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There has been extensive research in recent years on the multi-scale nature of hippocampal place cells
and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In
this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning
during goal-oriented navigation when compared to a spatial cognition system composed of single scale
place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to
find the shortest path to the goal after a number of learning trials. Synaptic connections are modified
using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model
is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale

representations favor goal-oriented navigation task learning.
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1. Introduction

We present a model for spatial cognition based on the multi-
scale organization of the dorsal-ventral axes of the hippocampus.
The theoretical concept of a cognitive map in the brain was first
proposed by Tolman (1948) as the essential module responsible
for estimating the rat’s position in the environment. Through
an extensive review of the literature at the time, O’Keefe and
Nadel proposed that the cognitive map laid within the brain’s
hippocampus (O'Keefe & Nadel, 1978). This suggestion was in
part based on the discovery of O’Keefe and Dostrovsky (O’Keefe
& Dostrovsky, 1971) place cells in the rat’s hippocampus, termed
as such due to the high correlation between their firing and the
rat location in the environment. The region of the environment
specific to each cell, is called their place field.

This property turns these cells into a rich source of information
for navigational purposes, as they provide an encoding of the rat
location. Even though no individual place cell provides accurate
location information by itself, it has been shown that the location
of the animal can be predicted with an error of 1 cm based solely on
the activity levels of an ensemble of cells (Guger et al., 2011; Jensen
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& Lisman, 2000; Wilson & McNaughton, 1993; Zhang, Ginzburg,
McNaughton, & Sejnowski, 1998).

The discovery of grid cells in the rat’s Medial Entorhinal
Cortex (MEC) was first published by Fyhn, Molden, Witter, Moser,
and Moser (2004), it suggested that grid cell firing signaled
the rat’s changing position in the environment. Hafting, Fyhn,
Molden, Moser, and Moser (2005) presented findings that grid
node spacing increased in a modular fashion in MEC in overall
correspondence with the gradual increase in place field size along
the dorsoventral axis of the hippocampus (Brun et al., 2008; Jung,
Wiener, & McNaughton, 1994; Maurer, Vanrhoads, Sutherland,
Lipa, & McNaughton, 2005). For a review of the multi-scale
representation of space, we refer the reader to Geva-Sagiv, Las,
Yovel, and Ulanovsky (2015).

The MEC also contains head-direction cells whose activity is re-
lated to the current head orientation of the rat (Blumberg, 2015).
Altogether, these discoveries suggest that spatial navigation may
originate in a fundamental multi-scale representation of space
along the dorso-ventral axis of the hippocampal formation, mod-
ulated by self-motion and external cues that includes, although
not limited to, visual detection of distal and proximal landmarks.
Recent work has shown a gradient of head direction cells tuning
width along the dorso-ventral axis of the MEC (Giocomo et al.,
2014) in the upper layers (inputs to the hippocampus), but not in
the deep layers. While there is some theoretical evidence that grid
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cells may help the accuracy of spatial navigation (Guanella & Ver-
schure, 2007), there is little evidence that they do so experimen-
tally (Hales et al., 2014).

There is extensive research on spatial cognition models inspired
by place cells coding in the rat’s hippocampus used to evaluate
goal-oriented spatial navigation with simulation and with real
robots (Arleo, Smeraldi, & Gerstner, 2004; Barrera & Weitzenfeld,
2008; Brown & Sharp, 1995; Burgess, Recce, & O’Keefe, 1994;
Caluwaerts et al., 2012; Dollé, Sheynikhovich, Girard, Chavarriaga,
& Guillot, 2010; Filliat & Meyer, 2002; Gaussier, Revel, Banquet, &
Babeau, 2002; Guazzelli, Bota, Corbacho, & Arbib, 1998; Krichmar,
Nitz, Gally, & Edelman, 2005; Milford & Wyeth, 2007, 2009; Pata,
Escuredo, Lallée, & Verschure, 2014; Recce & Harris, 1996; Redish
& Touretzky, 1997; Sukumar, Rengaswamy, & Chakravarthy,
2012; Tejera, Barrera, Fellous, Llofriu, & Weitzenfeld, 2013).
However, few of them incorporate some aspects of multi-scale
representation of space.

Chen, Jacobson, Erdem, Hasselmo, and Milford (2013) imple-
ment an array of support vector machines on video segments to
recognize places, where different segment lengths represent dif-
ferent scales of representation. The introduction of larger scales of
representation improves recall in their classification system. Pata
et al. (2014) develops a model of the hippocampus to explore the
functional differences of DG and CA3 while accounting for the dif-
ferences in scale across the dorsoventral axis. These two have a
strong focus on place and grid cell formation. Our work, in contrast,
focuses in goal directed navigation, on how to use the information
provided by these cell to reach a desired goal.

Erdem and Hasselmo (2014) adds multiple scales of represen-
tation to a previous model of spatial navigation based on forward
lookup probes, which resemble short-wave ripple (SWR) activity
in the hippocampus. The addition of larger scales of representation
improves the effective distance of forward lookup probes, improv-
ing navigational performance. We believe our work complements
this approach. Short-wave ripple activity have been suggested to
guide navigation (Johnson & Redish, 2007; Pfeiffer & Foster, 2013),
but it occurs during sleep or when the rat is still (Foster & Wilson,
2006). Thus, while Erdem and Hasselmo (2014) work focuses on
high level planning during key decision points, our model focuses
on the decision making that takes place while the rat is in motion.
Our working hypothesis is that this decision making can also ben-
efit from different scales of representation.

We based our study on the biological role of dorsal and
ventral hippocampal place cells and contrast the roles of the
small, medium and large place fields represented across the septo-
temporal (dorsoventral) axis of the hippocampus. We develop a
neural architecture of multi-scale hippocampal place cells to be
evaluated during a goal-oriented robot navigational task. This task
involves learning to locate a fixed goal in a circular arena, inspired
by the Morris’ water maze task, where instead of a submerged
platform, the goal can only be recognized when the robot is very
close to it (de Jong, Gereke, Martin, & Fellous, 2011). Distal cues
are set on the perimeter of the arena to facilitate localization. The
task involves multiple trials during which navigation to the goal
is reinforced by applying a Q-Learning algorithm (Sutton & Barto,
1998), inspired by the neuro-modulatory effects of dopamine
(Cox & Krichmar, 2009), and adapted to the multi-scale nature of
place fields. The task is evaluated using computer simulations and
physical robots. Section 2 describes the spatial cognition model,
Section 3 presents the goal-oriented task and the experimental
layout, Section 4 presents simulated and robot experimental
results, Section 5 includes a discussion of the results and Section 6
provides conclusions and discussion of future work.

2. The spatial cognition model

The spatial cognition model is comprised of six main modules,
described below and shown in Fig. 1.

It has been proposed that navigation involves the interaction
of four components: place cells, head direction cells, local view
and path integration (Redish & Touretzky, 1997; Touretzky, 2002).
We consider our path integration and local view components as
solved. Namely, place cell firing values are derived from sources
of location information directly, rather than computing them from
path integration and visual information, as will be explained in
the Experiments section. Thus, we focus in this work on the place
cell and head direction cells components and their contribution
to learning using multiple scales. Our model uses this multi-
scale representation as the information source for a reward driven
learning system (Krichmar & Réhrbein, 2013).

2.1. Modules

Place Cell Module. This module calculates the firing of a population
artificial place cells. They take the current position x of the robot as
input and calculate the firing rate as Eq. (1).
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Where f; is the firing rate of cell i, ¢; its preferred location and
X; its covariance matrix. Namely, each cell fires according to a
2D gaussian function with a center on each place cell preferred
position, as modeled by O'Keefe and Burgess (1996).

The key of this work involves the use of different scales of
place cells, which we map to choosing different X. The covariances
matrix are always of the form %I, where o models de specificity
and [ is the identity matrix.

Head Direction Module. This model computes the firing of a
population of artificial head direction cells. This module takes the
current heading 6 of the robot and compute the firing rate of each
cells as Eq. (2).

o 91)2>

202

fi=exp (— (2)

Where f; is the firing rate of the ith head direction cell, o
its variance and 6; its preferred orientation. Thus, this cells are
also computed as a gaussian function with the peak in the cell’s
preferred value.

Multi-Scale QL Module. This module performs Q-Learning on the
information provided by the place cells and head direction cells.
Place and orientation information is obtained by selecting all
possible pairs from both sets and computing the resulting activity
as the product of both the place cell and head direction cell. This
combined source of information is passed onto the QL module,
which will be explained in detail below.

Taxic Behavior Module. This behavior moves towards a visible goal.
It works cooperatively with the QL learning module by assigning
a fixed value to the action that will take the robot to the goal. In
the framework proposed by Guazzelli et al. (1998), this module
corresponds to the execution of the affordance of going to a visible
goal.

Exploration Behavior. This module promotes exploration in early
phases of an experiment. The exploration value is calculated
as shown in Eq. (3), where episode is the episode number,
maxReward is the maximum reward possible given to the robot,
and B is a given parameter that models how fast the exploration



64 M. Llofriu et al. / Neural Networks 72 (2015) 62-74

PC Module

ventral  scale dorsal

-3 —  — - .
e (oI cn)

HDC Module

ventral  scale dorsal
-

Orientation =-=--J (LM”] (Lw”] I i

Internal State =-—Jpm

Proximity Information -—-->

J Visual Information---->

Multi-Scale
QL Module

Action

Taxic Selection

Exploration I- ------- I

Wall Avoidance

Fig. 1. The system modules and the flow of information. The dotted arrows represent flow of information. The Place Cell Module (PC) receives location information. The
Head Direction Cell Module (HDC) receives orientation information. PC and HDC information are combined and sent to the Multi-Scale Q-Learning Module, which outputs
action selection values. The Taxic Module receives visual information, the Exploration Module incorporates internal state information, the Wall Avoidance Module processes

proximity information.

value decays. Higher values of 8 mean slower decay, and thus,
more exploration.

expval = maxReward * 0.5 * exp(—episode/B). (3)

This module works cooperatively too.

Wall Avoidance Behavior. This module also works cooperatively
with the QL learning module. It prevents the robot from bumping
into walls by assigning negative values to the actions that would
lead to them.

Action Selection. In order to select an action a linear combination
of each action value provided by the different modules (QL, Taxic,
Exploration, Wall Avoidance) is performed. The action with the
greater value is chosen as the next action to execute in a winner-
take-all fashion.

2.2. Dorso-ventral multi-scale place cell driven learning

Place cells are a good source of information for location (Wilson
& McNaughton, 1993). We adapted the classical RL algorithm in
order to use a multi-scale space representation as we describe in
more details next.

2.2.1. Place cells as the RL state

When aratisin a specific location within a known environment,
a set of place cells fire signaling that the animal is within their place
fields. Since place fields overlap (O’Keefe, 1976), several cells might
be firing at any given moment.

Thus, in the animal’'s brain, the location is encoded as
the activity of an ensemble of cells. This contrasts with the
intuitive representation of the state as vector holding position
and orientation information. Thus, our RL algorithm input is
comprised of a set of place cell activities that encode the current
location (Arleo et al., 2004; Barrera, Tejera, Llofriu, & Weitzenfeld,
2015; Chavarriaga, Strosslin, Sheynikhovich, & Gerstner, 2005;
Gaussier et al., 2002).

When dealing with a continuous state space, some RL solutions
resort to discretization of the environment, due to its simplicity of
implementation (Kober, Bagnell, & Peters, 2013). Fig. 2 illustrates
the difference between an environment discretization and the use
of place cell like states. Instead of discretizing the environment
into a fixed grid, each place cell are laid out over the environment

with overlaps with other place cell fields. The place cells ensemble
activity will encode the location of the robot at any point in time.
This activity can then be used as the current state in RL algorithms
(Arleo et al., 2004).

More formally, we are considering the problem of dealing with
continuous state RL, where the continuum corresponds to the
position and orientation of the robot. Let the continuous state be
¢ = (¢c1,...,¢;) € R" Note that variables ¢; have a continuous
domain. For example, in our case, ¢ is composed of the position
and orientation of a robot in a 2D plane, i.e.c = (x,y, 6).

Singh, Jaakkola, and Jordan (1995) describe work on RL over soft
states and allows for the use of the place cell ensemble activity
directly as the state. The main idea behind Singh et al. soft-clusters,
or soft-states, approach is to consider a new discrete set of states
S = {s1...5m}, where the states s; are soft-clusters on the space
of ¢, R". Soft-clusters are defined with a conditional probability,
where every possible value ¢ will belong to a cluster s; with certain
probability p(sj|c). We call the probabilities p(sj|c) the activation
value of state s; to emphasize the place cell metaphor and denote
it as A(s;, ¢). Fig. 2.b shows an environment where 5 soft state are
laid out. Given the robot position x, two of them show an activity
A(s;, x) greater than zero, while the other three are inactive.

Notice that when the robot is in a specific continuous state c,
more than one cluster may be active simultaneously, the same way
as more than one place cell might be firing simultaneously.

Summarizing the notation:

e variable c represents the state in it original continuous nature,
e.g. the position of a mobile robot in our navigation problem,

e variable s; represents a state of the multi-scale algorithm, it
corresponds to the place cell that fires in a subregion of the
environment or the soft states from the work by Singh et al.
(1995)

e A(s;,c) is the activation of the soft-cluster s; when the
continuous state is c.

With the soft state framework in mind, Fig. 2.b can be reinterpreted
as a set of soft states, s;, laid out over the environment and their
level of blue represents their activation, or p(s;|location).

Our clusters will always have a decreasing activation as ¢ gets
away from a preferred value, or center, of cluster s;. That is, the
activation will be decreasing with the distance of c to the cluster
center. The activation will range from 0, when c is far away from
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Fig. 2. Environment discretization (a) vs place cell states (b). The trapezoid
represents the environment and the robot is shown in magenta. Each state
activation is shown in blue, the darker the color, the more active the state is. In a
usual discretization, only one state is fully active given the position of the robot (a),
whereas activation is shared among many place cell states in the other case (b), two
for this figure. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

a % “‘--—-:‘Q-q
e ~— \//\\/ =

ﬂ,.é

Fig. 3. The difference in the action selection process for an environment
discretization (a) and soft states (b). Each state has a preferred action in both cases.
In the discretization, the only active state’s preferred action is picked. With soft
states, each active state contributes with its preferred action in proportion to their
activation value.

this preferred value; to 1, when ¢ and s; preferred value are the
same. This correlates also with the way place cells fire.

Recapitulating, we have applied the concept of place cells as a
way to represent the RL state, which is made possible by Singh et al.
(1995) algorithm for QL using soft states. This allows us to perform
QL over the activity of an ensemble of place cells or soft-states.

2.2.2. Reinforcement learning equations on place cells

The canonical Q-Learning algorithm maintains a table of the
expected reward Q (s, a) of performing an action a when being
in a state s. In order to select an action when in state s, a greedy
approach would pick the action to perform according to (4).

a = argmax,Q (s, a). (4)

In the soft state framework, the action selection becomes as
described in Eq. (5). Note that canonical QL could be understood
as having only one active soft state at a time, thus A(s;, x) would be
1 for only one s;. Then the canonical QL action selection equation
becomes a special case of Eq. (5). This resembles the use of place
cells as radial basis functions proposed by Burgess et al. (1994).

a = argmax, ZQ(si, a) x A(s;, ). (5)
S

Fig. 3 contrast the action selection process when using a fixed
discretization and when using soft states.

After every action a is taken from state s and arriving to state s’,
tabular QL algorithms update this table according to (6).

Q(s,a) = Q(s,a) + o * (r + ymaxgQ(s', d) — Q(s, a)) (6)

where « and y correspond to a learning parameters and r is the
obtained reward signal.

In the soft state framework, all soft states s; must be updated
according to their activation value, see Egs. (7) and (8). The
maximal expected return from the successor state is replaced with
a sum over all soft state’s Q value for each possible action, where
¢’ is the successor state in the continuous space. The value is
normalized over the total activation to keep A (Eq. (8)) bounded.

Q(si, a) = A(si, ¢) * (Q(si, a) + A) + (1 — A(si, ) *Q(si,a) (7)

A—ax r+ymaXa/ZM—Q(Si,a) . (8)

> Z/A(Sh ')
S

This equation is also a special case for the canonical QL
update equation. Since, for the canonical QL, A(s;, c) would be
different from O for only one s;, only the first term would apply
to the active state and the second to all other states, leaving the
value unmodified. The maximization over the successor state also
degenerates to the canonical formula when only one state is active.

2.2.3. Multiple scales of place cells

Place fields from different parts of the Hippocampus have
different sizes (Jung et al., 1994; Keinath et al., 2014; Long, Bunce,
& Chrobak, 2015). Dorsal place fields are smaller with higher
spatial specificity, providing a fine grained spatial discretization.
In contrast, ventral place fields are larger and have consequently
lower spatial specificity, providing a coarse grained source of
spatial information.

Because of these cells fire simultaneously they provide a
redundant multi-scaled encoding of the animal location.

Fig. 4 illustrates the multi-scale soft states representation and
the action selection process.

The key of the multi-scale concept is to have soft-clusters with
different degrees of selectivity, as there are different scales of
place cells. Some soft states would be active in a confined range
of the continuous state space while others would be active in
larger regions of the continuous state space. For example, in a
navigational task, some soft states would be active only within
a radius of 0.1 m of the cluster center, whereas others would be
active anywhere within 1 m of the cluster center.

At any given moment, many soft states could be active at
the same time. Some of them would be more selective states,
covering a small neighborhood near the current continuous state c,
whereas other active states would be less selective. After an action
is performed, the learning rule is applied to all soft states. Thus, the
outcome of that action would be learned for states that are going
to modify the behavior only locally in the future and for states
that influence the behavior in larger region of the continuous state
space. Thus, the agent will learn fine grained policies and coarse
grained policies at the same time, combining them into a single
policy when performing the action selection.

2.3. Model implementation details

The model was implemented using the Mobile Internet
Robotics (MIRO) (Weitzenfeld, Gutierrez-Nolasco, & Venkatasub-
ramanian, 2003) simulator and the Neural Simulation Language
(NSL) (Weitzenfeld, Arbib, & Alexander, 2002). The same model im-
plementation, with the exact same parameters, was used for both
the continuous simulated environment and the real robot one. The
only difference was whether the model moved a simulated robot
or the real one after each decision.

The robot possible actions consisted on: go forward 0.05 m,
rotate % to the left and rotate % to the right. Note that the actions
are relative to the robot.

The state for this algorithm was comprised of location and
orientation information. Orientation information was needed due
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Fig. 4. The action selection process for the multi-scale case. The active place cells on every layer contribute a desired action weighted by their activation value. All values

are added together and the action with the maximum action is performed.

Table 1
Model parameters and their default value.

Parameter Default value
Learning rate o 0.1
Exploration decay rate 8 1

Number of place cell layers 3

Place cell diameter (0.1,0.3,0.6)
Place cells per layer 100

Number of head direction cell layers 4

Maximum head direction cell width b4

Minimum head direction cell width %

Step size 0.05m

Step angle B

to the fact that rotations were coded in the robot’s frame, so it
needed to be aware of its orientation to take the right choice.

Location was encoded using gaussian place cells fields, as
explained earlier. Three layers of 100 uniformly distributed place
cells each were used. Place field diameter was varied from
0.10 to 0.6 m throughout these layers, corresponding to data
reported on dorsal and medial hippocampus (Maurer et al., 2005).
The activation function was nulled if it was lower than 0.2 for
computational reasons.

Orientation was also encoded using gaussian head direction
cells. Four layers of orientation functions were used and the
selectivity varied from 7 to 7 /16. The number of functions per
layer varied depending on the selectivity in this case.

Soft-states were computed by combining all possible location
and orientation cells activity levels. The resulting activity was
computed by multiplying the activity of the individual cells as
shown in Eq. (9), where x represents a 2D location, @ is the robot
orientation, x; is s preferred location, 6; is s preferred orientation, o
variables are the specificities of s for location and orientation and
g represents a unnormalized gaussian function.

A(S’ X, 9) :g(xa Xs, Us,x)~g(ea 955 Gs,e)- (9)
Table 1 summarizes the default parameter values for the model.

2.4. Biological correlation of the model

The size and complexity of the environment is used by
the hippocampus to achieve multiscale navigation in bats and
rats (Geva-Sagiv et al., 2015). The mechanisms of this multi-
scaling lies in the different receptive fields size along the
anatomical dorsoventral axis of the hippocampus and entorhinal
cortex (Kjelstrup et al., 2008; Royer, Sirota, Patel, & Buzski,
2010). Anatomical evidence in the hippocampus suggests that
dorsal and ventral levels project onto each other and exchange
information internally (Strange, Witter, Lein, & Moser, 2014). These
space representations are then projected to multiple structures
including the ventral striatum and the ventral tegmental area,
structures involved in reward and decision making. There is a well-
known functional loop structure between the hippocampus and
the ventral tegmental area (dopamine center), which could support
the type of reinforcement learning used in our model (Lisman
& Grace, 2005). Our algorithm takes advantage of the ability for

large place fields to provide a global view of the environment.
This scenario matches the common conception regarding the
ventral striatal functionality of driving behavior on the basis of
the motivational value of the environment (Lansink & Pennartz,
2015). It is also consistent with the fact that ventral hippocampus
projects more strongly to ventral striatum (Arszovszki, Borhegyi, &
Klausberger, 2014; Gasbarri, Packard, Campana, & Pacitti, 1994).

The reader may have noticed that head direction information
is used at the same level as place cell information, contrary to
the usual models of information flow, in which head direction
information promotes grid cell formation, which later on drives
place cells. Despite the fact that the prevailing view is that the
place cells do not encode head direction, recent data from rats and
bats suggest possible head-directional tuning of the hippocampal
place cells. For example, single neurons in the hippocampus of
bats showed sensitivity to both, the animal’s spatial location and
its head direction (Rubin, Yartsev, & Ulanovsky, 2014). In rats,
directionality bias has been observed experimentally in a subset
of cells (Navratilova, Hoang, Schwindel, Tatsuno, & McNaughton,
2012). Additionally, grid cells in the deep MEC layers were co-
localized with head-direction cells and conjunctive grid x head-
direction cells (Sargolini et al., 2006). Furthermore, retrograde
optogenetic experiments found that the broad spectrum of
entorhinal cell types, including grid cells, border cells, and head-
direction cells, projects to the hippocampal place cell population
(Zhang et al.,, 2013). Also, the firing of hippocampal place cells
and thalamic head direction cells were strongly coupled when
rats exposed to unstable external cues (Knierim, Kudrimoti, &
McNaughton, 1995). Thus, the combination of place cell and head
direction cells could be interpreted as adding directionality bias to
all place cells. In this case, place cells that are combined with less
specific head direction cells would be non directional place cells,
where as those combined with more specific head direction cells
would be directional place cells, as those found rats performing
corridor tasks (Brunel & Trullier, 1998).

2.5. Flow of events

Fig. 5 shows the flow of events of a single cycle. A cycle starts
with the robot reasoning about its next motion and ends after it
has moved and learned about the outcome of that last move.

First, the robot location is acquired. In the case of simulation,
this information is provided by the simulator itself. In the case
of the physical robot experiments, this data is provided by an
implemented Fast-SLAM (Montemerlo, Thrun, Koller, & Wegbreit,
2002, 2003) system.

Then, the location information, in the form of (x, y, #), is used
to compute the firings of place cells and head direction cells.
Egs. (1) and (2) are used in this step.

After that, the PC and HDC information is combined and fed to
the Q-Learning action selection algorithm. This step uses Eq. (5) to
compute a value for each possible action (move forward, rotate left,
rotate right).

In parallel, all other cooperative behaviors are executed. The
relevant information is fed to them and they assign a value for each
possible action.
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Fig. 5. Flow of events for the navigation model.

Fig. 6. Experiment 1 and 2 setup. Experiment 1 (a): Morris square dry maze. The gray circle at the bottom represents the goal, the blue semicircle the region where the
goal is visible, within a 0.4 m radius, and the green dot and arrow the initial position and orientation. Experiment 2 environment (b): the robot is in the initial position and
orientation with a patch on top for the SSL vision system to recognize. The black and white squares are the ARToolkit markers used by the SLAM system. The white line
stripes at a fixed height used for wall detection is also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

Then, all action values are added and the most valued action is
selected. Note that this deterministic maximization process does
not mean that decisions are deterministic, since they include the
values assigned by the exploration module, which are stochastic.

After selection the action, the robot is moved.

Finally, the arrived state is observed and QL tables are updated,
according to Eq. (7). Notice that the computation of the arrived
state involves observing the location, computing PC and HDC
firings and combining the information again. This has been left out
of the diagram for the sake of simplicity.

3. Experiments

3.1. The goal-oriented navigational task

We chose a dry version of the Morris (198 1) water maze as our
testbed for the navigation model. In this task, the robot navigates
an 2 m x 2 m square environment to go from the initial position to
a fixed location goal. Once the robot reaches that interest point, an
episode is considered finished. Many episodes are needed for the
robot to learn a suitable navigation policy that will take it to the
goal faster.

The robot is able to make three types of movements: turn right,
go forward or turn left. After a turn, a forward motion is followed.
In the presence of obstacles, subsequent turns are made until a
forward motion can be carried out.

For our experiments, the individual was always put in the

middle of the field, facing in the opposite direction to the goal.
The goal position is visible to the animal within a 0.4 m radius.
Fig. 6 illustrates the experimental setup.

3.2. The experiments

We first tested the algorithm on a continuous and stochastic
simulated environment to evaluate the multi-scale algorithm’s
performance in comparison to a single layer model. Then, we
applied the policies learned during the simulation to a physical
robot navigation task, to validate the system performance under
real environment conditions.

A more detailed description of each experiment is included
next, while table Table 2 summarizes the main characteristics for
all experiments. A description of the implemented robot programs
for the experiments is included at the end of this section.

3.2.1. Experiment 1: simulated robot task

In this experiment we compared the performance of the
proposed learning algorithm using three scales at once and using
each of those scales of representation separately. The single scale
systems were implemented using the soft state QL with only one
scale for all place cells.

Table 3(a) summarizes the groups used in this experiments with
their place field diameters.
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Table 2
Experiment summary.

Experiment ~ Domain Action outcome  Simulated/Physical ~ Location information
1 Continuous  Stochastic Simulated Global Vision
2 Continuous  Stochastic Physical Local Vision

Table 3

Experiment 1 and 2 groups.

(a) Experiment 1 group parameters

Group Place field diameter
Multi-scale (0.1,0.3,0.6)
Small scale 0.1

Medium scale 0.3

Large scale 0.6

(b) Experiment 2 groups

Group Description
Learned Policy learned through simulation and executed in the physical robot.
Naive The physical robot with no policy learned.

Noise was added to the outcome of each movement performed
by the robot. The added noise was sampled from a uniform
distribution in the interval [0, .2 * m] where m is the magnitude
of the movement, i.e. meters traveled or radians turned. Namely,
a 0%-20% noise was added to each movement. This was done in
order to simulate physical robot conditions more accurately.

No noise was added to the position information provided to the
robot.

Fig. 6 shows the experimental setup. The robot started always
from the same position and the goal position was fixed. An
experiment consisted on a number of episodes that ended when
the robot was able to reach the goal. One hundred different
individuals were simulated, with 25 episodes each.

3.2.2. Experiment 2: physical robot tests

This experiment consisted of performing the same goal
reaching task using a physical robot.

Fig. 6 shows the testing environment. It consisted of a2 x 2 m
side square with small walls. In each side, an artificial marker
was placed for the robot to use as landmark in a small Fast-SLAM
system. In the physical robot experiment, position information was
derived from local sensory information, as opposed to using global
information like it was done in the simulation tests.

Each wall also included a white line stripe at a known height
to allow the robot to derive the distance to them using monocular
vision.

A differential robot powered by AX-12 motors was used. It used
a BeagleBone Black single-board computer and a web camera as
its only sensor. All sensorial information was processed on-board,
including landmark and wall detection. Piloting algorithms and
self-motion computations were run on-board as well. Finally, the
implemented visual Fast-SLAM system was also run on-board. The
robot program with the MSQL algorithm, however, was run off-
board on a personal computer, connected to the robot using a
bluetooth network (PAN).

A global camera recorded the robot position at each iteration
using the Small Size League vision software (Zickler, Laue, Birbach,
Wongphati, & Veloso, 2009). This information, however, was not
made available to the robot program during the decision making
process.

A policy was learned during 25 simulated iterations. Then, the
policy was loaded into the robot and one episode was performed.

As a comparison, arobot without knowledge was put to perform
the same task.

Table 3(b) shows the groups used in this experiment.

Each individual started at the center of the maze, as shown in
Fig. 6. Before the beginning of the experiment, an initial routine of
twelve 90 degree rotations was performed. This allowed the SLAM
system to build a stable map in a similar coordinate system as the
global camera, because the coordinate frame is not determined by
the initial position of the robot, but by the map of the surviving
particles in the Fast-SLAM algorithm. The episode ended when the
robot was within a radius of 0.4 m of the goal.

The SLAM system position was fed to the place cell layer to
compute the firing values at each iteration. Namely, the location
information used to determine the firing values of the artificial
place cells was derived from local sensory information only.

Six different individuals were used for each group.

4. Results
4.1. Experiment 1

Fig. 7 shows the average number of steps needed to reach the
intended goal as a function of the episode number. The default
model parameters were used for this experiment, namely § = 1
(exploration decay) and @ = .9 (learning rate). Standard deviation
per repetition is also shown.

An ANOVA test was done for each group to compare the
completion times for episodes 1 and 100. A statistical difference
was found in all cases (p < 0.05).

In order to assess the impact of the exploration decay parameter
on the robot performance we tested different configurations. Fig. 8
shows the time to reach the goal for all groups over 100 individuals,
for a fixed « of 0.9 and different 8 values.

The groups Multi-Scale and Large Scale behaved similarly, so
we include a Table 4 with results of an ANOVA test and Tukey HSD
post-hoc for each g value. The tests were carried out using the
completion times for the second half of the episode, i.e. the last
50 trials.

Adding to this, we include sample paths from different values
of B, for different groups, at different episodes.

We include below a plot of the agent policy for some individuals
of different groups. In order to plot the policy, a grid of sampling
points was laid out over the environment. Then, the simulated
robot was placed in every point and the orientation was varied.
For each orientation, the value of the most valued action was
taken. The orientation that gave the maximum expected value was
plotted in each sampling point.
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Fig. 7. Number of steps to reach the goal as a function of the episode number for
all groups of Experiment 1.

Fig. 10 shows policies acquired after the 20th repetition for the
Multi-Scale group for exploration values of 1 and 0.
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Table 4
ANOVA test and Tukey HSD post-hoc results for the Multi-
Scale and Large Scale groups, for all experiments varying f.

B Mean difference (Large-Multi)  p value
1 —0.65 0.997
0.5 8.56 0.00057
0.25 2.34 0.608
0.125 5.75 0.017
0.0625 6.51 0.0033
0.03125 3.82 0.078

0 4.31 0.05

We also executed the experiment for different values of the
learning rate parameter «. Fig. 11 includes the finishing times for
each episode, averaged over 100 individuals, for all groups.

Fig. 12 shows two sample paths corresponding to episode 50
for one individual of the Multi-Scale group, for « values of 0.4
and 0.9.

4.2. Experiment 2

Fig. 13 shows the number of steps needed to reach the goal for
the simulated learned policy tested on the robot. The Naive group
had no learned policy, whereas the Learned group used the policy
learned through 25 simulated repetitions.

A t-test was run on this data to check for significant difference
of means. The groups means were found to be significant
(p < 0.05).

Fig. 14 shows two sample paths, one from each group.
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Fig. 8. Task completion times for 100 individuals per group for different values of the exploration decay factor 8. The learning rate o was fixed at 0.9.
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(a) B = 0, Small scale, episode 100.

(b) B = 1, Multi-scale, episode 96.

Fig.9. Sample paths from individuals from different groups, for different values of the exploration decay factor 8.
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Fig. 10. Policy of a sample individual of the Multi-Scale group (b) after the 20th repetition.
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Fig. 11. Task completion times for 100 individuals per group for different values of the learning rate parameter «. The exploration decay parameter 8 was fixed at .125.

5. Discussion
5.1. Experiment 1

An initial experiment using the model default parameters
showed faster learning and a better asymptotic solution for the
Large Scale and Multi-Scale groups than for other groups.

Tests were carried out to assess the impact of the exploration
parameter S on the completions time and several interesting
phenomena were observed. A sudden drop in completion times

can be observed in almost all cases. This drop is more noticeable
for the Small and Medium Scale groups. This drop seems to occur
earlier as the exploration decay velocity is increased. We attribute
this to the fact that exploration is done by assigning a decaying
value to a random action. Then, when action learned values meet
this decaying value, the learned policy takes control and no more
time is wasted in exploration.

In the case of the Small Scale and Medium Scale groups, there
was a second drop in completion times late in the experiment. Our
model assigns an infinitesimal value to forward motions to favor
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Fig. 12. Sample paths from one Multi-Scale individual at episode 50 for different values of the learning rate «.
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Fig. 13. Experiment completion time for the real robot trials for the Naive and
Learned groups.

them over rotations in case of a complete tie. When the exploration
value decays below this value, forward motions are favored over
rotations. Then, the strategy turns into a route navigation (Redish,
1999) one, in which the simulated robot went forward until it
reached a wall, turned and repeated the action, as seen in Fig. 9a.
For a given number of place fields, the Small and Middle layers are
not able to cover as much of the environment as the other two
groups. The Small and Medium groups might therefore not be able
to learn across all the whole field and perform actions that would
take them out of this suboptimal route navigation strategy. This
is supported by the fact that the Medium Scale group shows an
increasing tendency to default to this behavior, showing a second
decay in completion times, as exploration decays faster.

The Large Scale and Multi-Scale groups, on the other hand,
showed more optimized learned paths, such as the one shown in
Fig. 9b.

Differences in the learned policies for different values of
exploration can be appreciated. Slower exploration decay allowed
the simulated robot to explore more of the environment, learning
the proper action to perform at every possible point. This resulted
in more coherent policies.

Additionally, we observed that the Large Scale and Multi-
Scale groups behaved similarly for all exploration parameters.

They showed a faster initial learning (first 10 episodes) than the
other two groups for all exploration parameter values. However,
this relation was inverted once the other groups fell into praxic
strategies. Statistical analysis showed some significant, but slight,
differences in the average completion time- for some exploration
parameter values, favoring the Multi-Scale group.

One interesting phenomena with regards to exploration could
be observed. It would seem that by decreasing exploration,
learning speed is increased. Specially in the case of the small scale
system, which reaches a stable suboptimal solution sooner, as
the exploration energy is reduced. However, we observe that the
navigation problem has a suboptimal but simple praxic solution, as
the one shown in Fig. 9. Namely, it can be solved by always going
forward and turning at the walls always in the same direction. This
solution could be learned fast by the model, as it only needed to
learn the advantages of going forward and acquire a turning bias.
Then, when exploration energy was low and no better solution
had been learned, the individuals tended to use this solution,
which despite being suboptimal, it allows the animat to reach the
platform quite fast.

Variations in the learning rate parameter showed the greater
learning potential of the Large and Multiple Scale groups. At higher
values of «, these groups were able to continue learning until they
improved completion times with respect to those achieved by the
Small and Medium Scale groups.

Summarizing, this experiment has shown that large and multi-
scale representations serve as a better source of information
for this navigation task. We attribute this to the fact that they
provide a better coverage per place field and that they allow
for faster generalization of the learned value of a certain region.
This goes in line with the fact that the ventral portion of the
hippocampus has more projection to value estimation regions,
such as the ventral tegmental area (Arszovszki et al., 2014; Gasbarri
et al., 1994). Namely, the presence of large place fields allows
for a faster propagation of the reward values to the rest of the
environment. The fact that the less accurate cells are a better
source of information for navigational decision making could seem
counter intuitive. However, the fact that many fields overlap
in a given place and that the value of an action is computed
as a linear combination seems to compensate for the lack of
precision of each individual field. The finding that the Multi-Scale
group is significantly better for most exploration parameter values
indicates that the presence of small cells is also beneficial.

5.2. Experiment 2

Experiment 2 was challenging to the algorithm for various
reasons. This experiment involved the use of local sensory
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(a).

(b).

Fig. 14. Sample paths for the robot showing the position reported by the global camera system. The additional gray circles (north, east and west) indicate the position of

the landmarks used by the SLAM system.

information to derive the robot location. Thus, the algorithm had
to cope with noise in the reported position when making action
selection decisions. What is more, there could be noise in the
learning process when pose correction events occurred in the
underlying SLAM system. After performing a single motion, the
robot could find itself suddenly far away from its original position,
due to relocalization in the SLAM system. Then, the algorithm
would erroneously update the value of the performed action in the
previous state.

The levels of motion noise of the real robot were also greater
than those used in the simulator.

Despite all these unreliabilities, the physical robot was able to
execute a policy learned in simulation and significantly reduce
completion times.

The path reported by the global camera system shows how the
learned robot was able to reach the target faster (Fig. 14).

6. Conclusions

We presented in this paper a multi-scale hippocampal place cell
space representation model used in goal-directed robot navigation.
The multi-scale model was contrasted against single scale place
cell models during robot navigation in a circular arena containing
a fixed goal. Reinforcement learning was used to train the robot to
find the goal after several episodes.

Larger and combined scales of representation proved to be
the best for learning the task, as they allowed a faster initial
learning and the potential to continue the learning process to get
better solutions than the route navigation strategies learned using
smaller scales. Although this might seem counter intuitive, due to
the lower specificity of larger scale place cells, these cells allow
for a better coverage of the environment with the same amount
of cells. The combined multi-scale representation was slightly
better than the large representation alone for some combination
of parameters.

Additionally, the system was suitable for controlling a robot
with noisy location information provided by a SLAM system.

Future work includes testing the fully integrated multi-scale
place cell model with the Barrera-Weitzenfeld spatial cognition
model that integrates idiothetic with allothetic information when
evaluating the goal-oriented task under the circular arena. The
current model does not perform the computation of place
cells firing from the combination of idiothetic and allothetic
information, but artificially computes place cell firing rates from
the position given by a global positioning system, in simulation,
or in a SLAM system, in the physical robot. Integration with the
work by Tejera et al. (2013) that correlates place cells field firing to

multi-scale grid cells based on a linear oscillatory interference
model is also in our plans.

Performing a parameter space search is also due. This would
allow us to assess the impact on performance of varying each of
the involved parameters, such as the number of place and head
direction cell layers, minimum and maximum widths and the
learning rate.

In terms of goal-oriented navigational task, we plan to test
under arenas that include fixed and dynamic obstacles. This
work is currently being contrasted to results obtained from
similar rat experiments (Fellous Laboratory). The fact that place
cell ensemble activity drives the actions of the robot, poses an
interesting challenge for obstacle avoidance and path relearning.
It has been shown that when obstacles are introduced in a
region where a place cell was firing, the place field vanishes
altogether (Muller & Kubie, 1987). This could mean that the policies
are automatically updated in the presence of new obstacles,
avoiding to try to take paths that traverse them. Our model
predicts that inhibition of the ventral portion of the hippocampus
bilaterally during the learning or relearning phases of a navigation
experiment could decrease learning performance. This prediction
would have to be made using a task that is known to functionally
involve the ventral hippocampus, perhaps with obstacles and
more challenging task requirements. Further experimental and
theoretical work is needed to assess the extent to which multi-
scale encoding is required for spatial navigation with obstacles.

Finally, future work includes increasing the level of detail of the
navigational model. Our current model works by the interaction
of the hippocampus and striatum for locale navigation (Redish,
1999; Touretzky, 2002) and a source of reinforcement information
like the VTA for learning. However, we currently model this with
high level of abstraction, using an actor-critic module. We plan to
increase the level of detail of our hippocampus model, to include
grid cell to place cell interaction, complex hippocampal dynamics,
explicit visual cue information integration and barrier information
integration (Touretzky & Muller, 2006). We also plan to substitute
the actor-critic module with an actual neural implementation of
the striatum-VTA interaction.
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