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ABSTRACT: The rodent hippocampus and entorhinal cortex contain
spatially modulated cells that serve as the basis for spatial coding. Both
medial entorhinal grid cells and hippocampal place cells have been
shown to encode spatial information across multiple spatial scales that
increase along the dorsoventral axis of these structures. Place cells near
the dorsal pole possess small, stable, and spatially selective firing fields,
while ventral cells have larger, less stable, and less spatially selective
firing fields. One possible explanation for these dorsoventral changes in
place field properties is that they arise as a result of similar dorsoven-
tral differences in the properties of the grid cell inputs to place cells.
Here, we test the alternative hypothesis that dorsoventral place
field differences are due to higher amounts of nonspatial inputs to ven-
tral hippocampal cells. We use a computational model of the
entorhinal-hippocampal network to assess the relative contributions of
grid scale and nonspatial inputs in determining place field size and sta-
bility. In addition, we assess the consequences of grid node firing rate
heterogeneity on place field stability. Our results suggest that dorsoven-
tral differences in place cell properties can be better explained by
changes in the amount of nonspatial inputs, rather than by changes in
the scale of grid cell inputs, and that grid node heterogeneity may have
important functional consequences. The observed gradient in field size
may reflect a shift from processing primarily spatial information in the
dorsal hippocampus to processing more nonspatial, contextual, and
emotional information near the ventral hippocampus. VC 2013 Wiley
Periodicals, Inc.
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INTRODUCTION

So called “grid cells” in the medial entorhinal cortex (mEC), and
“place cells” in the hippocampus are thought to play critical roles in

rodent spatial navigation, and have been the subject
of a large number of experimental and theoretical
investigations aimed at understanding the neural
underpinnings of spatial representation. Both cell
types display firing patterns that correlate with an ani-
mal’s location in space. Place cells fire when an animal
traverses a particular region of space, which is referred
to as that cell’s “place field” (O’Keefe, 1976). Grid
cells also fire with respect to particular locations, how-
ever, instead of firing at a single location, grid cells
fire in a triangular “grid” lattice of locations (“grid
nodes”) that extends throughout space (Hafting et al.,
2005).

Experiments have shown that both the spatially per-
iodic firing fields of grid cells and the spatially local-
ized firing fields of place cells show systematic
increases in spatial scale along the dorsoventral axes of
the mEC and hippocampus, respectively (Brun et al.,
2008, Kjelstrup et al., 2008), which has led to the
speculation that place field size is determined primarily
by the spatial scale of a place cell’s grid cell inputs
(McNaughton et al., 2006; Solstad et al., 2006; Moser
et al., 2008). However, in addition to receiving spa-
tially modulated entorhinal inputs, ventral place cells
also receive considerable amounts of nonspatial inputs
from sources such as the amygdala and the hypothala-
mus (Witter et al., 1989; Risold and Swanson, 1996;
Petrovich et al., 2001) or from neuromodulatory cen-
ters such as the ventral tegmental area (Gasbarri et al.,
1997), which may also be important in determining
place cell firing properties and could play a role in
producing dorsoventral place field differences. This
suggests an alternative hypothesis for why ventral place
fields are larger than dorsal fields, namely that ventral
cells increasingly process other, nonspatial types of in-
formation. The dorsoventral gradient in field size
would then indicate a gradient of spatial information
processing rather than reflecting the gradient of grid
scales in the mEC. This view is supported by previous
anatomical, behavioral, and gene expression studies
suggesting functional distinctions between the dorsal
and ventral hippocampal regions (Moser and Moser,
1998, Kjelstrup et al., 2002, Steffenach et al., 2005,
Czerniawski et al., 2009).

Here, we study a computational feed-forward net-
work model of the entorhinal-hippocampal projec-
tions incorporating both a modular organization of
grid cell inputs arranged in order of increasing spatial
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scale, as seen experimentally in the mEC (Hafting et al., 2005;
Brun et al., 2008; Stensola et al., 2012), as well as a dorsoven-
tral gradient of nonspatial inputs to place cells. In our model,
as in a number of previous studies, place fields are formed via
“winner-take-all” competition among place cells (de Almeida
et al., 2009a,b; Monaco and Abbott, 2011). Using this model,
we test the hypothesis that dorsoventral differences in place cell
activity result from corresponding differences in the amount of
nonspatial inputs, rather than from the spatial scale of their
grid cell inputs. Additionally, we assess the effects of grid node
firing rate variability on place field stability.

METHODS

Our model extends that of de Almeida et al. (2009b). We
develop a rate-based model in which place cells are driven by
excitatory inputs from the mEC and other areas. Mutual com-
petition among place cells ensures that only a fraction of place
cells will be active at any location, leading to spatial specificity
as we explain below.

Inputs into Place Cells

Grid cells

The spatially periodic firing patterns of grid cells are mod-
eled using the functions:

Gðg; k; u; cÞ ¼ g
X3

k¼1

cos

 
4pffiffiffiffiffiffi
3k
p *uðuk þ uÞ � ð*g2*cÞ

! !
(1)

Here r 5 (x,y) is the location of the animal in space, k is the
inter-vertex spacing between grid points (in cm), c 5 (x0,y0) is
the spatial phase (in cm relative to the origin), u is the grid
orientation, and u(uk) 5 (cos(uk),sin(uk)) is the unit vector in
the direction hk.. Here u1 5 2p/6, u2 5 p/6, and u3 5 p/2.
The grid pattern is formed by summing three planar sinusoids
with three different orientations, and then passing the result
through a function g(x), given by g(x) 5 exp[a(x 2 b)] 2 1,
where a 5 0.3 and b 5 23=2 are shape parameters chosen to
match experimental data (de Almeida et al., 2009b). The func-
tion G(r,k,u,c) defines the activity level of a grid cell at a point
r in space given parameters k, u, and c. Finally, we normalize
the grid field firing rates by dividing by the peak firing rate,
such that all of the grid nodes have peak firing rates equal to 1
prior to the introduction of firing rate variability in the grid
nodes (see below). Here, we interpret 1 as being equivalent to
the peak firing rate of a typical grid cell, which is generally on
the order of 10–15 Hz (Hafting et al., 2005).

For practical and technical reasons, most experiments on
grid and place cells have been conducted in small enclosures
(1 m2 scale). However, recent work (Brun et al., 2008;
Kjelstrup et al., 2008) has shown that spatial representations
may involve much larger scales, and in large environments are

likely to involve more ventral levels of the hippocampal forma-
tion. Consequently, throughout this work, we run our simula-
tions in two conditions of maximum grid scales of 1 m2 and
3.5 m2.

Grid node firing rate variability

In most simulations, we vary the firing rate of different
nodes of a given grid cell in order to introduce firing rate het-
erogeneity similar to what is observed in experimental data. To
do so, we keep the locations of the individual grid node fixed
and scale the amplitude of each grid node independently by a
random amount sampled from a truncated Gaussian distribu-
tion with mean 1 and standard deviation given by a parameter
n. Thus the amount of grid node variance is controlled by n.

Nonspatial inputs

In addition to receiving inputs from grid cells, place cells
receive excitatory inputs from a pool of “nonspatial,” cells.
Nonspatial cells are modeled as tonically firing cells with firing
rates that do not change as a function of space. Since relatively
little is known about the physiology of nonspatial inputs into
place cells, we assign the nonspatial cells in our model firing
rates randomly drawn between 0 and a maximum value NSmax.

Network Architecture and Competitive
Mechanisms

Modular organization and grid cell to place cell
connectivity

Recent experimental evidence supports the hypothesis that
grid cells are functionally and anatomically segregated into dis-
tinct discrete modules at different points along the dorsoventral
axis of the mEC (Stensola et al., 2012). In addition, a recent
theoretical study of the relationship between grid cells and
place cells found that place cell remapping is more complete
when grid cells are organized into independently remapping
modules (Monaco and Abbott, 2011). In an attempt to repro-
duce and investigate changes in place field properties along the
dorsoventral axis of the hippocampus, we introduce a modular
organization into the populations of grid cells and discretize
the dorsoventral axis of the hippocampus by dividing the place
cell population into 50 subpopulations, each at a different dor-
soventral level. Model results were not sensitive to the specific
number of subpopulations—whereas the number 50 was cho-
sen in order to provide a reasonably fine discretization while
still remaining computationally tractable, we experimented
with values ranging from 25 to 100. We also restrict the con-
nections between grid and place cells such that place cells in a
particular portion of the dorsoventral axis receive the majority
of their input from grid cells at the same dorsoventral level.

Figure 1 displays a diagram of the structure of the model.
There are 10 grid cell modules each containing 3000 grid cells,
such that each grid module contains cells with fixed grid spac-
ing (k 5 3,060,100 in Fig 1). The orientations of the grids
within each module are similar to within 10 degrees of one
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another. These modules are arranged in order of their grid
spacing in such a way as to mimic the experimentally observed
increase in grid scale along the dorsoventral axis of the mEC
(Brun et al., 2008; Stensola et al., 2012).

Place cell populations

The collection of place cells is discretized dorsoventrally into
50 groups with 2,000 place cells each. Here each group is a
collection of place cells assumed to have the same connectivity
statistics with respect to their inputs. Furthermore, cells at the
same dorsoventral level are assumed to mutually interact to
form their individual place fields via the E%-max winner-take-
all mechanism described below. Throughout the article, we
refer to place cell groups as being either “dorsal” or “ventral”
as a function of the dorsoventral position of their correspond-
ing primary grid cell input module.

In organizing our place cells into discrete groups, we make
the implicit assumption that the inhibitory interactions
involved in the winner-take-all competition are confined to a
local portion of the dorsoventral axis of the hippocampus. This
is an idealization of the assumption that winner take-all-com-
petition does not take place across the entire dorsoventral axis
of the hippocampus, but only locally, across (possibly overlap-
ping) subpopulations. We can adjust the degree of overlap in
the winner-take-all interactions between neighboring place cell
groups but for the bulk of our simulations we assume that it is

small (only 10% of the cells participating in the winner-take-
all competition come from neighboring place cell groups). For
a more detailed discussion on the effect of overlap in the win-
ner-take-all competition along the dorsoventral axis, see Figure
6 and the associated text in the Results.

The winner-take-all mechanism of place field
formation

Our model of the place cell ensemble is inspired by that of
de Almeida et al. (de Almeida et al., 2009b, 2010; Renno-
Costa et al., 2010). In the model, hippocampal place fields
result from the summed excitatory input from a random subset
of grid cells, coupled with a competitive interaction between
place cells referred to as the ‘‘E%-max winner-take-all’’ rule (de
Almeida et al., 2009a, b). In contrast to other proposals (Fuhs
and Touretzky, 2006; McNaughton et al., 2006; Solstad et al.,
2006; Hayman and Jeffery, 2008; Si and Treves, 2009), this
class of models does not require any type of learning mecha-
nism, or that place cells receive inputs from grid cells with a
common spatial phase in order to produce well-defined place
fields. We do not include any form of synaptic plasticity or
learning in this model, despite the potential role of long term
plasticity in refining and stabilizing place fields over the course
of longer-term exposure to an environment. Other models for
place field formation exist, which involve a linear summation
of grid fields followed by the application of a spatially uniform
inhibition (Solstad et al., 2006). However, we choose to use a
winner-take-all model with spatially varying inhibition for sev-
eral reasons: (1) Summation models require precise and stable
synaptic tuning of the connections between grid cells and place
cells, (2) Such models do not directly explain why some cells
have place fields and others do not in a given environment,
and (3) Summation models make no natural predictions with
respect to the sparsity of activity in the population of place
cells.

The first step in computing the place fields for a given place
cell is to compute the excitatory input to that cell at each point
in space. This excitatory input at a particular location r is
given by:

Ii;mðrÞ ¼
XNgrid

j¼1

WijGjðrÞ þ
XNnonspot;m

k¼1

W 0
ikBk (2)

Here Ii,m(r) is the excitatory input to the ith place cell in the
mth spatial scale module, at position r. Gj(r) is the firing rate
of the jth grid cell input at location r, Ngrid is the number of
grid cell inputs, and Wij is the weight of the connection
between the jth grid cell and the ith place cell. Similarly, Bk is
the kth nonspatial input, Nnonspat,m is the number of nonspatial
inputs to cells at the mth dorsoventral level, and W’ik is the
weight of the connection between the kth nonspatial cell and
the ith place cell. Note that all the nonspatial inputs (the Bks),
are drawn from the same pool of 30,000 nonspatial cells. Also
note that Nnonspat,m depends upon the network parameter b,
which we define in the next section. In contrast with the de

FIGURE 1. Diagram of the model. In the model, grid cells are
organized into 10 discrete modules, and the place cell population
is discretized into 50 subpopulations. Grid cells within a particular
module have a common spatial frequency and similar orientation
(within 10 degrees) but random phase. The scale of the grids
increases systematically from the first (Dorsal) module to the last
(Ventral) module. Place cells in a given dorsoventral level receive
the bulk of their inputs from the grid module at the same dorso-
ventral level, however, some fraction of their inputs can also come
from nearby grid modules. Place cells also receive some fraction of
their total excitatory input from a pool of nonspatial cells. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Almeida model, in which the connection weights are sampled
from a specific skewed weight distribution (de Almeida et al.,
2009b, 2010; Renno-Costa et al., 2010), in the interest of sim-
plicity and generality we choose to sample these weights uni-
formly from the interval [0, 1] as others have done (Monaco
and Abbott, 2011). Since the true density of nonspatial inputs
along the dorsoventral axis is unknown, we assume the number
Nnonspat,m of nonspatial inputs increases linearly along the dor-
soventral axis, so that ventral place cells receive a greater num-
ber of excitatory inputs from contextual cells. Our results do
not change qualitatively if some other, nonlinear form of
increase is used, provided that ventral cells receive more non-
spatial input than dorsal cells; see Supporting Information Fig-
ure S3.

In the second step, the place cells compete to fire via the
aforementioned E%-max winner-take-all mechanism (de
Almeida et al., 2009a,b). According to this mechanism, the
activity level of the ith place cell at a spatial location r can be
described phenomenologically by:

FiðrÞ ¼ ½IiðrÞ2ð12EÞImaxðrÞ�þ (3)

Here Imax(r) is the maximum level of excitation across all the
place cells at location r and E is a parameter (set to 0.1 here) that
sets the threshold for whether or not cells are considered active.

A cell will fire at a location r if and only if the amount of excita-
tory input it receives at that point is within 10% of the maxi-
mum excitation across all the place cells. Similarly to our grid
cell simulations, we compute the activity of each place cell for a
1 m2 region of space that has been discretized into 100 3 100 1
cm2 bins where every entry corresponds to the firing rate of a cell
for a 1 cm2 region of space.

Note that, for a given location in space, a multiplicative scal-
ing of all the inputs will not affect whether or not a cell becomes
active; it will only result in an overall scaling of the activity levels
of the cells that do become active. On the other hand, adding a
constant input to all cells will affect whether a cell becomes active
at a given location. Indeed, if we let C be some positive constant
value added to all cells at all locations, we see that:

FiðrÞ ¼ ½ðIiðrÞ þ CÞ2ð12EÞmax
l
ðIlðrÞ þ CÞ�þ

¼ ½IiðrÞ2ð12EÞmax
l
ðIlðrÞÞ þ EC�þ

(4)

This additional positive factor of EC will make all cells
more likely to fire in all locations. This has implications for
how we interpret the consequences of adding contextual inputs
to place cells. For a discussion, see Supporting Information Fig-
ure S1 and the associated section in the Supporting Informa-
tion text.

Network Parameters

Two key parameters, which we refer to as a and b, govern
the network architecture (Fig. 2) The parameter a ranges from
0 to 1 and determines what fraction of the inputs to place cells
in a given place cell subpopulation come from each grid cell
module. When a 5 0, each place cell at a given dorsoventral
level receives inputs only from one or two grid cell modules at
approximately the same dorsoventral level. For nonzero values
of a, the inputs to a given cell are distributed across the grid
cell modules in a geometrically decaying fashion, with the peak
of the input distribution centered at grid modules at the same
dorsoventral level, with the rate of this decay controlled by a.
As a approaches 1, the place cell inputs become more and
more evenly distributed across the grid cell modules, and when
a 5 1, all place cells receive equal amounts of inputs from grid
cells at all dorsoventral levels (Fig. 2A).

The second parameter, b, controls the slope of the dorsoven-
tral gradient in the nonspatial inputs to the place cell modules. b
is defined as the average percentage of excitatory inputs to ventral
place cells originating from nonspatial cells. It is assumed that
the majority of the excitatory input to dorsal place cells is due to
grid cells (i.e., there is only a small amount of nonspatial input,
comprising 20% of the total excitation), and that the proportion
of total input that comes from nonspatial sources increases line-
arly along the dorsoventral axis, reaching a maximum of b at the
most ventral pole. Thus, when b 5 0.2, ventral place cells receive
the same amount of nonspatial excitation as dorsal cells, whereas
when b 5 0.5, an average of 50% of the excitatory input to ven-
tral place cells is from nonspatial sources. The actual number of

FIGURE 2. Parameters governing network architecture. A:
Effect of the parameter a on the connectivity pattern between grid
and place cells. For a 5 0, place cell modules predominantly
receive input from grid modules at the corresponding dorsoventral
level. For nonzero a, the proportion of input from neighboring
modules is increased, and for a 5 1, place cells across the entire
dorsoventral axis receive an equal amount of input from every
grid module. B: The parameter b controls the strength of the gra-
dient in nonspatial inputs. For low b values, dorsal, and ventral
place cells receive roughly the same amount of contextual inputs.
For high values of b, ventral place cells receive much more contex-
tual input than dorsal place cells.
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nonspatial inputs depends upon the maximum firing rate
(NSmax) of the nonspatial cells: we adjust the number of nonspa-
tial inputs in proportion to the mean firing rates of the nonspa-
tial cells, so that the overall mean amount of excitatory input to
each place cell is controlled by b, and does not depend upon the
mean firing rate of the nonspatial cells. This permits us to con-
trol the variance of nonspatial input strengths across the popula-
tion of place cells by adjusting NSmax (see Fig. 7).

In addition to the two key network architecture parameters,
there are several other parameters that can affect the behavior
of the model, including the number of grid cells per module,
the number of place cells per subpopulation, the number of
grid cell inputs per place cell, the E%-max cutoff, and the
degree of grid node variability (n). We explored each of these
parameters across a reasonably large range of values (at least
500% variation with respect to the number of cells and con-
nections, and between 0.75 and 0.95 with respect to the E%
cutoff ) in order to determine their impact on the model behav-
ior. The model is relatively insensitive both to the number of
grid cells per module and the number of place cells per subpo-
pulation, provided that the number of both types of cells is
sufficiently large, and the average place field size and popula-
tion activity levels both increase predictably as a function of
the number of inputs per cell (see Supporting Information Fig.
S4). These findings are consistent with previous work on which
our model is based (de Almeida et al., 2009b). Therefore, we
consistently used 3,000 grid cells per grid cell module and
2,000 place cells per subpopulation, and set the number of
grid cell inputs per place cell to 300. We choose the E%-max
cutoff to be 0.1 in keeping with previous work (de Almeida
et al., 2009b, Renno-Costa et al., 2010). The degree of grid
node variability (n) can also have an effect on the number of
place fields per cell, in that it serves as an additional source of
variability in the characteristics of the spatial input, which can
affect the number of fields per place cell (see Fig. 8). There is
very little quantitative experimental or anatomical data as to
what this value is, although it is clear that it should be nonzero
(Hafting et al., 2005). Therefore, unless otherwise specified, we
set n to the intermediate value of 0.5 in an attempt to match
our model output to experimentally observed place field
properties.

Analysis of Model Output

All simulations and analyses were written with custom Mat-
lab (Mathworks, version R2010b) code. Unless otherwise
noted, results show pooled data from 20 simulations. For each
simulation the grid cell inputs, nonspatial inputs, and connec-
tion weights were resampled from their respective distributions.

Analysis of place field properties

Once the set of place cell firing maps have been constructed
via the process described in Eqs. (2) and (3), the firing rates
are normalized by dividing the firing rate values for each place
cell across every point in space by the highest firing rate
observed in the population. The individual place fields are then

identified and measured. We define an isolated place field to be
a contiguous region of nonzero activity of area greater than
50 cm2 and peak firing rate greater than 20% of the maximum,
in keeping with prior work (Monaco and Abbott, 2011).
Regions of activity that do not meet these cutoffs for size and
activity level are not included in any subsequent data collection
or analysis. For our purposes, a cell is considered “active” in a
given environment if it has at least one place field.

Measuring place field stability

To assess the extent to which the place cells in our model
change their activity patterns in response to various changes in
their inputs, we perform simulations in which a network is
driven by two different sets of inputs. We then quantify
changes in the place cell population activity using two meas-
ures: (1) a correlation coefficient-based measure of place field
remapping, and (2) a measure of the proportion of place cells
that remain active in both conditions.

The purpose of the correlation-based measure is to quantify,
for a given cell, the extent to which its place field remains
invariant under different input conditions (e.g., in different
environments). To define this measure, we measure the firing
rate of a given cell as the animal moves across the environ-
ment. We view the resulting 100 3 100 matrix of firing rate
values as a 10,000 3 1-dimensional vector, and convert it into
a binary on=off vector by setting all nonzero entries to 1. If we
do this for two input conditions, the resulting binary vectors
v1 and v2 can be used to compute the correlation coefficient

R ¼ ðm1; m2Þ
k m1 k k m2 k

� �

This measure is computed only for cells that have nonzero
activity in both conditions. If a given cell has the same place
field in two environments, then R 5 1, whereas if the fields are
disjoint then we have R 5 0.

We also compute a population-level measure of the percent-
age of cells active in both conditions. We define this as the
number of cells active in both sets of input conditions, divided
by the average number of cells active in one condition, and
multiplied by 100 to yield a percentage. Observe that the
higher the turnover rate between two input conditions, the
lower this number will be.

RESULTS

A Dorsoventral Gradient in Nonspatial Input
Significantly Impacts Place Cell Properties Along
the Dorsoventral Axis

Two recent studies, involving two very different experimental
environments, have compared place cell activity at both the
dorsal and ventral poles of the hippocampus. Kjelstrup et al.
(2008) recorded from animals running on an 18 meter linear
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track. Cells recorded at the dorsal pole had an average place
field length of �1 m, while cells recorded at the ventral pole
had a mean field length of �5 meters, with the largest fields
reaching up to 10 meters in length (Kjelstrup et al., 2008).
This exceeds the largest recorded grid field on a linear track
(Brun et al., 2008). Note, however, that the place cell record-
ings were taken at slightly more ventral locations than the cor-
responding grid cell recordings, so the exact range of possible
grid field scales remains to be determined (Brun et al., 2008;
Kjelstrup et al., 2008). Another recent study by Royer et al
compared dorsal and ventral place cells in a 2 square meter
2-D open environment. The average dorsal field size was
�20% of the environment, while the average ventral place
fields was �40 % of the environment, although a substantial
fraction of the active ventral cells had fields covering upwards
of 75% of the environment (Royer et al., 2010). Because these
studies used very differently shaped recording environments,
and environmental shape can have a significant impact on place
field properties (O’Keefe and Burgess, 1996), these two sets of
results are not directly comparable. However together they sug-
gest a range of plausible place field sizes along the dorsoventral
axis (Table 1).

We first studied how the magnitude of the dorsoventral gra-
dient in place field size was affected by the network architec-
ture as modeled by the parameters a and b. Figure 3A shows a
contour plot of mean place field size averaged across the most
ventral 1=5th of the place cells, as a function of a (vertical
axis) and b (horizontal axis), in the case where the maximum
grid scale is 1 m. Figure 3B is the equivalent plot in the case
where the maximum grid scale is 3.5 m. In both plots, the
range of plausible values as estimated from the data is indicated
by a dashed white line. In the first case, we see that a exerts at
most a very weak effect on the magnitude of the dorsoventral
size gradient, and that a strong gradient in place field size
(with respect to the available experimental data) is only present

when there is a significant (b > 0.5) gradient in contextual
inputs. When larger grid scales are present, a mild gradient in
place field size can be obtained for somewhat smaller values of
b, provided that a is sufficiently low, i.e., when the organiza-
tion of grid cell inputs has a strict topographical organization
within each level of the dorsoventral axis. However, a strong
gradient is only present in both cases for intermediate and high
values of b. This implies that a gradient in the spatial scale of
grid cell input alone is insufficient to explain the presence of
large place fields in the ventral hippocampus, while the addi-
tion of a gradient in contextual inputs can account for these
observations. In the simulations that follow, unless otherwise
indicated, we choose the intermediate values of a 5 0.5 and
b 5 0.85, since these parameter choices yield ventral place field
sizes approximately in the middle of the range of plausible val-
ues indicated by the dashed white lines (Fig. 3).

Figure 4 shows the change in the distribution of place field
sizes for all 50 place cell groups in three example cases. Place
field size for a given place cell was measured in terms of the
total percentage of the environment in which that place cell
was active. In the first panel, Figure 4A, we see place field size
along the dorsoventral axis in the case where the maximum
grid scale is 1 m, a 5 0.5, and b 5 0.2. In this case, the dorso-
ventral gradient in place field size is small, and place fields in
the most dorsal and most ventral subpopulations are not appre-
ciably different. Figure 4B shows the change in place field size
across subpopulations when the maximum grid field scale is
large (3.5 m), and there is no gradient in contextual inputs
(b 5 0.2). There is a more noticeable increase in place field
size across subpopulations when larger grid scales are used,
however the size gradient is still somewhat weak. Figure 4C
shows the gradient in place field sizes that results from intro-
ducing a gradient in nonspatial inputs (maximum grid scale is
1 m, a 5 0.5, and b 5 0.85). The only difference between 4A
and 4C is the change in the value of b, and it is clear that the

FIGURE 3. Effect of network parameters on ventral place field
size. A: Contour plot of the mean place field coverage areas in
ventral cells (averaged across the most ventral 1=5th of the DV
axis) as a function of the network connectivity parameters a and
b, for a network with a maximum grid scale of 1 m. Area enclosed

by dotted line indicates the 25–50% coverage region. B: Contour
plot of mean place field coverage areas in ventral cells (averaged
across the most ventral 1=10th of the DV axis) as a function of
the network connectivity parameters a and b, for a network with
a maximum grid scale of 3.5 m.
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gradient is much more pronounced in 4C. In all figures, the
central, red line denotes the 50th percentile mark, the lower
and upper edges of the box denote the 25th and 75th percen-
tiles, and the outer whiskers show the 5th and 95th percentile
boundaries. These results suggest that most of the change in
scale is due to nonspatial inputs.

In addition to determining the conditions under which the
model produced an experimentally realistic gradient in mean
place field size, we were interested in whether the model could
reproduce other qualitative aspects in the data. In particular,
Royer et al compared the distributions of field sizes for dorsal
and ventral cells and observed a higher degree of variance in
the distribution of ventral place field sizes, along with a sub-
stantial percentage of cells showing large (>75% of the envi-
ronment) place fields (Royer et al., 2010).

Figure 5 shows the cumulative distribution functions
(CDFs) for the distributions of place field sizes both for experi-
mental data and simulated data in three parameter regimes.
The left panel shows CDFs for the dorsal-most 1=5th of the

dorsoventral axis and the right panel shows CDFs for ventral-
most 1=5th of the dorsoventral axis. In all cases, place field size
was measured in terms of total environmental coverage. In
both panels, the solid black line with square markers corre-
sponds to experimental data adapted from (Royer et al., 2010).
The green, dash-dot lines show simulated data in the case
where a 5 0.5, b 5 0.2, and the maximum grid scale is 1 m.
The red, dashed lines show the dorsal and ventral CDFs with
the same values of a and b, but with a maximum grid scale of
3.5 m. Finally, the blue, dotted lines show simulated data for
a 5 0.5, b 5 0.85, and a maximum grid scale of 1 m. We see
that in this last case, when a gradient in nonspatial inputs is
present, the simulated dorsal and ventral cumulative distribu-
tion functions are closer fits to the corresponding experimen-
tally obtained CDFs. This implies that the addition of
nonspatial inputs allows us to more closely reproduce qualita-
tive features of the experimental data, particularly the shapes of
the size distributions.

Winner-Take-All Interactions Must be Confined
to Local Portions of the Dorsoventral Axis

Our model discretizes the dorsoventral axis of the hippocam-
pus into 50 subpopulations, and assumes that the winner-take-
all inhibitory interactions that mediate place field formation
occur predominately locally, within subpopulations that have
similar input statistics with respect to grid scale and the
amount of nonspatial input. However, it is possible that there
is some overlap in the inhibitory interactions between groups
at different dorsoventral levels (and with different input statis-
tics), so we test the effect that introducing different levels of
overlap has on place cell activity at different dorsoventral
locations.

Figure 6 shows the effect of different amounts of overlap on
the number of active place cells across the dorsoventral axis.
Here, a 5 0.5 and b 5 0.85 for all conditions. We see that
even for moderate amounts of overlap (20%), there is a tend-
ency for dorsal place cells to be less active than ventral cells,
and that this effect becomes more important with increasing
levels of overlap. This is in conflict with some experimental
data, which suggests that an equivalent or higher number of
dorsal cells than ventral cells have place fields in a given envi-
ronment (Jung et al., 1994). This suppression of dorsal activity
in the presence of overlap is due simply to the fact that the
dorsoventral gradient in nonspatial input causes the more ven-
tral place cell groups to have more overall excitation. When
large overlaps exist, this puts ventral groups at an advantage
over more dorsal groups in the winner-take-all competition,
leading to the suppression of dorsal firing. As a result, we con-
clude that winner-take-all dynamics coupled with a dorsoven-
tral gradient in nonspatial excitation can only yield realistic
levels of dorsal activity if the winner-take-all activity is predom-
inantly local.

Note, however that this effect depends on the existence of a
dorsoventral gradient in nonspatial excitation. If such a gradi-
ent does not exist, and there is no difference in the overall

FIGURE 4. Example place field size gradients along the dorso-
ventral axis for different parameter sets. A: Place field size distri-
butions for a 5 0.5, no gradient in nonspatial input, and a
maximum grid scale of 1 m. Red central lines indicate the median,
the box edges mark the 25th and 75th percentiles, while outer
whiskers mark the 5th and 95th percentiles. B: Place field size dis-
tributions for a 5 0.5, no gradient in nonspatial input, and a max-
imum grid scale of 3.5 m. C: Place field size distributions for a 5
0.5, b 5 0.85 (moderate gradient in contextual input), and a max-
imum grid scale of 1 m. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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FIGURE 5. Experimental and simulated cumulative distribu-
tion functions of place field sizes. A: Comparison of experimental
and simulated cumulative distribution functions (CDFs) for dorsal
place field sizes for three parameter sets. Experimental data (black
lines, square markers) is adapted from Royer 2010, Figure 2b.
Green and red dashed lines show CDF plots with no nonspatial
inputs and two different maximum grid scales (1 m and 3.5 m,
respectively), while the blue dotted lines are CDF plots in the case

where b 5 0.85 and the maximum grid scale is 1 m. B Compari-
son of experimental and simulated cumulative distribution func-
tions for ventral place field sizes for three parameter sets. Line
types are the same as in part A. [obtained permissions through the
CCC for figure 5 from J. Neuroscience. The license number is
3147850276991.] [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

FIGURE 6. Effect of overlap between place cell modules in the
winner-take all interactions. Plots of the proportion of active cells
at different dorsoventral locations, for four different amounts of
overlap in the winner-take-all interactions between neighboring
groups of place cells, with a gradient in nonspatial inputs corre-
sponding to b 5 0.85. As the amount of overlap in the winner-
take-all interactions increases, there is an increasing tendency for

more ventral cells (which receive more excitation in the form of
nonspatial inputs) to suppress the activity of dorsal cells. There-
fore, in order to produce realistic numbers of active dorsal cells,
the amount of overlap must be low, implying that the winner-
take-all inhibition governing place field formation should be con-
fined to local regions of the dorsoventral axis.
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excitatory input between two neighboring place cell groups,
then there will be no suppressive effect of the more ventral
place cells upon the more dorsal place cells, and hence no
effect on the proportion of active dorsal cells (results not
shown).

Input Variability Affects Place Cell Properties

Another factor that may have a significant influence on place
cell properties is the amount of firing rate variance received by
place cells. This amount of variance is experimentally
unknown, but relates to the activity of areas such as the amyg-
dala, ventral tegmental area or hypothalamus and hence may
undergo significant changes. Here, we report the effect of

changing this parameter while keeping the dorsoventral gradi-
ent in the mean nonspatial input the same.

First recall that the parameter controlling the width of the
uniform distribution of nonspatial cell activities is the maxi-
mum firing rate NSmax (see Methods). However, changing
NSmax not only changes the variance of the distribution, but
also shifts the mean. To keep the mean fixed while changing
the variance, the number Nnonspat,m [see Eq. (2)] of nonspatial
inputs to each place cell is scaled in proportion to NSmax, so
that the average nonspatial excitation is kept fixed at some pre-
specified value. In this way, the variance in the pool of nonspa-
tial cells can be changed without affecting the mean total
excitation to each cell: when NSmax is low, place cells receive a
large number of weak inputs, and there is relatively little

FIGURE 7. Variance in the nonspatial inputs affects the num-
ber of active cells. A: Place field size distributions in the cases
where the variance in the contextual inputs to place cells is low
(NSmax 5 0.5, top), vs. high (NSmax 5 5). In both cases a 5 0.5,
b 5 0.85, and the max grid scale is 1 m, and in both cases a gradi-
ent in place field size is observed. B: Mean proportion of active
cells per place cell module at varying dorsoventral locations, in

the cases where the variance in the contextual inputs to place cells
is low (NSmax 5 0.5, left), vs. high (NSmax 5 5). In both cases a 5
0.5, b 5 0.85, and the maximum grid scale is 1 m. In the low var-
iance case, ventral cells are highly active, while in the case of high
variance ventral activity is considerably more sparse. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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variance in the total input received by each individual place
cell, whereas when the NSmax is high, place cells receive fewer
total inputs which can range from weak to strong, leading to
more variance in the amount of nonspatial excitation across the
place cell population.

In Figure 7, we summarize the result of changing NSmax

while keeping the mean nonspatial input constant as described
above. We found that for both the high variance (NSmax 5 5,
corresponding to a variance of 25=12) and low-variance
(NSmax 5 0.5, corresponding to a variance of 0.25=12) cases,
the introduction of nonspatial inputs produced a gradient in
place field sizes, as expected (Fig. 7A). Additionally, the total
number of active ventral cells was much lower when there was
more variance in the nonspatial inputs than when there was
less variance (Fig. 7B). Therefore, we conclude that the main
effect of variance is to control the proportion of active ventral

cells. The low variance case is equivalent to increasing the
excitability of all ventral cells by the same amount, resulting in
more overall activity and larger fields. On the other hand, the
high variance case produces more cells that fail to “win” the
winner take all competition and therefore do not fire. Addi-
tionally, the cells that do fire in this case tend to do so over a
larger region of space, because of the spatially uniform nature
of the inputs that cause them to win out over other cells.

Variability in the Properties of the Spatial
Inputs to Place Cells Promotes Single Place
Fields

In all current models describing the transformation of grid
cell inputs into place cell firing patterns, the firing rates at all
grid nodes are assumed to be identical. In contrast,

FIGURE 8. Effects of grid cell input variability on place fields.
A: Examples of real (top, adapted from Hafting, 2005) and simu-
lated (bottom) grid cell firing patterns, demonstrating substantial
heterogeneity in the firing rates of individual grid nodes. B: Exam-
ples of place fields produced by the model for different values of
grid node variability as controlled by the parameter n, in the ab-
sence of variability in orientation or spatial scale. Without vari-
ability in the orientation, scale, or grid vertex firing rates, the

model produces “grid-like” place fields with multiple distinct fir-
ing fields (top left). C: Percent of active cells with a single place
field as a function of variance in grid node strength, for zero var-
iance in the orientation and spatial scale of the grid input (blue,
dotted curve) and moderate variance in these parameters (red,
solid curve). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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experimental recordings of grid cells typically show substantial
heterogeneity in the firing rates of the different grid nodes of
the same grid cell (see Fig. 9A, top) (Hafting et al., 2005). We
next study how this heterogeneity affects place field formation
and stability, and therefore introduce it into our model grid
fields (see Fig. 8A, bottom).

We observed that when all of the grid cell inputs share the
same spatial scale and orientation (i.e., when a � 0), the
model tends to produce place cells with grid-like firing fields
(Fig. 8B, top left) instead of well-defined single place fields. If
grid node firing rates are assumed to be uniform, the only way
to introduce variance in spatial scale and=or orientation is by
distributing the inputs to a place cell across many different
grid cell modules. However, another source of variability in the
properties of the grid cell inputs to place cells is variability into
the grid node firing rates of individual grid fields. Such vari-
ability is consistently experimentally observed (Fig. 8A, top)
(Hafting et al., 2005), but is typically not included in models
of the input–output relationship between grid cells and place
cells (McNaughton et al., 2006; Solstad et al., 2006; de
Almeida et al., 2009b).

Here, we examined the effect of systematically increasing the
node-to-node variability in individual grid fields by incremen-
tally varying the parameter n, both in the case of zero variabili-
ty in orientation and scale of grid inputs, and moderate
variability, for a single place cell sub-group. We have found
that increasing the variability in grid node firing rates increases
the proportion of place cells with single place fields, especially
in the absence of any variability in the spatial scale or orienta-
tion of the inputs (Fig. 8C). However, when this variability in
scale and orientation is already present (corresponding to
higher values of a ), increasing grid node variability has much
less of an effect on place cell properties, indicating that some
sort of variability in the spatial properties of grid cell inputs
(either in terms of spatial scale, field orientation, or grid vertex

firing rate) is important for generating place cells with single,
well defined place fields.

Effect of Grid Geometry

A basic question is the degree to which observed place field
properties depend on the precise geometry of grid cell firing
patterns. Indeed, some recent experimental evidence has sug-
gested that individual grid fields are elliptical rather than circu-
lar, and that the long axes of these elliptical grid fields are
oriented in the same direction for an individual cell. Further-
more, the evidence indicates that anatomically nearby grid cells
have elliptical grid fields oriented in a common direction (Sten-
sola et al., 2012). To test whether such deviations from circular
grid fields has any effect on place field properties, we ran a
number of simulations using elliptical grid fields (Supporting
Information Fig. S5A), and found that the inclusion of elliptic-
ity had no discernible effect on the output of the model.
Therefore, for simplicity we used circular grid fields in all other
simulations discussed here.

Strikingly, in a second set of simulations, we observed that
we could disrupt the grid geometry entirely (while preserving
the amount of overall spatial modulation) and still obtain
valid place fields (Supporting Information Fig. S5B). This
indicates that the regular-grid-like pattern of nodes that char-
acterize grid cells is not important for the generation of place
fields in our model, and that the WTA model of place field
formation only requires some sort of spatial modulation in
the inputs as a prerequisite for forming place fields. The sig-
nificance of the regular arrangement of the nodes (if any) for
place field expression remains to be fully elucidated,
although theoretical work has suggested that the hexagonal
arrangement may be advantageous for encoding position, in-
dependently of place cells (Fiete et al., 2008; Sreenivasan and
Fiete, 2011).

FIGURE 9. Response of place cell representation to changing nonspatial inputs. A: Ran-
domly shuffling the firing rates of nonspatial cells results in place cell turnover across the
entire DV axis. This shows the average percentage of cells that are active with both sets of con-
textual input values. B: Spatial correlation of place fields in the two conditions, for cells that
have place fields in both conditions.
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Sensitivity of Place Fields to Changes in
Nonspatial Inputs and Grid Node Firing Rates

Place cells can remap due to changes in the
nonspatial inputs

Our simulations model the nonspatial inputs to place cells as
fixed, tonic firing rates, while in reality it is possible that the firing
rates of these nonspatial cells could change as a result of contex-
tual or emotional changes. We conducted simulations to assess
how changing only the nonspatial inputs to place cells could lead
to place cell remapping. For a single network, we generated a set
of place fields using a particular set of firing rates for the nonspa-
tial cells. We then generated a second set of place fields using a
second set of nonspatial firing rates (drawn from the same distri-
bution), but keeping all connection weights and grid cell proper-
ties identical to the original network. We then assessed the
amount of cell turnover and the spatial correlation between place
fields generated in the two conditions. This was repeated across
20 independent networks with identical statistical properties.

We found that cell turnover was significant, (Fig. 9A) imply-
ing that the nonspatial inputs play an important role in select-
ing which cells fire. This also suggests that fluctuations in the
firing rates of nonspatial cells will reduce the stability of place
fields. There was also a loss of spatial correlation the cells that
were active in both conditions, although there was considerable
variance in the correlation values (Fig. 9B).

Dorsal place fields are sensitive to changes in grid
node firing rate patterns

Because our simulations use grid cells with realistically vari-
able grid node firing rates, we investigated whether perturbing
the patterns of grid node firing rates while fixing the geometric
properties of the grid cells (scale, orientation, and phase) could

induce remapping in the downstream place cell populations.
To do so, we first generated two populations of grid cells with
identical geometric properties, but independently chosen pat-
terns of grid node firing rates. We then assessed the degree of
remapping between the two resulting place cell populations,
using the remapping measures described in a previous section
on the analysis of model output.

Figure 10 shows the change in the place fields as a function of
grid node remapping, using the two measures of place field
remapping. Here, we set a 5 0.5, b 5 0.85, and n 5 0.5 to
remain consistent with the previous simulations. Figures 10A,B
show the cell turnover and spatial correlation respectively for
place fields across the dorsoventral axis between the place fields
generated using the two sets of grid patterns. These results suggest
that the dorsal-most place cells can globally remap due to changes
in the grid node firing rate patterns of their grid cell inputs, even
when the phase and orientation of all of the grid patterns remains
fixed.

In addition, our model suggests that the remapping due to
grid node fluctuations should be less pronounced at more ventral
locations, since the properties of these ventral cells are dominated
by nonspatial inputs. Since dorsal place cells are more stable over
the timescale of a single recording session (Royer et al., 2010),
this could imply that either grid node firing rate patterns are sta-
ble over time (and perhaps carry some coding significance), or
that some external mechanism is responsible for keeping dorsal
place fields stable in the face of such fluctuations.

DISCUSSION

Our modeling work is different from prior studies in a num-
ber of ways. First, we organized both grid cells and place cells on

FIGURE 10. Response of place cell representation to changes in grid node firing rate vari-
ability. A: Proportion of shared active cells for two independently generated sets of grid node
firing rate patterns at different dorsoventral locations, showing significant cell turnover in the
dorsal hippocampus as a result of changes in just the firing rates of individual grid nodes. The
phases, orientations, and spatial scales of all grid cells are identical in both conditions. B: Spa-
tial decorrelation of place field maps between the two conditions.
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the basis of spatial scale, and systematically varied the degree of
spatial scale selectivity in the grid cell inputs to place cells (Lyttle,
2012). Second, we introduced a dorsoventral gradient in the
nonspatial inputs to place cells, with ventral cells receiving more
input from nonspatial sources. Because there are likely to be mul-
tiple sources of nonspatial inputs to the ventral hippocampus, we
did not specify a single anatomical source for these inputs.
Rather, we assumed they represented some combination of con-
textual, nonspatial, and emotional inputs from sources including
the amygdala, hypothalamus, and ventral tegmental area. One
previous computational study explored the role of (low spatial in-
formation content) LEC inputs on place cell rate remapping
(Renno-Costa et al., 2010), however they did not compare the
relative effects of grid scale and nonspatial inputs on place cell
properties along the dorsoventral axis. Finally, we introduced het-
erogeneity in the firing rates of grid vertices within individual
grid fields. This heterogeneity is observed in experiments but has
received relatively little attention in either experimental or theo-
retical work, despite its potential impact on position estimation
as well as the stability and formation of place fields.

The Relative Contributions of Grid Field Scale
and Nonspatial Inputs in Determining Place
Field Size

A central result of our study is that place field size is strongly
influenced by the degree of spatial specificity in the inputs to
place cells, and is affected less strongly by the spatial scale of grid
cell inputs. This suggests that the dorsoventral gradient in place
field size may reflect a gradual change in the type of information
being processed by the hippocampus, with the dorsal hippocam-
pus processing primarily spatial location-dependent information,
and the ventral hippocampus processing broader contextual and
emotional information. This agrees with experimental findings
that have suggested that the dorsal and ventral hippocampal
regions may be functionally distinct and process different types
of information. Early evidence to this effect was found in selec-
tive hippocampal lesioning studies where selective lesions to the
dorsal hippocampus produced deficits in spatial memory and
navigation, whereas lesions of the ventral hippocampus did not
affect spatial navigation, but instead produced deficits in fear
conditioning (Kjelstrup et al., 2002; Steffenach et al., 2005;
Czerniawski et al., 2009). A particularly relevant recent study
found fundamental differences in spatial representation between

dorsal and ventral CA3 cells (Royer et al., 2010). Specifically,
ventral cells showed higher reward sensitivity, and were able to
distinguish between the inbound and outbound directions of
travel and between the open and closed arms of a maze in a radial
maze task more effectively than dorsal cells. Finally, recent fMRI
studies in humans suggest that there may be functional differen-
ces between the anterior and posterior portions of the hippocam-
pus (Poppenk et al., in press). Collectively, these results suggest
that the dorsal and ventral portions of the hippocampus are func-
tionally distinct, and our modeling results suggest that the differ-
ences in place field size may simply reflect this functional
distinction.

Ultimately, more detailed anatomical studies of the various
input projections to the hippocampus will be required to deter-
mine the respective contributions of grid cells and nonspatial
input sources in producing the dorsoventral gradient in place
field size. Our model predicts that strict topographical organi-
zation in the grid-to-place connectivity (i.e., a low value of a )
along with the existence of very large grids in a 2D environ-
ment are necessary for the scale of grid inputs to have an im-
portant role in determining place field size. On the other hand,
if place field size is largely determined by the relative amounts
of spatial and nonspatial inputs, then there should be a dorso-
ventral gradient in either the density or strength of incoming
connections from cells that show little to no spatial modula-
tion. We also predict that selectively lesioning the dorsal ento-
rhinal cortex will result in an increase in dorsal place field size,
but that selectively lesioning the ventral entorhinal cortex will
have very little effect on dorsal place field size (see Supporting
Information Fig. S2). The inclusion of nonspatial inputs in our
model was motivated by anatomical evidence suggesting that
the ventral hippocampus preferentially receives nonspatial and
emotional inputs from areas such as the amygdala, hypothala-
mus, and VTA (Witter et al., 1989; Risold and Swanson,
1996; Petrovich et al., 2001); Precisely pinpointing the domi-
nant sources of nonspatial inputs to the ventral hippocampus
and selectively lesioning them while assessing the impact on
ventral place field size could provide a direct test of the results
of our model, which predicts an average decrease in ventral
place field size in the absence of additional nonspatial inputs.

If place field size is in fact not solely a function of the spa-
tial scale of a place cell’s grid cell inputs, then an interesting
question arises as to what computational advantages exist, if
any, in a multiscale representation of space in entorhinal grid

TABLE 1.

Experimental Data on Ventral Place Field Size

Study Kjelstrup 2008 Royer 2010

Environment type Linear track, 18m 2-D opem field, 2m2

Meam dorsal place field size �5 % of environment �18 % of environment

Meam ventral place field size �27 % of environment �42 % of environment

Increase in mean place field size �5-fold increase in mean coverage �2-fold increase in mean coverage

Summary of recent experimental studies, indicating a dorsoventral increase in place field size.
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cells. One possibility is that spatial navigation in the face of
environmental changes at a specific spatial scale may be more
robust if spatial information at other scales is present. Further
work will be required to better understand the functional sig-
nificance of representing space at multiple scales.

It is important to note that while our findings highlight the
role of nonspatial inputs in determining place field size, the
present model cannot rule out the possibility that intrinsic cel-
lular properties or some factor other than nonspatial inputs
may also be involved in producing the observed dorsoventral
gradient in place field size. Recent experimental work involving
HCN1 knockout mice has produced evidence that this channel
is involved in setting the spatial scale of both grid cells (Gio-
como et al., 2011) and place cells (Hussaini et al., 2011).
Interestingly, while the grid fields were larger in the HCN1
knockouts, the dorsoventral gradient in grid scale was preserved
(Giocomo et al., 2011). The corresponding study in place cells
only involved recordings at a single dorsoventral location (Hus-
saini et al., 2011), and thus it is not currently known whether
a dorsoventral gradient in place field size is present in HCN1
knockout mice. We observe however, that the effective role of
the nonspatial inputs in our model is to produce a dorsoventral
gradient in the spatially independent excitability of cells. This
change in excitability could also be the result of a dorsoventral
gradient in intracellular properties (Dougherty et al., 2012,
2013), and would yield similar if not identical place field to
those observed in our model. Our assumption that the changes
in excitability are due to nonspatial input is motivated by ana-
tomical differences in the projections to the dorsal and ventral
hippocampus, but careful experimental work will be required
to distinguish the effects of external inputs from intrinsic intra-
cellular differences. In either case, however, the observed dorso-
ventral differences in place field properties would be due to
factors other than the change in spatial scale of grid fields.

It has also been proposed that the spatial properties of dorsal
place fields may be tightly linked to the presence of theta oscil-
lations in the rat (Tsodyks et al., 1996; Maurer et al., 2005;
O’Keefe and Burgess, 2005). This finding is compatible with
recent observations that ventral place fields are larger, often
much more difficult to define, and also have very weak theta
oscillation (Royer et al., 2010; Patel et al., 2012). However, the
relationship between theta and place field spatial properties has
recently been challenged by studies in bats, in which well-
defined place fields can be found even though theta oscillations
are absent, whether the bats fly or crawl (Ulanovsky and Moss,
2011; Yartsev et al., 2011). Our modeling results suggest that
the poor spatial selectivity of ventral place fields may be mainly
due to the presence of a high amount of nonspatial input, and
that the fact that theta is absent in the ventral hippocampus
may be unrelated to spatial selectivity.

Local Winner Take All Interactions are
Consistent With Normal Place Field Expression

In constructing our model, we discretize the dorsoventral
axis of the hippocampus into smaller groups of place cells

representing different dorsoventral locations. The winner-take-
all competition which shapes place fields in our model is con-
fined to within these groups. We explored the effects of
increasing the amount of overlap between nearby groups, and
found that with significant overlap, more ventral place cells
tended to dominate due to increased levels of excitation, and
suppressed the firing of dorsal cells. This predicts that if a dor-
soventral gradient in nonspatial input is present, winner-take-
all competition must take place within subpopulations of place
cells with similar input statistics in order to produce realistic
levels of dorsal place cell activity, implying that lateral inhibi-
tion must only extend across a fraction of the dorsoventral
axis. This is quite reasonable, and consistent with known hip-
pocampal anatomy. In particular, inhibitory basket cells are one
of the more common cell types in the hippocampus that could
serve to mediate winner-take-all interactions, and their spatial
extent is limited to a small fraction of the dorsoventral axis of
the hippocampus (Freund and Buzsaki, 1996). However more
work must be done to assess the strength and functional role
of longer-rage inhibitory interactions across different dorsoven-
tral distances, in order to determine if our predictions are
accurate.

Effect of Input Variance and Geometry

Another finding of this work is that increased variability in
the firing rates of nonspatial cells decreases the number of
active ventral cells. In other words, in the context of the win-
ner-take-all mechanism for place cell formation, a richer and
more diverse set of nonspatial inputs is associated with sparser
activity in the ventral hippocampus. Consequently, greater non-
spatial or emotional complexity in an environment may be
associated with sparser ventral coding. Detailed measurements
of the proportion of cells with place fields in the ventral hippo-
campus would help determine which of these two mechanisms
is more likely to be involved in setting place field size,
although existing data suggests that there are slightly fewer ven-
tral place cells than dorsal place cells active in a given environ-
ment (Jung et al., 1994; Royer et al., 2010).

Additionally, our simulations involving elliptical and
randomized grid cell inputs suggest that the degree of spatial
modulation in the inputs to place cells may be more important
than the precise grid geometry of those inputs for producing
place fields. This implies that place fields can form without
input from medial entorhinal grid cells, provided that they
receive some sort of spatially modulated input. This idea is
consistent with the experimental observations that place fields
are observable earlier in development than grid fields (Wills
et al., 2010) and that place fields persist after disruption of
entorhinal grid cells firing (Koenig et al., 2011). Furthermore,
our model predicts that under experimental conditions such as
these, where grid cells are disabled but place cells still persist,
the dorsoventral gradient should still be apparent. Finally, we
note that there are other candidate sources of spatially modu-
lated input to place cells, such as border cells, and even weakly
spatial input from the lateral entorhinal cortex may be
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sufficient to induce place field formation, given that place fields
are observed in the distal hippocampus, which receives primar-
ily lateral entorhinal input (Henriksen et al., 2010).

Place Cell Stability

In addition to studying the respective roles of spatial and
nonspatial inputs in determining place field size, we studied
how these different types of inputs affect place field stability.
We found that nonspatial inputs can affect the stability of place
fields, and may play a role in selecting which place cells fire,
consistent with recent experimental findings indicating that the
injection of a spatially uniform current into place cells causes
them to develop place fields in an environment in which they
previously were inactive (Lee et al., 2012).

Another set of results concerns the stability of place fields in
the face of grid cell firing rate fluctuations. Firing rate hetero-
geneity in the grid vertices of grid cells, despite being an exper-
imental fact (Hafting et al., 2005), has received relatively little
attention. The apparent sensitivity of dorsal place fields to var-
iations in the node-to-node patterns of grid cell firing rates
raises several questions. An important question is whether these
heterogeneous firing rate patterns remain stable over behavior-
ally relevant timescales. If they do, then one may ask if these
patterns reflect some sort of external modulation, and if they
have any functional or coding significance, as one recent study
has suggested (Reifenstein et al., 2012). Alternatively, if the fir-
ing rates of individual grid nodes are not stable over time, then
the apparent temporal stability of place fields requires further
explanation. Further experimental work will be required to pre-
cisely quantify the temporal stability of the grid field firing
rates and to measure the magnitude of these fluctuations.

Role for Network Dynamics

Finally, we note that our model, like that of de Almeida et
al, assumes that a static rate-based model is sufficient to cap-
ture the essential properties of the grid-to-place cell system. In
ongoing work we are exploring the possibility that complex
dynamical interactions can modulate or affect the stability of
the system.
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