabra weight update algorithm after
each presentation. Twenty epochs were chosen as the stop-
ping point because all networks’ training error had stabilized
at close to their minimum value by this time.

After training, the networks’ weights are frozen, and the
networks’ performance is measured using four test sets: addi-
tive noise, nonadditive noise, partial cue, and context mis-
match (Figure 5). In additive noise tests, objects or contexts
have some of the zeros in their matrix replaced by ones,
simulating additional active units. In non-additive noise tests,
for each zero that is replaced by a one, a one from the original
pattern is replaced by a zero, so that the total number of active
units remains the same. In partial cue tests, some of the ones
in the original object or context pattern are replaced by zeros,
resulting in a fewer number of active units overall. In the
context mismatch test, an object is paired with a different
context from the one it was associated with during training.
The level of difficulty of each test depends on the number of
units that are changed from the original pattern, which we
denote by percentages in the figures.

Many experimental or real-life situations can be inter-
preted in terms of these simple tests or a combination of them.
For example, if the object we are memorizing is a man’s face,
we recognize who he is even if he has grown a mustache
(additive noise), is wearing a hat (non-additive noise, since
it adds something but also covers his hair, which is one of his
original features), or is partially turned away from us (partial
cue). In addition, we recognize him even if we see the same
man in a different context (mismatch), although this may be
a somewhat more subtle issue than the previous ones, which
we will discuss further.

3. Results

3.1. Setting the CrossconnectionWeights for the BaselineModel.
We will refer to the connections from LEC to the anterior
side of hippocampus and from MEC to the posterior side as
“crossconnections,” since they bring object information into
the context-dominated anterior side and context information

into the object-dominated posterior side, respectively. The
first task was to determine how the relative amount of cross-
connection and noncrossconnection input affects the error
rate of the Baseline network and use this to maximize its
performance. Since the OBCG and CBOG output layers are
used in different situations from the O and C layers, we test
them accordingly on a different set of tasks. The O and C
layers were tested on a set with mixed additive and non-
additive noise introduced to object and context (15% noise
in each layer) and a set where both object and context were
incomplete (40% complete each). The OBCG layers were
tested when object and context were mismatched, with noise
(30%) in context only, and partial (40%) in context only. For
theCBOG layer, themismatch testwas the same, but the noise
and partial tests were in the object input only (30% object
noise and 40% partial object) rather the context. The results
can be seen in Figure 6.

To determine the optimal LEC and MEC weights for
each output stream, we plot each output layer’s average error
over the set of relevant tests as a function of the crosscon-
nection input it receives. This is shown in Figure 7. We use
this as a guide to set the relative weights of the crosscon-
nections for all the networks to levels which optimize their
performance on the sample tests. Note that for networks such
as SplitDG or AllSplit which have split layers, we optimize
the crossconnection strengths for these layers independently,
while for the Baseline network, we must average the optimal
connection strengths over the two output types. For example,
since the O output does best with a multiplier of 3 while
OBCG does best with a multiplier of 0, we end up with
the Baseline network having a relative weight multiplier of
1.5 for the MEC to dorsal side crossconnections. For the
AllSplit network, we do not need to make this compromise
and can directly use a multiplier of 3 for the MEC inputs into
the DG and CA3 areas which feed into O and use a small
multiplier close to 0 for the DG and CA3 areas which feed
into OBCG.The SplitDG network has the same weighting for
crossconnections to DG and CA1 as the AllSplit network and
the same weighting to CA3 as the Baseline network, since it
only has a single CA3 which the O and OBCG streams must
share. These results show that there is unlikely to be a single
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Figure 6: Error for each of the four output layers of the Baseline network on various sample tasks, as a function of crossconnection weighting.
Crossconnection input refers to LEC input to anterior hippocampus and MEC input to posterior hippocampus. Higher relative weight
multiplier values mean stronger MEC input to posterior and stronger LEC input to anterior streams. (a) Object output error on noisy and
partial cue tests (where both object and context are noisy or partial, resp.) as a function of crossconnection strength. (b) OBCG output error
on noisy and partial cue tests (here the noise and partial are only in the context) as a function of crossconnection strength. (c) Same as A,
except the error is measured at the context output layer. (d) Same as B, except only the object is noisy or partial, and the error is measured at
the CBOG output layer. Error bars are standard errors of the mean.

set of crossconnection weights that optimizes performance
for the various output layers across a range of different tasks.
The flexibility provided by having different DG and CA3
layers that can take different levels of crossconnection input
provides an advantage andmay be one of the reasons why this
anatomical differentiation exists in the hippocampus.

3.2. Training Error. Having fixed the crossconnection
weights in all networks to values that minimize the error
over the sample test sets, we now compare the networks.
First wemeasure the error on the training set after 20 epochs,
when the error has reached its asymptotic minimum. Figure
8 shows the average error for each of the five networks,
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Figure 8: Error on the training set for each of the five networks after
20 epochs of training.

along with the error on each of the four outputs individually.
The networks can be divided into two categories for further
comparison: those which have the same number of neurons,
consisting of AllSplit, SplitDG, and Baseline and those
which have the same initial training set error, consisting of
Baseline, AllSplit+, and SplitDG+. This illustrates the fact
that differences in layer size may play an important role in
the networks’ basic memorization ability. When a layer is
split, each of the halves can specialize more efficiently on the
task, for example, pattern completing an object or converting
an object to a context guess. On the other hand, it must hold
the same number of object or context memories despite
being half the size, resulting in more memorization errors.
Figure 8 shows two possible outcomes of this tradeoff: for
the context and CBOG streams, there is no difference in
training error before and after splitting the CA3 and DG
layers which lie on those streams (compare C and CBOG
error between Baseline, SplitDG, and AllSplit). This is due
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Figure 9: Error on the context-based object guess (CBOG) output
when given only the context as input.

to the fact that these layers only need to store 40 context
memories, so even when they are split in half they have no
difficulty memorizing them all. However, for the object and
OBCG streams, splitting their respective DG or CA3 layers
results in a significant increase in training error (compare
O and OBCG error between the same three networks). In
this case they need to memorize 120 objects, and a CA3 or
DG layer half the size is not sufficient. The results of the “+”
networks show that this is no longer a problem if we simply
have more neurons to start with. The question of whether
it is more appropriate to compare Baseline with AllSplit+
and SplitDG+ (since they start off with the same training
set error) or to compare Baseline with AllSplit and SplitDG
(since they have the same number of neurons) depends on
which situation is more likely to reflect biological reality and
will be addressed further in the discussion. In all subsequent
tests we include the results for each of the five networks.

3.3. Test Sets. We seek to determine how, and in what situa-
tions, contextual information can be used by the hippocam-
pus to aid in object recognition and recall (and similarly how
object information can aid context recognition), and what
role differentiation within DG and CA3 may play in using
this information. To answer these questions, we have con-
structed three primary networks with varying degrees of dif-
ferentiation in the DG and CA3 layers and will test the ability
of each of these networks to recognize objects and contexts
under various conditions of degraded inputs.

A common and simple test of humanmemory is to have a
subject memorize a list of words or set of objects, then recall
them given a cue. We would like to determine if our network
is capable of giving this object output even without the object
input. We simulate this task in our networks by presenting
a context (the cue—which would consist of the room and
the experimenter) and use the CBOG output to get a list of
the objects which have been memorized in the given context.
Figure 9 shows that the CBOG stream performs well in this
task.There is little difference between networks here since all
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Figure 10: Error for each of the networks’ O, C, and OBCG layers when a partial context and full object were given as input. (a) SplitDG, (b)
SplitDG+, (c) AllSplit, (d) AllSplit+, (e) Baseline, and (f) average error across the object output and the lowest of the two context outputs (C
or OBCG) for each network, as a function of percentage of context input presented.

use the same crossconnection strength into the anterior side,
where CBOG is located.

Next we consider the case where the context, rather than
the object, is missing to various degrees. This test will help
us determine the degree to which relying on contextual input
to recognize objects is disadvantageous when the context is
degraded. Figure 10 shows the individual performance of the
output layers O, OBCG, and C as a function of how much
of the context is given for the various networks, illustrating
the effect of having increased MEC inputs into the object
stream. Because the AllSplit network’s object stream uses a
relatively large amount of context information, partial context
input has a greater adverse effect on the AllSplit network’s O
output than it does on the Baseline network’s O output. The
same is true for SplitDG and its “+” counterpart. Thus we do
not expect the AllSplit network to do well compared to the

Baseline network in this situation, and Figure 10(e), which
gives the average error for each network by taking the average
of the error from the O output and the best context output
(either C or OBCG), confirms this. The “+” networks do
relatively better since their larger CA3 sizes allow the partial
context-object mix within the object stream to be pattern
completed to a higher degree. This figure also shows the
advantage (for all the networks) of having an OBCG output
when context is difficult to discern. When the fraction of
context drops below 60%, the networks can rely onOBCG for
their context guess rather than the context stream output C.

The analogous situation on the object side is to present a
partial object and a full context. This test helps us determine
howwell the various network architectures can utilize context
to aid object recognition. At first glance it seems thatwe ought
to make use of the CBOG output to generate an object guess
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Figure 11: Average error on the O and C output layers when full
contexts and partial objects were given as input.

using the clean context, just as we used the OBCG layer in the
partial context case above. However, the problem is that the
CBOG layer activates multiple possible objects rather than
a single object, and thus we would need a way of picking
the correct object out of this list. Cortical areas outside of
hippocampus could conceivably accomplish this by picking
the closest match either to the original input or the O output;
however, since we restrict our model to the hippocampus
proper, we have not attempted to implement such a scheme
and instead use theO output as our exclusive object guess.We
consider this issue further in the discussion. Figure 11 shows
that, when the object is partially given, the increased amount
of context information that the AllSplit network uses via the
MEC to posterior crossconnections becomes an advantage
rather than a liability, as it nowhas an error rate similar to that
of the Baseline network. When the initial training set mem-
orization disadvantage is accounted for under the AllSplit+
network, a consistent advantage for all partial conditions is
seen. Surprisingly, neither SplitDG nor SplitDG+ is able to do
better than the Baseline network, suggesting that some degree
of heterogeneity within CA3 is necessary to take advantage of
the additional context information.

Figure 12 illustrates the effect of having additive-only
noise in the object or context input layers. These tests are of
the same nature as the partial input tests done previously and
are designed to determine if there is any difference in how
the networks deal with noise, and whether this allows more
or less effective use of the crossconnection inputs. As with
the partial object case, the AllSplit network performs well
with object noise by using the additional context information
available to its object stream to help it guess the object. In
this case, the SplitDG and SplitDG+ networks also do better

than the Baseline network and about the same as their AllSplit
counterparts, though slightly worse in high noise situations.
When the noise is in the context input, AllSplit does worse
since it must deal with additional noise in its object represen-
tation. The larger DG and CA3 areas of the SplitDG and “+”
networks clearly help with this task and bring performance
on par with or even better than the Baseline network (in the
case of SplitDG+), indicating that even if the context input
is highly noisy, a large CA3 can extract enough additional
context information to aid in object identification.

Figure 13 shows the results of the non-additive noise task.
As in the additive-only task, the split networks perform better
than the Baseline network when the object is noisy, with the
AllSplit network performing better than SplitDG. When the
context is noisy, the pattern is reversed, although SplitDG
does just as well as the Baseline network.

4. Discussion

4.1. Anterior-Posterior Crossconnections. The results in Fig-
ure 6 suggest that a split network provides performance
advantages compared to the Baseline network. Each output
layer requires a different object to context input ratio in
order to perform optimally on the relevant tasks. The object
output layer gives the network’s best guess as to what the
actual object is, meaning it needs to perform well in low
to medium noise and partial situations where either the
object or context input (or both) is degraded. Surprisingly,
additional contextual information is helpful even when that
context is as noisy/incomplete as the object. This can be
thought of as providing a “bigger picture” for the network to
look at, and thus making it more likely that it can find some
relevant clue which it can use to decipher the entire input.
For example, suppose one is looking at a photograph of a
person taken from a side angle so it is difficult to determine
who it is (partial cue). If a wider-angle photo is now given
which includes some of the person’s body or clothing (partial
context), this information gives a clue as to who the person is,
even if the full context is unavailable. The same idea applies
to noisy objects and contexts.

However, since each context contains several possible
objects, the context input gives less information than the
object input, and therefore its value (as far as the object output
is concerned) decreases rapidly to zero with the amount of
signal degradation. It is not a case when more information
is beneficial regardless of how noisy it is. At some point,
the error introduced by the noise outweighs the value of
having additional information. If the object is presented
noiselessly, then additional contextual information is not very
useful, particularly if it itself contains noise. For the CA3
size used in our AllSplit network, this point of zero benefit
occurs approximately when the context begins to have more
noise or be more incomplete than the object. This is why,
in the “partial context” and “noisy context” tests, we see the
AllSplit network perform rather poorly with its relatively
large amount of context input into the object stream (via
the strong MEC connection). As we would expect, the more
degraded the input context compared to the input object, the
worse the AllSplit network performance. On the other hand,
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Figure 12: Additive-only noise tests. (a) Error across networks, averaged over the O and C output layers, when noisy objects and noiseless
contexts were presented as input. (b) Error across networks, averaged over the O and C output layers, when noiseless objects and noisy
contexts were presented as input.
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Figure 13: Nonadditive noise tests. (a) Error across networks, averaged over the O and C output layers, when noisy objects and noiseless
contexts were presented as input. (b) Error across networks, averaged over the O and C output layers, when noiseless objects and noisy
contexts were presented as input.
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when the input context is less degraded than the input object,
as in the “partial object” and “noisy object” tests, the AllSplit
performance increases above that of the other networks.
Again, because the context inputs have less absolute predict-
ive value than the object inputs (for the object output layer)
to begin with, the beneficial effect of noiseless context is less
than the detrimental effect of degraded context, and as a result
the noiseless context benefit does not come into play until
object noise/partial levels are slightly higher. However, the
beneficial effects can clearly be seen at moderate object noise
levels, and for low noise levels the error is near the training
threshold.

In all the networks, in the case of the context being part-
icularly noisy/incomplete, the context output from the ante-
rior stream may be too noisy for use. The hippocampal net-
work would then turn to the object-based context guess
output to deliver a context prediction, provided that the
object input is relatively noiseless.Thus theOBCG layer needs
to be effective in noisy/partial context and mismatch situa-
tions, which is what we test in Figure 6(b). In order to
achieve good performance, the output must not use theMEC
context input, since this layer will only be called on when
the context is particularly noisy or incomplete. In addition,
if the output relies toomuch on context, it begins to duplicate
the functionality of the anterior context stream. Fortunately
for the AllSplit network, this highly degraded or mismatched
context situation in which Cmust be substituted with OBCG
is also exactly the situation in which the object output fails;
hence it may be able to conveniently rely on the OBCG
layer’s output to give it a reliable context to use. We have not
implemented this backup functionality in our network.

The context output layer is similar to the object output
layer in that it must be able to deal with noise in both object
and context, and dealingwith object noise is of higher priority
(as it is with the object output) because the OBCG layer pro-
vides a backup in the case of high context noise. For the
context layer, thismeans that it should have a small amount of
object input relative to context input. Figure 6(c) shows that
this naturally occurs thanks to the fact that there are much
fewer contexts than objects, and thus the context stream is
very effective at determining context even when they are
noisy/incomplete. As a result additional object information
is of little use to it, so the LEC to context stream input has less
influence than the MEC to object stream input.

As with the context stream, the CBOG stream has fewer
input-output associations to store; hence it relies less on
the object input from LEC crossconnections. It is important
that it depends mostly on context for the same reason that
OBCG depends mostly on object, although the CBOG list
may get called on evenwhen the object input is usable, since it
provides additional information that the object output cannot
give. This layer provides a mechanism by which a list of
objects can be recalled given only a single contextual cue.Net-
works consisting of only a single object and context output
would not be able to model this task. One artificial feature of
this output is that it is N times as large as the object output,
where N is the number of objects per context (here 3). We
are not implying that in the actual hippocampus, the region
that distal CA1 on the anterior side projects to is N times as

large orN times as active as the regions all the other CA1 areas
project to. In the actual hippocampus these object outputs
may come out one at a time, as the network activity has a time
component in spiking networks. Since our model is strictly a
rate-based connectionist model, the only way we can repre-
sent this output is as a single matrix in which all objects are
represented at once. The OBCG output could also be repre-
sented this way, in the case where objects are allowed to
appear in more than one context.

The temporal dynamics of context-based object retrieval
in free recall situations have been given a theoretical founda-
tion in the TCM (temporal context model) and CMR (con-
text maintenance and retrieval) frameworks [40, 41]. Our
model explicitly represents the biological structures and con-
nections that make possible the basic multiple object to con-
text associations (referred to as source clustering) assumed
by these frameworks, but we do not attempt to provide a real-
ization of any of the temporal aspects of memory (temporal
clustering) which TCM and its generalizations also deal with,
such as associations between successively presented contexts
and the recency effect. However, allowing objects to be asso-
ciated with more than one context (as they are in the case of
the temporal context), our model could conceivably provide
a starting point for a biological realization of the TCM frame-
work. The varying internal context of TCM could be pro-
duced within our model by having objects output by CBOG
feed back into the OBCG stream to produce an associated
set of contexts, which would then be used as inputs into the
CBOG stream to produce the next object to be recalled, in a
repeated cycle.

4.2. Effects of Layer Size. There are two ways to approach the
interpretation of the other test results, beginning with the
training set error. The first way is to ignore the size of the
network and compare only those networks that have similar
amounts of error on the training set. In this view, a fair com-
parison would be between those networks that start out with
equal amounts of knowledge on the training set, regardless of
how many epochs it took them to get their error to that level
or how many neurons they have. Here, splitting a layer into
two separate sublayers has little to no disadvantage, because
each sublayer is still large enough to do its task at the same
level as the full layer. This has precedent in the cognitive psy-
chology literature, where, for example, subjects being tested
on recall of a list over time or in different contexts may be
allowed asmany trials as they need tomemorize the list in the
first place, so that all participants start out with the same low
training error rate. This assumes that humans have enough
neurons available to memorize the training list to whatever
degree of accuracy is required, given enough time. In addi-
tion, it is known that in rats, during the course of a particular
spatial task, only a small fraction of the hippocampal CA1
neurons fire during the entire duration of the task. This
suggests that the hippocampus has many more neurons than
necessary for any given task.

Of course, neurons cannot be added to actual test sub-
jects, but in our test networks this provides an effective way to
accomplish the same goal of reducing the error on the train-
ing set, so that all networks start with the same baseline error
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Figure 14: Error on object output layer in a 40% partial object task
as a function of the size of posterior CA3 in the Baseline network.

rate. From the biological standpoint, this way of comparing
networks essentially says that, in the actual brain, the memo-
rization ability of the hippocampus for any particular task is
not limited by the number of neurons, but rather the way in
which they are connected. From this point of view, the basic
AllSplit and SplitDG networks should be ignored, and the
results of Baseline should only be compared against AllSplit+
and SplitDG+, since all three of these networks have the same
error rate on the initial training set.

The second way to interpret the results is to take the
neuron-limited view, where a fair comparison would be
between networks which have the same number of neurons,
regardless of howwell they are able to store the initial training
set. In this view, splitting a layer into two separate sublayers
incurs the penalty of each sublayer now being half the size.
Biologically, this means that neurons are costly in terms of
energy required to build andmaintain, and that the brain has
as few neurons as possible while still being able to perform
its required tasks. From this point of view, Baseline should be
compared with AllSplit and SplitDG since they have the same
number of neurons, and AllSplit+ and SplitDG+ should be
ignored.

In the biological hippocampus, the answer probably lies
somewhere between the two extremes. Figure 14 shows that
increasing the size of CA3 in the Baseline network results
in lower error rates, but that eventually the error stops
decreasing with layer size. If the hippocampus is in the
rightmost region of the graph, then it has enoughneurons and
there is little cost to splitting a layer, so it is best approximated
by the “+”models. On the other hand, if it is near the leftmost
region of the graph, it is severely neuron constrained, and
splitting a layer results in a dramatic decrease in performance
on each of the streams. In this case it would be better
approximated by the normal (non-+) models.

Overall, the test results show that the AllSplit network
is best for noisy or partial object situations and worst when
given noisy or partial context. AllSplit+ has uniformly better

performance as expected but follows the same general pattern
as AllSplit. On the other hand, the Baseline network is
relatively better at noisy or partial context situations thanwith
noisy or partial object. Rarely is it the best network at any
particular task, however, with the exception of partial context.
It is most similar to the SplitDG network, which is what we
expected based on its architecture. The SplitDG network has
good all-around performance. Compared to Baseline, it does
consistently better in noisy or partial object tests, about the
same in noisy context, but noticeably worse when presented
with partial context. SplitDG+ is generally about the same
as SplitDG on noisy or partial object tests, but its larger DG
seems to aid in the incorporation of context information
when it is noisy or partial. This allows it to do significantly
better than SplitDG in such tasks and puts it on par or better
than Baseline. Our results thus suggest that differentiation
within DG provides uniformly better performance over a
nondifferentiated DG if it is large enough (SplitDG+), and
generally better performance with the exception of partial
context tasks if DG is size constrained (SplitDG). Additional
differentiation within CA3 (AllSplit and AllSplit+) may work
to further increase noisy and partial object task performance,
but at the cost of the corresponding degraded context task
performance.

4.3. Object Noise versus Context Noise. These results raise the
question of whether it is better for the object stream to be
able to deal with noisy objects (AllSplit) or noisy contexts
(Baseline), where we will use the term “noise” to refer to
partial cues as well. We argue that there is inherently less
noise in contexts than in objects; hence dealing with object
noise is more important. To make things concrete, consider
the case of an animal in search of food. It has to find edible
plants and insects and has to memorize a large amount of
object-related information. Depending on the time of year
and the time of day, the types of plants or insects it can
eat and their appearance change (noise). On the other hand,
the season and spatial environment are contextual cues that
change slowly, and there are only a relatively small number of
different contexts it must identify: its dwelling, its scavenging
grounds, what season it is, and so forth. In general, the much
larger number of objects in existence makes it likely that
interference and noise aremuchmore likely to occur between
objects than between object and contexts, which are few in
number and change only slowly over time.

The second argument is that, given some recurrent sup-
port structures, noise in context is easier for the hippocampus
to deal with than noise in object. The context stream deals
with context noise relatively well since the contexts are few
and well memorized. Thus getting a clean context to the
object stream requires only taking the context stream output
(C) and feeding it back into the object stream. If the context
is very noisy or absent (to the point that the context stream
output is no longer useful), the output of the OBCG layer
can be used instead.Thus there are two independent ways for
the object stream to not have to deal with context noise, each
involving only a recurrent loop.

With object noise, the situation is different. The object
stream is itself responsible for determining the object; thus
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the only place it can turn to for additional object information
is the CBOG output, which uses context to make object
guesses. However, since the CBOG stream uses mainly con-
text information, the best it can do is to give a list of possible
objects that are associated with that context. Choosing one
object out of this list would then require a separate calculation
where the input object is comparedwith theCBOGoutput list
and the best match selected. This would not be an easy task
when the input object is noisy, although it would be signifi-
cantly easier than the object stream’s original task, which is to
compare the input object to a list of 120 possible objects and
choose the closest match. Thus the object noise problem can
certainly be overcome with the help of additional structures,
but it may be more judicious to simply use context informa-
tion in the object stream from the beginning, which is exactly
the solution that the AllSplit and SplitDG networks use.
They then trade the object noise problem for a context noise
problem, but this seems to be amuch easier issue to deal with.

4.4.Mismatches. Mismatches, consisting of an object appear-
ing in a different context from that it was learned into, are by
definition rare events. If they happened frequently, the object
would simply be associated with the new context and it would
no longer be considered a mismatch. On the posterior side, a
mismatchmeans that the incoming context information does
not match the primary object input from LEC, thus putting
it in a situation similar to having a very noisy context but
noiseless object. On the anterior side, where MEC context
information is primary, the incoming object input introduces
uncertainty, and the situation is similar to a very noisy object
but noiseless context. Due to the smaller number of inputs
it needs to store and the fact that LEC input is relatively
weak, mismatches have little effect on the anterior stream—
if we see someone from the office at the mall, we do not
have any trouble recognizing our context as the mall. On the
other hand, the large amount ofMEC input into the posterior
stream means that a mismatched context can significantly
affect object recognition—it may take us several seconds to
recognize a colleague if we unexpectedly encounter them
at the mall, whereas the recognition is nearly instantaneous
when we see them at the office.

Any encoding and retrieval scheme which uses context-
ual information to recognize objects, as we believe the hip-
pocampus does, will naturally have problems in mismatch
situations. However, this is only the case if we believe that a
familiar object in a different context from usual ought to still
be recognized as the same familiar object. In many situations
it may make sense to consider object A in context A as effect-
ively different from object A in context B [42]. The large
amount of error that a mismatch produces may be beneficial
for signaling that something is wrong or unexpected and
deserves our attention.

4.5. Relation to Rat Hippocampus. Ourmodel is not explicitly
a place field model, and in the way we have conceptualized it
and in its current form our model better reflects the primate
hippocampus. However, with some minor modifications
the model would be consistent with the observation of
higher-resolution place fields in dorsal compared to ventral

hippocampus. We will switch to using the appropriate termi-
nology for the rat anatomy in this discussion, so that anterior
and posterior in our model are now ventral and dorsal, and
the caudolateral and rostromedial bands ofMEC and LEC are
now dorsolateral and ventromedial, respectively.

In ourmodel, for simplicity’s sake, wemake nodistinction
between the dorsolateral and ventromedial bands of the
MEC, modeling both as carrying the same context informa-
tion, albeit to different parts of hippocampus (dorsal versus
ventral, resp.). However, it is known that neurons in the
dorsolateral band ofMEC aremore spatially tuned than those
in the ventromedial band [43], and thus we would expect
that the dorsal hippocampus, receiving higher-resolution
spatial information from the dorsolateral band, would have
the tighter place fields that are seen experimentally. If we
wanted to extend our model to cover this additional aspect
of the anatomy, we could do this by having two different
types of contextual inputs, a “local” context and a less precise
“global” context which might represent the context at a larger
spatial scale or contain some other nonspatial information,
with the local context being carried by the dorsolateral MEC
and the global context being carried by the ventromedial
MEC.

Note that both the dorsal and ventral subdivisions of
the hippocampus receive the nonspatial LEC inputs to some
extent. However, we refer to the dorsal hippocampus as the
more object-oriented layer in our model compatible with
human fMRI studies and our set of sample tests (shown in
Figures 6 and 7) which led us to set the relative weighting
of the LEC input larger than that of the MEC input for
optimal performance (and the reverse is true on the ventral
hippocampus for context information). Of course, the set of
“tests” that the rat hippocampus has evolved to do could be
different from the basic tests that we proposed. For example,
the performance on the mismatch test (where the presented
object and context were not associated) was a significant fac-
tor in determining how strong the MEC to dorsal hip-
pocampus connections should be. A strong MEC to dorsal
connection results in a large amount of error on the OBCG
output, and as a result those connectionswere kept veryweak.
In the rat hippocampus, however, it could be the case that it
simply just does badly onmismatches because they are so rare
that they do not need to be protected against with weakMEC
to dorsal weighting, or it could be that in the case of mis-
matches, additional cortical processing is involved. In either
case, the MEC to dorsal signal could well be just as strong or
stronger than the LEC to dorsal signal.

In conjunction with the dorsolateral versus ventromedial
band differences mentioned above, the dorsal and ventral
streams of our rat-modified model would not contradict the
general conception of the dorsal stream as being context
oriented and more finely spatially tuned than the ventral
side. In summary, the degree to which the MEC’s spatial
contextual information is relevant in the dorsal side of the
rat hippocampus is probablymuch higher than that indicated
in our model, where we look at objects, rather than context,
as the primary information the hippocampus is storing and
view context as information that can contribute to object
recognition.
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5. Conclusion

We constructed hippocampus models that include anatom-
ical and functional details such as the distinction between
the posterior and anterior subdivisions of the hippocampus,
connections from the medial and lateral entorhinal cortex to
both the posterior and anterior regions, differences between
the superior and inferior blades of the dentate gyrus, and
connectivity differences between distal and proximal (relative
to DG) portions of CA3 and CA1. We hypothesized distinct
roles for each of theCA1 areas on the proximal and distal sides
and attempted to show how these anatomical details work
together to increase performance on certain tasks. In particu-
lar, we showed that object and context require different treat-
ment in terms of how much one is used to help recognize
the other. This is simply due to the greater number of objects
compared to the number of contexts rather than intrinsic
differences in representation. In addition, we showed how the
hippocampal anatomy supports the use of contextual inform-
ation to help object recognition and proposed ways in which
the tradeoffs inherent to this could possibly be mitigated.

Our models make several predictions that may be exper-
imentally tested. We predict that the inferior blade of DG
and proximal CA3 in the posterior region of hippocampus
receives more MEC innervation, or that these neurons are
more sensitive to MEC inputs, than is the case with LEC
inputs into the anterior side of hippocampus. Blocking MEC
input into posterior hippocampus should have a significant
negative effect on object recognition when the object is noisy
or only partially shown, assuming that the object was asso-
ciated with a specific context, but should have only a mildly
negative or even a positive effect if the context is noisy or
obscured. Blocking LEC input into anterior hippocampus
should have much less of an effect on context recognition
in either case, assuming that there are many more objects
than contexts. If the number of contexts and the number of
objects are roughly equal, then we should see effects simi-
lar to those seen on the posterior stream with MEC input.
Our assumptions about the two different types of information
being carried along the output pathways can also be experi-
mentally tested by comparing the information content of
proximal CA1 and distal CA1 neurons. We predict that distal
CA1 neurons on both the posterior and anterior sides will
be more likely to carry object-type information, while pro-
ximal CA1 neurons will tend to carry primarily context-type
information.

We found that the models that have only DG split
(SplitDG and SplitDG+) did the best overall on our test sets,
generally doing about the same as the Baseline model when
the context input was degraded, and significantly better when
the object input was degraded. The models with both DG
and CA3 split (AllSplit and AllSplit+) did even better in noisy
or incomplete object situations, but at a cost in performance
on the corresponding degraded context tasks. As we men-
tioned in the discussion, it may be the case that degraded
context situations are relatively rare compared to degraded
object situations, and thus the performance tradeoff of the
AllSplit networks may in fact be optimal. However, it is
probably also the case that the hippocampus does not make

as severe a tradeoff as we have in our models, where CA3
is either completely unified or completely split. For instance,
both regions of CA3 in the actual hippocampus receive sup-
erior blade input from DG, rather than just the distal region.
In our model, the superior blade on the posterior side of hip-
pocampus carries mainly LEC object information, so includ-
ing this feature may change the ratio of object to context
information within proximal CA3 in favor of object infor-
mation and thereby reduce some of the deleterious effects of
noisy context that we observed in the AllSplit network. The
two regions of CA3 also communicate to an extent, although
they have different connectivity patterns in terms of the pro-
portion of projections they send within CA3 and onward to
CA1. Exactly how these differences affect hippocampal func-
tion remains a topic for future research.

To date, much of the computational literature on the hip-
pocampus has either focused on only object memorization or
only spatial context memorization and has not attempted to
identify how these different types of information may mutu-
ally support each other within the hippocampus or eluci-
date specific anatomical details within the hippocampus that
may allow this to occur. On the other hand, experimental lit-
erature that addresses details such as the LEC andMEC cross-
connections has often assigned them only the vague role of
allowing a mixing or integration of object and context infor-
mation. We have hypothesized specific ways that object and
context informationmay be used in the posterior and anterior
regions of the hippocampus, shown that the connectivity of
hippocampus supports and enables these uses, and identified
specific situations in which these object-context interactions
have a beneficial or deleterious effect. Our results thus suggest
new ways of thinking about the sort of computations that the
hippocampusmay do, andhow it uses both object and context
to perform them.
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