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ARTICLE INFO ABSTRACT

Background: The precise detection of cortical sleep spindles is critical to basic research on memory consolidation
in rodents. Previous research using automatic spindle detection algorithms often lacks systematic parameter
variations and validations.
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l;at ) New Method: We present a method to systematically tune and validate algorithm parameters in automatic
ow wave Seep spindle detection algorithms using a moderate number of human raters.
Consolidation

Results: Comparing a Hilbert transform-based algorithm to a ground truth constructed by six human raters, this
method produced a parameter set yielding an F1 score of 0.82 at 10 ms resolution. The algorithm performance
fell within the range of human agreement with the ground truth. Both human and algorithm failures arose
largely from disagreement in spindle boundaries rather than spindle occurrence. With no additional tuning, the
algorithm performed similarly in recordings from different days or rats.

Comparison with existing methods: Most spindle detection algorithms do not perform systematic parameter var-
iations and validation using a ground truth. To our knowledge, our study is the first in which rodent spindle data
is scored by humans, and in which an automatic spindle detection algorithm is evaluated with respect to this
ground truth. The rodent data from this study make it possible to compare our algorithm with others previously
tested on human data.

Conclusions: We present a general ground truth based approach for the tuning and validation of spindle ex-
traction algorithms and suggest that algorithms aimed at extracting precise spindle timing in rats should use a
systematic approach for parameter tuning.

1. Introduction

Different types of neural oscillations occur during waking and
sleeping states in the mammalian brain. These oscillations include
complex interactions between inhibition and excitation and support
many cognitive processes by regulating the activity of cells in the re-
gions in which they occur (Buzsdki, 2006). Sleep spindles—bouts of
oscillatory activity of a few hundred milliseconds duration at approxi-
mately 10-15Hz during non-rapid eye movement sleep—are of parti-
cular interest in the field of memory consolidation (Luthi, 2014;
Niknazar et al., 2015; Jiang et al., 2017). In humans, spindle density
increases during sleep after learning in paired-associates tasks (Gais
et al.,, 2002; Schabus et al., 2004) and in procedural memory tasks
(Fogel and Smith, 2006). Spindles are thought to support the integra-
tion of new information with prior knowledge (Tamminen et al., 2010).

Changes in memory performance across the lifetime may be related to
changes in spindle physiology observed in older adult humans (Mander
et al., 2014; Helfrich et al., 2018).

In rats, spindle density increases during sleep after olfactory paired-
associates learning (Eschenko et al., 2006), supporting the validity of
rodent models of sleep-dependent memory consolidation. Rodent stu-
dies allow for the collection of large data sets that include simulta-
neously occurring oscillatory population activity and single cell firing
from multiple recording sites. Such recordings have identified the
timing relationship between sharp wave-ripple oscillations in the hip-
pocampus and spindle onset in the cortex as a potential mechanism for
memory consolidation (Siapas and Wilson, 1998). In conjunction with
slow wave activity preceding spindle onset, this interaction has since
been shown to support, at least in part, recall performance
(Latchoumane et al., 2017). Cell activity across regions coordinates
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Fig. 1. Methods for spindle recordings. A: Stereotaxic coordinates for hyperdrive implantation. B: Left, cartoon showing approximate extent of tetrode tracks in deep
mPFC layers (grey area). Right, photograph of Nissl staining. Arrows indicate electrolytic lesions.

with consolidation-related oscillations as well, producing correlated
firing activity in the hippocampus and cortex in conjunction with sharp
wave-ripples (Sirota et al., 2003; Wierzynski et al., 2009). However, the
distinct functional role of spindles is not yet fully understood.

Defining the contributions of spindles requires a reliable method for
their detection (Harper et al., 2016). Spindles are usually detected ei-
ther as events with delineated boundaries or as increases in spectral
power in a specific frequency band. Because spindles with identified
start and end times are well suited for the study of timing relationships
between spindles and other oscillations or single cells, many studies use
event detection algorithms. These algorithms typically use a combina-
tion of bandpass filtering, thresholding, and frequency-domain trans-
formations (Gais et al., 2002; Molle et al., 2002; Clemens et al., 2007;
Muller et al., 2016). However, such studies often use different para-
meters and transforms with little or no reference to a procedure for
parameter selection or metric assessing detection quality. This makes it
difficult to compare detection quality and overall results from different
studies. A procedure for detection evaluation is necessary to fully un-
derstand the magnitude and types of error in the results of a detection.

As an alternative to examining detection quality, the results from
experimental recordings can be normalized using a control recording
under the assumption that error rates are stationary and scale linearly
with the number of spindles detected. This may suffice in studies of
spindle density in short experiments, but could obscure fine temporal
relationships in any statistics that are averaged across events. One
possible way to overcome this difficulty is to assess the reliability of the
detection against an empirically constructed ground truth. For this
reason, many questions in the memory consolidation literature stand to
gain from a unified evaluation procedure.

A number of studies have compared automatic spindle detection
algorithms to manual scoring on data recorded from humans, usually
following guidelines established by the American Academy of Sleep
Medicine (Iber et al., 2007; Devuyst et al., 2011; Warby et al., 2014;
Wallant et al., 2016). The performance of automatic detectors often
does not match well that of human spindle identification, even in stu-
dies that compare algorithms with the goal of distinguishing which ones
perform better than others on a given data set. In some cases, the al-
gorithm parameters chosen for testing may contribute to this problem.
Studies of detection algorithms often report on a chosen parameter set
intended to be applied to any data (Warby et al., 2014; Lachner-Piza
et al., 2018). However, tuning to individual subjects may yield different
parameters, indicating that the performance of a single parameter set
may vary across recordings (Lajnef et al., 2017). We propose a rigorous
framework for spindle detection evaluation in the context of parameter
variations that generalize to new datasets.

In addition, prior studies have not evaluated the reliability of au-
tomatic detection or inter-rater variability in the context of rodent sleep
spindles. Previous studies in humans have recommended agreement
between a minimum number of experts or non-experts to ensure a re-
liable ground truth, or gold standard, for comparison with automatic
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detection (Wendt et al., 2015; Zhao et al., 2017). Unlike with human
sleep, for which a sleep technologist certification exists, expert quali-
fications are unclear and difficult to assess in the context of rodent
sleep. Similarly, multiple databases exist containing expert-scored
spindles from human sleep, but no database is yet available for rodent
data. In this work, we create such a database using manual scoring by
trained non-expert raters and develop a method to validate and adjust
rodent spindle detection algorithms.

2. Methods
2.1. Animals

All methods were approved by the Institutional Animal Care and
Use Committee of the University of Arizona. Experimental protocols
followed all relevant NIH guidelines. Recordings from four adult male
Brown Norway rats (7-8 months old) were used. Rats were housed on a
reversed 12h/12h light cycle in a temperature- and humidity-con-
trolled room and weighed a minimum of 85% ad libitum body weight.
All animals were given at least 3 days of acclimation after delivery.
Experiments were conducted in a familiar low-light (< 0.51x) en-
vironment during the first half of their dark phase.

2.2. Surgical procedures

Surgery was conducted using methods previously used (Valdes
et al., 2015; Contreras et al., 2018). Rats were implanted under 2-3.0%
isoflurane anesthesia with a 14-tetrode hyperdrive (Gothard et al.,
1996) targeted to the right medial prefrontal cortex (mPFC, Fig. 1A, B.
AP: +3.1, L: +1.1, angle: 9.0°). Two stainless steel electrodes were also
implanted in the left or right dorsal CA1 of the hippocampus (AP: -4.5,
L: +3.0, DV: 2.2). Another stainless steel electrode was implanted in
the neck muscles for electromyographic characterization of sleep and
wake states. Rats received two carprofen injections (Rymadil, 3 mg/kg
subcutaneous at the end of surgery and 24 h later) and recovered for a
minimum of 72h after surgery. Electrodes were lowered by
300-350 pm per day until the target area was reached.

After recordings were completed, animals were injected with keta-
mine-xylazine (112 mg/kg ketamine and 14 mg/kg xylazine) under
deep isoflurane anesthesia and transcardially perfused with phosphate
buffered saline solution followed by 4% paraformaldehyde (PFA).
Brains were extracted and stored in fresh PFA. They were transferred to
a solution of 30% sucrose and 0.02% sodium azide 72 h after extraction
and allowed to sink before sectioning.

2.3. Electrophysiology
Recordings used Teflon-coated nichrome wires (17 pm, Sandvik)

gold-plated to an impedance of 500-1000 kQ. Local field potentials
were sampled at 2.4 kHz with 0.1 Hz (high pass) and 500 Hz (low pass)
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filtering by a digital Lynx SX amplifier controlled by the Cheetah data
acquisition software (Neuralynx, Inc., Bozeman, MT). The electro-
myogram (EMG) signal was sampled at the same rate with 200 Hz (high
pass) and 2 kHz (low pass) digital filtering.

Spindles were recorded at depths of 1400-4500 um to include the
anterior cingulate and prelimbic regions of mPFC.

2.4. Histology

Electrode tracks were verified using electrolytic lesions (5-20 pA;
24h and 30 min before perfusion). Fifty micrometer frozen sections
were obtained using a Cryostat (Leica Biosystems Inc., Buffalo Grove,
IL) and Nissl stained using a 0.5% cresyl violet solution (Fig. 1B, right).
In some experiments, a series of lesions 634 pm apart was performed as
an electrode was slowly retracted from its final depth. These lesions
were used to assess tissue shrinkage after Nissl processing (Fig. 1B, right
arrows).

2.5. Manual spindle detection

In order to assess the performance of our algorithm, a ‘ground truth’
(GT) was constructed. Raters scored spindles manually using a gra-
phical user interface developed in the laboratory using MATLAB
(Fig. 2A). This interface allows raters to scroll through a continuous
recording, skip wake periods, adjust the visualization time window
(default 2.0s), and mark events with boxes and a quality rating
(Fig. 2B-F). Quality rating included a category for spindles without a
putative K-complex (Fig. 2E). Because spindle frequencies may coincide
with late K-complex activity, raters were instructed to include K-com-
plexes when co-occurring with spindles (Fig. 2B-D, F). Panel 1G shows
an example of a spindle-free bout of sleep for comparison. The present
study combines all spindle categories.

The raters contributing to this study had different amounts of ex-
perience relevant to spindle identification. Two raters had prior ex-
posure to rodent sleep electrophysiology and spindle scoring on rodent
data, three raters had prior exposure to sleep electrophysiology only,
and one rater had no prior exposure to either electrophysiology or
spindle scoring. A scoring manual was developed by the authors in
order to standardize training (available on our website). All raters at-
tended an in-person meeting to review the scoring manual and learn
how to use the graphical user interface. The manual outlined inclusion
criteria of spindle frequency (approximately 11-15Hz), duration (at
least 3 cycles, to ensure that detected events were oscillatory and to
approximate the 200 ms minimum of the automatic detection), and
amplitude, along with categorization based on the presence of a puta-
tive K-complex. No maximum spindle duration was imposed due to the
presence of dense bouts of spindle activity that may obfuscate spindle
start and end times; the study of these sequences is left for further work.
The raters did not have access to the power spectrum of the trace and
extracted and scored spindles on the basis of the raw voltage trace only.

2.6. Automatic spindle detection

All data processing and analyses were performed in MATLAB
(Mathworks, Inc., Natick, MA) using custom-written code freely avail-
able from the laboratory website. The automatic detection algorithm
used three simultaneously sampled spindle-rich channels. Results using
a single channel were similar to results with three channels. Each
channel was subsampled by a factor of 8 and filtered using a
Butterworth bandpass filter of order 8 (MATLAB: butter(4,...); this was
excluded from parameter variations because filter orders of 6 and 10
produced extraction results within 0.25% of order 8 results based on
respective F1 scores relative to ground truth). The amplitude of the
resulting signal was averaged across the 3 channels and a Hilbert
transform was performed and smoothed using a Gaussian kernel. The
peaks of the transform were detected above a threshold. Periods above
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threshold of at least 300 ms duration constituted candidate spindles and
were ranked by peak height above baseline. No maximum spindle
duration was imposed.

The parameter sweep tested five parameters. For the bandpass filter
frequencies: 1 Hz increments were used to vary the low frequency cut-
off from 7 Hz to 12 Hz, and the high frequency cut-off from 15Hz to
20 Hz. This resulted in 36 bandpass filter combinations encompassing
the ranges reported in most publications. The same bandpass filter was
applied to all 3 voltage traces. A Hilbert transform was applied to the
average of the three filtered traces. The width of the Gaussian
smoothing applied to the Hilbert transform was varied from 200 to
500 ms in increments of 100 ms. A detection threshold was then applied
to identify spindles from peaks in the resulting transform. The threshold
was tested at values from 1 through 3.5 standard deviations above
baseline in increments of 0.1.

An additional parameter was used to reject a percentage of the
lowest detected spindle peaks ranked by their height above baseline.
This parameter is useful for comparison between its effects and the
impact of raising the detection threshold, as the extraction threshold
and rejection criterion originate in the same measure (Hilbert peak
height above baseline). There should exist for every increment in ex-
traction threshold some decrease in rejection criterion that yields the
same spindle detection output. However, because of the non-linearity of
these variations, the precise pairing between these two quantities is
difficult to establish analytically. This led us to include it in our results,
even though it may not have a unique effect on the quality of the au-
tomatic spindle detection.

In total, the sweep included 29,952 different parameter sets in order
to fully characterize the interaction between parameters. To manage
memory, we divided the work into two chunks including all variations
of bandpass filter, smoothing window, and rejection criterion, but se-
parately varying the detection threshold from 1 to 2.3 and from 2.4 to
3.5. Each of these took approximately 5h to run on a 64-bit Windows
machine. The results of the two sweeps were combined into a single
stored file for analysis. The potential use of limited sweeps for faster
tuning is discussed later in the text.

2.7. Agreement measures

In spindle scoring, time occupied by spindles constitutes a minority
of the sleep recording. This means that, as previous studies have
pointed out, measures that account for the correct detection rate of true
negatives (specificity) and/or chance rater agreement provide little
benefit in indicating the extent of error in a detection (O’Reilly and
Nielsen, 2015; Tsanas and Clifford, 2015). We verified that agreement
between individual human raters and ground truth was similar between
F1 score (mean 0.78 + 0.04) and Cohen’s kappa coefficient values
(mean 0.75 * 0.05). Because the F1 score facilitates the examination
of sources of error in a detection, we report only the F1 score in our
study.

For each rater, spindle start and stop times (in ps) were used to
populate an array marking spindle presence in 10 ms bins. Ground truth
included bins for which at least three of the six raters agreed. The
agreement between ground truth and individual raters was assessed by
comparing the bins occupied by spindles using the F1 score calculated
as:
R=2X ————
Recall

@

Precision

where recall is the proportion of true positives out of the sum of true
positives and false negatives, and precision is the proportion of true
positives out of the sum of true positives and false positives. All F1
scores are based on agreement at 10 ms resolution.

As a secondary measure assessing sources of error in the spindle
detection, individual spindle events were also categorized as true
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Fig. 2. Methods for spindle assessment by human raters. A: Graphic user interface used for spindle scoring. Vertical dotted lines mark 200 ms increments. The drop-
down menu on the right allows spindle quality/category rating. B: Spindle with well-defined K-complex, frequency, and amplitude. C: Spindle with imperfect K-
complex and amplitude. D: Brief, low-amplitude spindle. E: Spindle without visible K-complex. F: Irregular spindle with K-complex. G: Portion of sleep without
spindles. All images show a 2000 ms window representative of the view used for spindle scoring. Dotted lines represent 200 ms intervals.

positives, false positives, and false negatives. True positives were de-
tected spindles with at least one 10 ms bin of overlap with the ground
truth. False positives were detected spindles that did not meet this
criterion. False negatives were spindles that existed in the ground truth
but had no overlap with any detected spindles. These categories made it
possible to assess the relative contribution of soft failures and hard
failures to F1 scores. Soft failures, or failures contiguous with ground
truth spindles (jitter in true spindle start/end timestamps) were dis-
tinguished from hard failures, which are discrete events (incorrect
spindles). Although soft failures and hard failures are identified using a
criterion of event overlap, both are evaluated for their contributions to
overall false positives and negatives in terms of 10 ms bins.
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3. Data sharing

Whole datasets (raw EEG voltage recordings) including the tuning
dataset and some testing datasets, corresponding rater scoring, and
automatic detection results will be posted on the laboratory website and
the CRCNS data sharing repository (CRCNS.org). The graphic user in-
terface and training manual used for spindle scoring, as well as custom-
written code used for figures and results, will be made freely available
from the laboratory website (amygdala.psychdept.arizona.edu/
lab.html).
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4. Results
4.1. Construction of a ground truth

Spindle scoring from six raters for one 150-minute recording formed
the basis for our multi-rater scoring tests. Agreement across raters was
compared at 10ms resolution using the F1 score. Pairwise rater
agreement was strong overall, with a mean F1 score of 0.78 + 0.04
(Fig. 3A). To optimize the number of raters contributing to ground
truth, we compared the mean F1 score of each rater to ground truths
constructed using different thresholds of rater agreement. We refer to
this threshold as the agreement criterion, which varies from 1 through 6
for ground truths constructed using all six raters. Previous publications
have noted the limitations of ground truth construction from human
raters, especially in the context of scoring from only two raters (O’Reilly
and Nielsen, 2015; Tsanas and Clifford, 2015; Lachner-Piza et al.,
2018). In a two-rater condition, only two ground truth construction
rules are possible: combining all marks from both raters regardless of
inter-rater agreement, or including only marks that both raters agreed
on. These correspond to an agreement criterion of 1 and an agreement
criterion of 6, respectively in Fig. 3B and C. Agreement criteria between
these values implement a combination rule in which a minimum
number of raters must agree, but these raters can be different for each
spindle (e.g., one bin identified by an agreement criterion of two out of
six could be validated by raters 1 and 2, while another is validated by
raters 1, 4, and 6).

To evaluate how different construction rules influenced ground
truth reliability with respect to individual raters, we first compared
each rater to different levels of agreement between the other five raters
using a leave-one-out cross-validation method. The highest mean F1
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score occurred at an agreement criterion of three raters out of six
(means shown using Xs, Fig. 3B). We then compared each rater to a
ground truth using scores including their own, which produced a si-
milar result (Xs, Fig. 3C).

In both cases, the range in rater F1 scores narrowed at moderate
agreement criteria relative to the most relaxed (one-rater) and strictest
(all-rater) agreements. This inverted U-shaped curve suggests that, past
a certain level of agreement, further increases to the agreement cri-
terion are detrimental, giving individual raters who detected fewer
spindles disproportionate influence over the ground truth. Requiring
that all 6 raters agree gave the lowest score of all combinations. In fact,
setting the threshold equal to the number of contributing raters (‘X
raters out of X’) led to worse individual F1 scores relative to those
ground truths as the number of contributors increased (circles, Fig. 3C).
On this basis, we chose agreement between any three out of six raters as
our criterion for inclusion in the ground truth (arrow).

The F1 scores of individual raters relative to the ground truth had a
mean of 0.87 * 0.04 for the full recording. Each F1 score can be de-
composed into its component scores of recall (1-False Negatives) and
precision (1-False Positives) (Fig. 3D). Near-perfect F1 scores would
have points clustering close to the maximum of 1 on both axes. How-
ever, false positives and negatives may occur at different rates and can
have unequal influence on the F1 score. Three raters were noticeably
biased toward false negatives relative to the ground truth, whereas only
one was biased toward false positives. Interestingly, the relationship
between recall and precision for our sample of six raters was quasi-
linear (R? = 0.341, p = 0.223).

We next asked whether raters are consistent within the recording,
from its start to its end. The ground truth contained 827 discrete spindle
events, and the recording was divided into non-overlapping sections of
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100 spindles for higher F1 score resolution. Performance varied be-
tween raters, with a tendency for raters with lower overall F1 scores to
demonstrate greater variability (Fig. 3E). No trends in F1 score were
apparent across raters for any sections of the recording, which suggests
that fluctuations were due to raters rather than changes in the recording
quality. Most raters also detected similar spindle density relative to the
ground truth throughout the recording (Fig. 3F).

4.2. Parameter optimization

Using the ground truth from this recording, we conducted a para-
meter sensitivity study testing the automatic detection algorithm on a
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range of bandpass filters, smoothing windows, extraction thresholds,
and rejection criteria (details in Methods). Fig. 4A shows the interaction
between extraction threshold and rejection criterion using maximum
(left) and minimum (right) F1 scores from all bandpass filters and
smoothing window combinations. The asymmetry in the sharp drop off
from the central ridges (arrows) showed that the detriment of removing
spindles above a high threshold (> 2.5 STD) was greater than the
benefit of removing a percentage of spindles above a low threshold.
(< 1.5 STD). The ridge in the minimum curve was narrower than the
one in the maximum curve (arrows), indicating the need to monitor the
range in F1 scores for a given extraction threshold and rejection cri-
terion.
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Fig. 5. Soft failures of the algorithm with respect to human raters failures. A: Incidence of false positive (left) and false negative (right) failures of the chosen
parameter set relative to ground truth. B: Incidence of false positive (left) and false negative (right) failures of a representative human rater relative to ground truth.
Counts are represented by the colors of the dots. Red Xs denote the mean for each overlap (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article).

This relationship can be optimized using cross-sections of the data.
Ideally, a parameter set will have a high mean F1 score and a small
range in F1 scores across all variations in bandpass filter and smoothing
window. We compared these quantities for different extraction
thresholds at a given rejection criterion (Fig. 4B). This method identi-
fied two parameter combinations of interest: one detecting the strongest
70% of spindles at least 1.9 standard deviations above baseline (left
double-arrow), and another detecting all spindles at least 2.7 standard
deviations above baseline (right double arrow).

We also studied the effect of the Hilbert transform smoothing
window on the F1 score. A window of 300 ms had a significantly greater
effect on F1 score than any other tested value as determined by one-way
ANOVA (F(2,22461) = 5076.77, p < 0.001, Fig. 4C). It should be
noted, however, that this effect only resulted in small changes in ab-
solute F1 score, suggesting that the smoothing window has a relatively
minor influence on spindle detection outcomes when compared to the
other parameters studied here.

Observation of all parameter combinations with a 300ms
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smoothing window showed a boomerang-shaped relationship between
false positives and false negatives (Fig. 4D). This curve suggests a
compromise between the two types of failures, with optimal parameter
sets found in the area of curvature in the distribution (upper right
corner of the graph). Indeed, most parameter sets using the extraction
thresholds and rejection criteria of interest identified in Fig. 4B are
located in this region (crosses and circles in Fig. 4D). Interestingly,
there is a larger range in false positives (precision on y-axis, min:
0.2885, max: 0.8981) than false negatives (recall on x-axis, min:
0.5545, max: 0.9569) across all parameter sets, but the opposite is true
within the parameter sets of interest (crosses and circles, Fig. 4D). This
highlights the importance of conducting a large-scale parameter sweep
in the optimization procedure, since local variations on an individual
parameter setting may not yield a result space that reflects these re-
lationships.

The two extraction threshold and rejection criterion combinations
of interest show similar results across variations in bandpass filter fre-
quency limits (Fig. 4E-G). We plot the ratio of true positive to false
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positive spindle events (TPS:FPS), Recall, Precision and F1 score si-
multaneously using a lozenge diagram (Fig. 4E). In this display, larger
values are further from the center and lozenges with larger areas reflect
better bandpass filters. The two parameter sets identified with the ar-
rows in Fig. 4B produce maximal results in the same range of bandpass
filter boundaries (shaded area, Fig. 4F-G). To select a parameter set for
closer examination, we first chose to proceed with only the higher-
threshold, no-rejection combination (Fig. 4B, right arrow) because it
required one fewer parameter at no additional cost to the results
(Fig. 4G). We then chose the bandpass filter with the highest F1 score at
that threshold, ensuring that the difference between recall and preci-
sion did not exceed 0.1 in order to prevent bias toward either false
positive or false negative errors. This parameter set had recall of 0.8446
and precision of 0.7965, producing an F1 score of 0.8226 and a ratio of
13 true positive spindles to each false positive spindle (7.7% false po-
sitive event rate). Notably, these results were comparable to those
produced by parameter sets tuned using half of the ground truth spindle
events and testing on the other half (tuning with first half/testing on
second half: F1 score 0.7983; tuning with second half/testing on first
half: F1 score 0.7986). In summary, tuning using the full 150-minute
recording identified a parameter set with an 11-17 Hz bandpass filter,
2.7 standard deviation extraction threshold, smoothing window of
300 ms, and no rejection parameter.

4.3. Sources of rater disagreement

The chosen parameter set detected 760 spindles occupying 795 s of
the recording (mean spindle duration 1.05 = 0.57s). False positives
and negatives at 10 ms resolution were divided into two categories. Soft
failures represented disagreement in the start and/or end times of true
spindles, and hard failures occurred as part of spindles that were de-
tected by either the algorithm/human or ground truth but not both.

Fig. 5 shows the distribution of soft false negative spindles (in-
dividual points) for different amounts of minimum spindle overlap
between the spindles detected by the human (Fig. 5A) and algorithm
(Fig. 5B) and the ground truth. Spindles with no failures for the tested
category were excluded from plots and statistics. For example, the error
time of each spindle overlapping the ground truth by at least 20% ap-
pears in the fourth column of dots on each panel, with the dot color
representing the number of spindles at a given level of false positives.
Red crosses represent the average number of false positives at a given
overlap level.

The distributions of soft false positive and false negative failures in
human raters were skewed relative to the average, with most cases
involving disagreement of less than 100 ms (median disagreement of
70 ms across all raters at minimum 5% spindle overlap; data from Rater
1 shown in Fig. 5A). False positives were more numerous overall
(133.14 = 73.85s) than false negatives (70.55 * 54.95s). On
average across all raters, false positives consisted of 49.85 + 40.39 s of
soft failure and 20.33 + 17.05s of hard failure. False negatives con-
sisted of 64.59 = 55.82 s of contiguous failure and 68.45 + 54.16s of
discrete failure. As evidenced by the large standard deviations, in-
dividual raters did not exhibit any particular category of failure.

For the automatic detection algorithm, false positives consisted of
110.56 s of soft failures and 35.10 s of hard failures and false negatives
included 122.67 s of soft failures and 37.36s of hard failures. Strong
skew was also present in the distributions of soft failures in the auto-
matic detection algorithm, as can be seen by the asymmetry around the
averages at all overlap levels (Fig. 5B). Fewer spindles had soft false
positives (511 spindles, 67%) than soft false negatives (532 spindles,
70%). Soft false positives occupied 110.56 s, whereas soft false nega-
tives occupied 122.67 s. This suggests that the chosen parameters op-
timized the balance between positive and negative failures.

Fig. 6 shows an analysis of the hard failures of the automatic de-
tection algorithm. We used Welch’s method to estimate the power
spectral density over the time range of a given spindle identified by our
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detector, assigning a dominant frequency to the spindle. Hard failures
did not differ in frequency from true spindle events (Fig. 6A). Both false
positive and false negative hard failures had low spindle power when
compared to true positives (Fig. 6B), suggesting that threshold adjust-
ments (see methods) would likely not be effective in rescuing these
failures. Most hard failures were of relatively short duration (less than
1s, 6C middle and right panels). False negatives (Fig. 6C, right) showed
a lower minimum duration than true positives or false positives, con-
sistent with the 300 ms minimum duration for automatic detection;
raters were trained to score events featuring a minimum of 3 cycles
rather than a minimum duration, allowing them to detect events briefer
than 200 ms that the automatic detection would not extract.

In sum, hard failures of the automatic detection algorithm ac-
counted for 70.46s (52 false positive spindles and 71 false negative
spindles) of failure relative to ground truth, and were characterized by
short durations and low power. Rescuing them could involve the use of
complementary algorithms with additional detection criteria.

4.4. Applicability to other datasets

To test whether optimization using a single recording could gen-
eralize across sessions and rats, we compared automatic detections
using the parameter set chosen above to additional 150-minute re-
cordings scored by a single rater (Rater 1 in Fig. 3A, E, F). These re-
cordings were not used for parameter tuning and were introduced ex-
clusively to test the tuned parameter set. In total, the rat from the
session used for parameter tuning (Figs. 3-5) contributed three re-
cordings and two other rats contributed two recordings each. Five re-
cordings were taken in anterior cingulate cortex and two were obtained
from prelimbic cortex.

The F1 scores for 100-spindle sections of the rater’s scoring were
comparable across recordings, although the results favored the original
recording used to tune the parameters (Fig. 7A, ‘Tuning session’). In our
sample, differences between sessions did not appear to vary system-
atically by recording depth or rat, suggesting that the automatic de-
tection algorithm was not sensitive to particular recording depths, or
spindle properties between rats. Further work with a larger number of
sessions at different depths and from different rats should be collected
to confirm this finding.

One recording session exhibited a poor overall F1 score (arrow,
Fig. 7A). We plotted the standard deviation of the amplitude of the
Hilbert transform over the course of the entire recording (‘Full re-
cording’) and during detected spindle times (‘Spindle Only’) for each of
the sessions used. All 8 recordings had comparable ratios of transform
variability during spindles to overall variability across the recording
(1.45 = 0.04 to 1). In our samples, the variability of the transform
during detected spindles was always higher than when computed using
the entire recording (H(2) = 1.8, p = 0.18, Fig. 7B). Interestingly, the
recording that had the lowest F1 score was also the one with the lowest
Hilbert transform variability (lowest line, arrow, Fig. 7B). In this case,
the standard parameter set chosen may not have been optimal for this
session. Additional data and procedures may be required to find a
parameter set (e.g. threshold) adapted to the overall properties of re-
cordings with low signal variability.

5. Discussion

Many studies of cortical activity during sleep focus on spindles at
coarse resolution, estimating spindle density based on changes in power
spectra. Relatively few studies test the precise timing of spindle gen-
eration because of the difficulty to extract them automatically in a re-
liable manner. Our results outline a general method to validate auto-
matic individual spindle detection algorithms with a moderate number
of human raters, tune algorithm parameters, and generalize these
parameters to other recordings with limited or no rater validation.

We show that a reliable ground truth may be constructed based on
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Fig. 6. Hard failures of the automatic detection algorithm. A: Frequency of true positive (left), false positive (center), and false negative (right) spindles. B: Power of
spindles at dominant frequency in each category from A. C: Duration of spindles in each category from A.

an agreement of three human raters out of six. These raters do not need
to be experts at spindle extraction and need only basic training.
Computing the ground truth on the basis of too few or too many raters,
or requiring agreement between all raters in a pool of any size, may
have a deleterious effect on its assessment as measured by the F1 score.
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This problem can be avoided by comparing rater agreement with the
ground truth and choosing the agreement criterion with the highest and
most consistent individual rater agreement, similar to Warby et al.
(2014). The agreement criterion should be optimized for different rater
pools in order to adjust to higher or lower rates of rater error. We show

Full Recording
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Fig. 7. Generalization of the chosen parameter set to other recordings. A: Automatic detection F1 scores per section of 100 single-rater ground truth spindles in
recordings from different days and rats. B: Hilbert transform variability in the same sample of recordings.
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that under these conditions, individual raters had a high and temporally
consistent F1 score when compared to ground truth. Notably, our
average inter-rater F1 score matched the highest inter-rater reliability
reported in a study of human spindle detection by expert sleep tech-
nicians (Wendt et al., 2015).

We also showed that spindle density could be well approximated by
the individual scoring of most raters, as evidenced by the similarity in
multiple raters’ detections of spindle density over the course of the
recording. Our ground truth based on three out of six raters produced
an effective estimate that captured the same temporal dynamics of
spindle density as human raters. Taking together both rater and ground
truth estimates of spindle density, and the high F1 scores comparing
human raters and the ground truth, it appears that the ground truth
captures the timing of individual spindles as well. These results suggest
that a ground truth based on three out of six raters with basic training
can both successfully estimate spindle density and the precise timing of
individual spindle occurrence.

While it is always possible to construct a ground truth by ag-
gregating across spindles marked by individual raters, one limitation of
this approach is the possibility that minor but consistent variations
across raters may contaminate the estimate. For example, during per-
iods when spindles occur in rapid sequences, there may be overlap in
the boundaries of spindles marked by different raters. Consequently,
the ground truth identifies times that should generally be detected as
spindle-rich— but not the precise timing of the start or end of each
spindle. This complicates the meaning of any comparison metric, in-
cluding the F1 score: meaningful, yet brief, gaps between spindles de-
tected by individual human raters or an algorithm could count as de-
viations from perfect agreement. This affects ground truths constructed
even in circumstances of high inter-rater reliability. In cases of low
agreement between human raters, it would add to the existing problem
of rater influence on F1 score (O’Reilly and Nielsen, 2015). Attempting
to find algorithm parameters that achieve a higher F1 score than in-
dividual humans could therefore compromise the advantage of methods
that detect spindle boundaries when compared to spectral methods that
reliably capture coarser spindle-rich epochs. However, these epochs can
be identified by measuring inter-spindle intervals in detections per-
formed by an algorithm or by individual raters, and can be excluded
from analyses or parameter tuning if so desired.

Using the recording used for tuning, the performance of the auto-
matic detection algorithm was similar to that obtained by human rater
agreement. The ideal case would be to achieve near-perfect recall,
minimizing false negatives, before affecting precision with higher rates
of false positives. The balance observed using the parameter sweep in
this study occurs around values of 0.8 for both quantities. This pro-
duced a dense region of F1 scores just within two standard deviations
below the mean F1 score of our human raters relative to the ground
truth.

The inaccuracies of our automatic detection consisted mostly of soft
failures. These failures were related to the precise start and end of a
spindle rather than to whether they occurred at all. Spindles that were
missed or that were incorrectly detected (hard failures) had relatively
low power and were of shorter duration than average. Such features
may prompt the design of future algorithms that could focus specifically
on transient low-power events.

Because our analysis focused on continuous time series, our F1
scores calculated agreement at a resolution of 10 ms. This differed from
by-event strategies, which classify whole spindles as true positives using
an overlap threshold, used for some F1 calculations in studies reporting
expert (Warby et al., 2014; Wendt et al., 2015) and non-expert agree-
ment (Zhao et al., 2017). High ratios of true positive spindles to false
positive spindles were observed for a wide range of parameter sets with
variable F1 scores, suggesting that parameter tuning should emphasize
criteria related to F1 score.

The comparison of rater performance with ground truth in 100-
spindle sections allows us to understand how raters varied over the
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course of one recording. This variability can be contrasted to that of a
given rater assessing the same session multiple times, which would
demonstrate how individual raters learn from experience and whether
they converge onto a stable rating. Unlike in our study, where most
raters agree with each other consistently in a given recording session, a
study of intra-rater variability would require that multiple sessions be
used to ensure that the results were not dependent on the specifics of a
particular sleep epoch. Raters could spend either a short amount of time
between rating sessions, allowing for evaluation of rater reliability
within similar circumstances, or a longer amount of time to assess re-
liability in the long term. The latter condition has been partially ad-
dressed in previous spindle detection literature in humans (Wendt et al.,
2015), but not in rodents. We left additional study of intra-rater relia-
bility for further work.

We were surprised to find that the optimal extraction threshold
identified during our parameter tuning was higher than the thresholds
used in some studies (Eschenko et al., 2006; Molle et al., 2011; Sullivan
et al., 2014). To our knowledge, the manner in which these thresholds
were set was ad hoc, with little or no justification provided. This sug-
gests that previous spindle detection methods using low thresholds may
have been biased towards the detection of more spindles than were
actually occurring, and that they therefore included a large number of
false positives, the consequence of which is difficult to estimate.

At the same time, actual differences between recordings may war-
rant different parameters. Without an established procedure to optimize
parameters for spindle detection, the amount of detection error may
vary across studies and remains unquantified. The method introduced
here accounts for the need for flexibility between studies and provides
rationale for the chosen parameters, allowing the adoption of a
common framework for parameter selection. It is compatible with au-
tomatic detections using the algorithm discussed here and variations on
it. To support the evaluation of additional detection approaches as well
as the parameters of a given detection, the data will be freely available
for comparison of detectors specifically in the context of rodent re-
cordings.

As noted above, automatic detection with a tuned parameter set
may show weaker correspondence to a human ground truth in re-
cordings that were not used for optimization. Performance was slightly
lower in the sample of additional recordings tested, but remained
comparable for most recordings. Simplifications of the procedure may
be appropriate in some contexts. To reduce computation time, it is
possible to run two reduced parameter sweeps while maintaining suf-
ficient coverage of the parameter space: first, a coarse sweep with large
intervals (e.g., threshold values varied in increments of 0.5 instead of
0.1), and then a fine sweep between the two parameter values with the
best outcomes. This is recommended only for algorithms that do not
exhibit local minima/maxima in F1 score. To reduce the amount of
human scoring required for parameter tuning or post-hoc verification of
a chosen parameter set, it is also possible to limit the ground truth
sample to the first 200-300 rater-detected spindles in a recording.
However, it is important to note that tuning using this approach must
still be conducted independently of data used for analyses.
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