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An  important  problem  in neuroscience  is  that  of  constructing  quantitative  measures  of  the  similarity
between  neural  spike  trains.  These  measures  can be  used,  for  example,  to assess  the  reliability  of  the
response  of  a  single  neuron  to  repeated  stimulus  presentations,  or to uncover  relationships  in  the  firing
patterns  of  multiple  neurons  in  a  population.  While  several  similarity  measures  have  been  proposed,  the
extent to which  they  take  into  account  various  biologically  important  spike  train  features  such  as  bursts
of spikes,  or  periods  of  inactivity  remains  poorly  understood.  Here  we  compare  these  measures  using
ime series analysis
ynchrony
eural coding
eural data analysis

tests  specifically  designed  to assess  the  sensitivity  to  bursts  and  silent  periods.  In addition,  we  propose
two  new  measures.  The  first  is  designed  to detect  periods  of  shared  silence  between  spike  trains,  while
the second  is designed  to emphasize  the  presence  of  common  bursts.  To  assist  researchers  in  determining
which  measure  is  best  suited  to their  particular  data  analysis  needs,  we  also  show  how  these  measures
can  be  combined  and  how  their  parameters  can  be  determined  on  the  basis  of  physiologically  relevant
quantities.
. Introduction

A fundamental issue in neuroscience research is that of quanti-
ying the similarity or dissimilarity of temporal patterns of neuronal
piking activity, or “spike trains.” There are two  main classes
f experiments in which such an assessment is important. The
rst includes experiments in vitro or in vivo where single neu-
ons respond to repeated presentations of the same stimulus.
nderstanding how a neuron encodes the stimulus relies on under-

tanding how similar or dissimilar its responses are across these
resentations. Typically, these similarities are based on a smoothed
ersion of the binned firing rate of the responses. The second class
f experimental paradigms involves the simultaneous recording of
ultiple neurons. In this case, understanding how populations of

eurons work together relies upon an assessment of their partial
orrelations. The similarity or dissimilarity in the firing of a popu-
ation of neurons at a particular time may  carry information about
he underlying population code. The need to quantify the simi-
arity between spike trains also arises in computational work. For

xample, it can become important both infitting neural models to
ata, and in comparing different models on the basis of how accu-
ately they reproduce neural activity patterns. Both tasks require
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that there be some method for comparing a spiking neural model’s
output to biological spike train data (Jolivet et al., 2008; Rossant
et al., 2010). In classical approaches, statistical measures such as
the cross-correlation coefficient at zero lag, or the entire cross-
correlogram are used. Whether across multiple trials, or across
multiple neurons, these measures are essentially blind to physi-
ologically relevant features of the trains such as bursts or periods
of shared inhibition. Because the measures are statistical, they also
de-emphasize the role of single spikes, the timing of which may  be
important for computation.

As an alternative approach to this problem, a variety of spike
train similarity measures have been proposed (Houghton, 2009;
Kreuz et al., 2007; Quiroga et al., 2002; Schreiber et al., 2003; van
Rossum, 2001; Victor and Purpura, 1997). Some of these quantita-
tive measures of similarity are metrics in the strict mathematical
sense, and all of them can be thought of as attempts to quantify the
intuitive notion of a “distance” between two spike trains (Victor,
2005). In constructing or choosing a similarity measure, one faces
the question of what exactly it means for two trains to be consid-
ered similar (close) or dissimilar (far apart), and how this definition
of similarity is incorporated into the measure. One  idea is that two
patterns of neuronal activity should be “close” if they are responses
to the same input, and “far apart” if they are responses to distinct

inputs. This assumes that their response is deterministic, with one
response per input. There is experimental evidence that this may
not be the case in general (Fellous et al., 2004). Another possible
way  of defining similarity is to consider that two spike trains are

dx.doi.org/10.1016/j.jneumeth.2011.05.005
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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dx.doi.org/10.1016/j.jneumeth.2011.05.005


urosc

“
t
t
c
i
d

1
2
3

t
m
“
a
t
s
a
w
F
i
a
d
b
i
a
s
o
a
h
t
s
s
R
l
t
m

o
p
t
(
s
s

t
i
w
m
l
b
s
a
s
d
a
t
H
s
s
d
s
d
a
p

D. Lyttle, J.-M. Fellous / Journal of Ne

close” if they elicit a similar response post-synaptically. To make
hese intuitive notions more explicit, throughout this work we say
hat a function of two spike trains qualifies as a similarity measure if
ertain minimal criteria hold. If x and y are two spike trains defined
n the time interval from 0 to L, for some time L, then a function
(x,y) is a similarity measure if the following hold:

. d(x,y) ≥ 0 for all x and y.

. d(x,y) = 0 only when x = y or x and y are “nearly identical.”

. d(x,y) > d(x,z) if x and y are “more dissimilar” than x and z.

Note that these criteria are subject to a great deal of interpre-
ation. There is no universally agreed upon definition of what it

eans for two trains to be “nearly identical,” or for two  trains to be
more dissimilar” that two other trains. It is entirely possible that

 single definition may  not be appropriate in all experimental con-
exts. In most cases, the analysis of spike train data requires that
ome assumption be made about which features of a spike train
re physiologically relevant, what time scales are involved, and
hether certain features are important for encoding information.

or example, one may  assume that all of the relevant information
n a spike train is conveyed by the overall firing rate, in which case

 measure based upon comparing total spike counts in a given win-
ow would be sufficient for assessing the similarity or dissimilarity
etween trains. However, this assumption neglects the possible

mportance of the precise timing of single spikes. Multiple studies
ddressing a diverse array of topics, including theta phase preces-
ion in the hippocampus (Maurer and McNaughton, 2007), replay
f activity during sharp waves (Skaggs and McNaughton, 1996),
nd spike-timing dependent plasticity (STDP) (Bi and Poo, 1998),
ave suggested that the timing of single spikes may  be important at
ime scales of less than 50 ms.  Other studies have shown that many
ynapses away from the periphery, neurons could respond to sen-
ory stimuli with a precision of less than 5 ms  (Kara et al., 2000;
einagel and Reid, 2002). Altogether, these studies suggest that at

east in some cases, neurons can fire with exquisite precision, that
his precision can have an impact on synaptic strength, and that it

ay  be used for encoding information.
Various subtleties must be taken into account in the evaluation

f similarity measures that are based on spike timing. For exam-
le, it may  be reasonable to assume that differences between spike
rains that result from small perturbations in the exact spike times
i.e. “jitter”), or those due to the insertion or deletion of single
pikes, are likely to be the result of synaptic noise, and as such,
hould be de-emphasized by a good similarity measure.

In addition to firing rates and to the timing of individual spikes,
here may  be other, less obvious but nonetheless physiologically
mportant features of spike trains that should be taken into account

hen quantitatively comparing two spike trains. For example,
any cells fire tightly grouped “bursts” of spikes in addition to iso-

ated action potentials. It has been argued elsewhere that these
ursts may  in some cases be more significant firing events than
ingle spikes, in that they can overcome intrinsic synaptic unreli-
bility and allow information to propagate more effectively across
ynapses (Lisman, 1997). Consequently, one may  assume that the
eletion or insertion of bursts of spikes, or changes in burst timing
re more likely to be physiologically important post-synaptically
han equivalent changes in the number or timing of isolated spikes.
owever the extent to which existing spike train similarity mea-

ures take this into account has not been explored. In the present
tudy we propose a simple empirical test to determine how the
ifferent spike train similarity measures “weigh” bursts relative to

ingle spikes. This test reveals striking and previously unexamined
ifferences in how the various measures behave. We  also propose

 new similarity measure that allows for selective emphasis to be
laced upon bursts relative to single spikes.
ience Methods 199 (2011) 296– 309 297

Another spike train feature of interest which we wish to empha-
size is shared periods of inactivity or silence. Common periods of
silence may  in some cases be ‘information rich’, especially in cells
with spontaneous activity. For example, one particularly interest-
ing set of studies has found evidence that cerebellar Purkinje cells
may be conveying information using the timing and duration of the
periods in which the cell is silent (De Schutter and Steuber, 2009).
More generally, silences may  be the result of periods of active inhi-
bitions, either stimulus driven across trials, or synchronized across
neurons. We propose a set of tests for determining how existing
measures respond to silent periods, and a new measure that has
been designed specifically to detect shared silent periods of inac-
tivity between spike trains.

It is doubtful that a single similarity measure is appropriate for
all experimental data sets given the existence of a wide range of
possible mechanisms through which spike trains could be encod-
ing information. The best choice of similarity measure depends
intimately on the specific features of the spike data under consid-
eration. A recent study has compared several of these measures
on the basis of their effectiveness in discriminating spike trains
on the basis of firing rate and spike synchrony (Paiva et al., 2010).
However, as we stated previously, the extent to which different
measures respond to certain specific features of spike trains (bursts
and silence) has for the most part not been explored. We  examine
the sensitivity of several existing similarity measures to periods
of common silence and the presence of bursts through a set of
simple computational tests using surrogate data, and propose a
complementary pair of new measures that are designed specifically
to address these features. As a demonstration of their potential,
we subject our new measures to the same series of tests. Note
that here we  focus entirely on so-called “binless” measures. Previ-
ous works have pointed out that binned measures, in which spike
trains are pre-processed and represented as binary vectors, may
be undesirable in that an incorrect choice of bin width may  result
in a detrimental loss of information (Hunter et al., 1998; Kruskal
et al., 2007; Masud and Borisyuk, 2011; Schreiber et al., 2003; van
Rossum, 2001; Victor, 2005). Furthermore such measures typically
assume that the underlying “space” of spike trains is inherently
Euclidean, which may  be unfounded (Aronov and Victor, 2004).

2. Overview of existing spike train similarity measures

2.1. Cost-based (Victor–Purpura) metrics

The Victor–Purpura family of metrics is a set of cost-based met-
rics which assigns distances to pairs of spike trains by determining
a minimum ‘cost’ associated with transforming one spike train
into another (Victor, 2005; Victor and Purpura, 1997). The basic
principle is similar to that which underlies the various cost based
or “edit-length” distances used in the analysis of genomic data
(Gusfield, 1997). These cost based metrics are constructed using
the following components:

• A list of elementary transformations (i.e. inserting or deleting a
spike, or shifting a spike by some time difference dt).

• A  set of costs associated with each transformation.

Typically, the cost of inserting or deleting a spike is set to a value
of 1, while the cost of shifting a spike by an amount dt is q × dt.  Here q
is a free parameter which allows for the adjustment of the sensitiv-
ity of the metric to the time scale at which similarity is considered.

Given two arbitrary spike trains, there always exists some “path” or
sequence of elementary transformations that transforms one spike
train into another. Associated with each path is a cost, given by
the sum of the costs of the elementary transformations that com-
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ose individual steps of the path. The numerical distance that the
etric assigns to each pair of spike trains is the minimum of the

osts of all possible paths by which one train could be transformed
nto the other. It has been shown that this function satisfies the set
f properties that define a metric in the strict mathematical sense
Victor and Purpura, 1997). The efficient implementation of this

etric requires an algorithm for calculating the minimum cost of
ossible paths, which is non-trivial but has been discussed at length
lsewhere (Victor and Purpura, 1997). One should note that this
amily of cost based metrics includes multi-neuronal extensions
nd variants that involve transforming sequences of ISIs rather than
equences of spike times (Victor, 2005; Victor and Purpura, 1997).

.2. Convolution metrics

The convolution metrics involve a different approach (Hunter
t al., 1998; Schreiber et al., 2003; van Rossum, 2001). The basic
rocedure by which one computes the value of the metric for a
iven pair of spike trains is as follows: one first convolves each spike
rain with a kernel function (e.g. a decaying exponential, or a Gaus-
ian), and then uses the L2 function space norm of the difference to
ompute the distance between the resulting functions.

To illustrate this more explicitly, assume two spike trains, x = {x1,
2, x3,. . .,  xn} and y = {y1, y2, y3,. . .,  ym}. The first step in computing
(x,y) is to first perform the mappings:

x → f (t) =
∑

j

H(t − xj)K(t − xj, �) and

y → g(t) =
∑

i

H(t − yi)K(t − yi, �)

Here H is the Heaviside theta function (H(u) = 0 for u ≤ 0, H(u) = 1
hen u > 0), and K is a one parameter kernel function. A typical

hoice of one-parameter kernel function for this measure is a decay-
ng exponential with time constant �, given by:

(t − xj) = 1
�

exp(−(t − xj))

The smaller the time constant, the more rapidly the exponential
ernel decays, which implies that small time constants will result in
n increased sensitivity to precise spike timing. Once the mappings
re complete, the distance is given by:

R(x, y) =

√∫ L

0

(f (t) − g(t))2 dt

Constructing the metric with a Gaussian kernel also involves the
se of a free parameter, corresponding to the width of the Gaussian
unction. Like q in the Victor–Purpura method, these parameters
et the time scale at which similarity is measured. It is largely up
o the experimenter to decide what this value is, depending on the
xperiment, the type of cells and the brain area. Many properties
f this metric, such as the sensitivity of the metric to the insertion
f noisy spikes and jitter, have been explored elsewhere (Fellous
t al., 2004; Paiva et al., 2010; van Rossum, 2001). A multi-neuronal
xtension to this metric has also been proposed (Gunay et al., 2008;
oughton, 2009).

.2.1. Synapse-like convolution metric variant
An extension to the conventional convolution metric based

pon synaptic depression has recently been proposed (Houghton,
009). In the original convolution metric, spike trains are mapped

o real-valued functions in the manner described above. An alter-
ative, equivalent description of this mapping can be given which
akes explicit the parallels between the construction of the func-

ions used in the metric and a model of synaptic transmission. In
ience Methods 199 (2011) 296– 309

this description, the functions to which the spike trains are mapped
are taken to be solutions of the following ODE:

�
df

dt
= −f

with the added condition that at each of the spike times ti the value
of the function f undergoes the following jump:

f (ti) → f (ti) + ı

whereı is typically equal to 1. The variation on this metric proposed
by Houghton et al. modifies this mapping by making the magnitude
of the jumps that occur at spike times dependent upon the value of
the function at that time. Formally, the above expression is changed
to the following:

f  (ti) → (1 − �)f (ti) + 1

Once both trains have been subjected to this mapping, the dis-
tance is computed as in the standard convolution metric, by taking
the L2 norm of the difference. Note that when � = 0, the mapping is
the same as in the convolution metric. However for non-zero val-
ues of �, spikes that occur shortly after a preceding spike produce a
smaller jump in the function value. As a result, such spikes will have
a reduced impact on the result of computing the distance between
two  trains using this measure. The biophysical motivation given by
the authors is that it more realistically captures short-term synaptic
dynamics by including synaptic depression (Houghton, 2009). This
similarity measure is a true metric, because the mapping from spike
train to a function is unique, and because the L2 distance between
functions is a true metric.

2.2.2. Spike correlation measure
A different, correlation based approach can be computed as fol-

lows: Given two spike trains x = {x1, x2, x3,. . .,  xn} and y = {y1, y2,
y3,. . .,  ym}, one first performs a mapping from each spike train to
a real-valued function through convolution with a chosen kernel
function (Schreiber et al., 2003; Wiskott et al., 1997). This step
is identical to the corresponding step in the computation of the
convolution metric, with the exception that the kernel function is
typically Gaussian rather than a decaying exponential. This map-
ping yields two  time-dependent functions, f(t) and g(t), which can
be compared as follows:

dSC (f, g) = 1 −
∫ L

0
f (t)g(t) dt√∫ L

0
f (t)2 dt

√∫ L

0
g(t)2 dt

Note that the output of this measure will always lie within [0,1].
This measure proved efficient in a data clustering study (Fellous
et al., 2004).

2.3. Event synchronization

The event synchronization similarity measure was  first pro-
posed to measure synchronization and time delays in datasets
related to epileptic seizures (Quiroga et al., 2002). Unlike several
of the other measures, it does not have any free time-scale param-
eters that need to be set a priori. For two  spike times xi and yj,
each from a different train, the value �ij is computed as half of the
minimum of the four ISIs around these two spike times:
�ij = min(xi+1 − xi, xi − xi−1, yj+1 − yj, yj − yj−1)
2

Next, one constructs the function c(x|y) which intuitively is
designed to count the number of times a spike from the train x
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Fig. 1. Trains A–D all have the same firing rate. Trains A1 and A2 have 3 instances of
single spike near-synchrony (gray boxes). Trains B1 and B2 share 3 common bursting
times (gray boxes). Trains C1 and C2 are uncorrelated, whereas trains D1 and D2 are
uncorrelated but share a common period of silence. We  propose that shared periods
of  silence and common bursts are meaningful features. A similarity measure should
recognize trains B1 and B2 as being “closer” to one another than A1 and A2, and
D. Lyttle, J.-M. Fellous / Journal of Ne

ppears immediately after a spike in the train y. The function is
iven by:

(x|y) =
Mx∑
i=1

My∑
j=1

Pij

here Mx is the number of spikes in train x, My is the number of
pikes in train y, and:

Pij = 1 if 0 < xi − yj ≤ �ij
Pij = 1/2 if xi = yj
Pij = 0 otherwise.

hen one can define the event synchronization as:

(x, y) = c(x|y) + c(y|x)√
MxMy

hich becomes a similarity measure via the transformation:

Q (x, y) = 1 − Q (x, y)

Intuitively, this measure provides a normalized count of the
umber of “synchronous” spikes, where the criteria for determin-

ng whether two spikes are synchronous depends upon the smallest
nter-spike interval in the two trains.

.4. ISI-distance

The ISI-distance is computed as follows: Assume a spike train
 = {x1, x2,. . .,  xk} such that for every spike time xi, 0 < xi < L, where

 is the length of the recording time (Kreuz et al., 2007). The train
s first modified to include artificial “spikes” corresponding to the
eginning and end of the recording time, i.e. let x = {x0 = 0, x1, x2,. . .,
k, xk+1 = L}. Then each train is mapped to a function f(t) as follows:

For xi < t < xi+1, where i = 0, 1,. . .,  k, let f(t) = xi+1 − xi.
Once this has been done for both trains, producing two  functions

(t) and g(t), a third function is computed as follows:

(t) = 1 − min(f (t), g(t))
max(f (t), g(t))

inally, the value of the measure is determined by:

ISI(x, y) = 1
L

∫ L

0

|I(t)| dt

This measure, like the event synchronization measure, does not
ave any free parameters which the experimenter is required to
et. These two measures therefore do not allow for a ‘focus’ of the
imilarity on particular time scales. It is also unique in that inter-
pike intervals rather than spikes form the basis for comparisons.

. A new spike train similarity measure

.1. Motivation

A current deficiency in the majority of existing spike train simi-
arity measures is their inability to make a distinction between the
ollowing two  cases illustrated in Fig. 1. The first two  trains A1 and
2 are random Poisson trains in which the spikes are mostly uncor-
elated, except at 3 times (gray boxes). In contrast, trains B1 and B2
hare 3 times at which they both burst (gray boxes). Bursts are sig-
ificant firing events, indicating a strong presynaptic input drive

r the ability for the cell to overcome the unreliability of synaptic
ransmission to other cells at this particular time. For these reasons,

 good similarity measure should deem B1 and B2 to be closer to
ach other than trains A1 and A2. As will be shown below (Section
should identify D1 and D2 as being “closer” to one another than C1 and C2.

4.2), some measures, such as the van Rossum and spike correlation
measures, are intrinsically sensitive to bursting, however they do
not provide a means for the experimenter to control the extent of
this sensitivity.

Fig. 1 also illustrates a second criterion for comparing spike train
similarity measures.

Trains C1 and C2 have the same average firing rate but little
to no correlations in the spike times. These could be representing
spike trains resulting from two responses of the same neuron to
two  different stimuli, or two spontaneously active and uncoupled
simultaneously recorded neurons. The trains D1 and D2 also have
mostly uncorrelated spikes, however a common period of silence
has been inserted into the middle of both trains. These common
periods of inactivity may  be information-rich, and indicative of
some active inhibition being imposed on both neurons. Because
these trains share this common feature, a good similarity measure
should deem them to be “closer” to one another than the first pair
C1 and C2, and assign them a lower dissimilarity value. However,
most measures would treat these two pairs as equally dissimilar.
For these measures, the difference in the dissimilarity values will
on average be zero, as will be seen in Section 4.3.2.

We propose two new similarity measures that are designed to
specifically address these two issues. The first measure, which will
be discussed in detail in Section 3.2.1, is based upon evaluating
the normalized correlation between the inter-spike intervals of
two  trains, in the same manner as the spike correlation measure
discussed in Section 2.2.2. The second measure, which we discuss
in Section 3.2.2, is a modification of the original spike correlation
measure in which convolved trains are subjected to a non-linear
transformation as a way  of emphasizing bursts. These two mea-
sures can be treated as independent measures in and of themselves,
however they are both defined in a similar fashion and only take
values between zero and one. As a result, they can be combined

in a natural way by simply taking their weighted average to yield
a single measure (we call the LF measure) that can be sensitive to
both bursts and silence, given an appropriate choice of parameters.
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Fig. 2. Illustration of the “silence sensitive” component of the LF measure. Trains
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re  mapped to functions that grow linearly in the time between spikes, but are reset
o  zero at each spike, and remain at zero for a time �. The resulting functions are
hen compared using the standard normalized correlation measure.

.2. Computing the LF measure

.2.1. A measure that is sensitive to silences
We compute the silence-sensitive measure by first construct-

ng a mapping from each spike train to a unique function in the
ollowing manner:

Assume a spike train x = {x1, x2,. . .,  xk} such that for every spike
ime xi, 0 < xi <L, where L is the length of the recording time. For
onvenience, we can amend the train to include artificial “spikes”
orresponding to the beginning and end of the recording time, i.e.
et x = {x0 = 0, x1, x2,. . .,  xk, xk+1 = L}. There are other possible ways to
reat the issue of what to do at the boundaries, another possibility
s to begin the mapping at the first spike in each train, and end it
t the last spike. Now we can map  the train to a function, f(t) as
ollows:

For every time t in every inter-spike interval [xi, xi+1], let
f(t) = 0 for t ∈ [xi, xi + �)
and
f(t) = t − (xi + �) for t ∈ [xi + �, xi+1)
Here � is an adjustable parameter indicating the maximal time

nterval at which common silences should not be considered sig-
ificant. This value is set by the experimenter and depends on the
pecifics of the experiments, very much like the time scale param-
ters of the convolution and Victor–Purpura metrics. Section 3.4.1
iscusses the choice of this parameter in details. Intuitively, beyond
, the spike trains are mapped to functions that grow in a simple
inear fashion between spiking events, but are reset to 0 at each new
pike (see Fig. 2). Once both trains have been mapped to functions,
he two resulting functions are then compared via the same method
s in the spike correlation measure. Namely, given the functions f(t)
nd g(t), we compute:

S(f, g) = 1 −
∫ L

0
f (t)g(t) dt√∫ L

0
f (t)2 dt

√∫ L

0
g(t)2 dt

It is important to note that this particular construction of the
easure is not symmetric in time, that is, if the two trains being

ompared were both reversed in time prior to applying the map-
ing, a different dissimilarity value would be obtained. This implies
hat the precise timing of a spike that occurs at the end of a long
nterval will be more important than the precise timing of a spike
hat occurs at the beginning of such an interval. However, if this
ime asymmetry is not desired, the measure can easily be made

ymmetric by applying the mapping both forwards and backwards
n time, and taking the average of the resulting two  values. This

odification will not affect the sensitivity of the measure to long
ilent periods.
ience Methods 199 (2011) 296– 309

3.2.2. A measure with increased sensitivity to bursts
In order to emphasize the role of shared bursts, we use a

modified version of the spike correlation measure. Because of the
symmetric nature of the kernel (Gaussian), and the linearity of the
convolution operation, the measure intrinsically emphasizes bursts
over single spikes. However, the nature of the emphasis depends
entirely on the width of the Gaussian kernel, so that bursts of spikes
containing ISI smaller than this width will be weighted more than
single spikes. Using the standard measures, the width of the kernel
is therefore both a measure of the time scale of the similarity and a
measure of what is considered a burst. There is no reason, a priori,
to couple these quantities.

In order to provide a means of selectively filtering out the contri-
bution of single spikes in favor of bursts, we  modify the measure and
introduce three new parameters. The first two parameters are phys-
iologically relevant in that they are used to distinguish whether or
not a particular fast sequence of spikes is considered a burst. The
first parameter b sets the ISI time scale for what is considered a
burst. Specifically, this parameter defines the maximum interval
between any two consecutive spikes in the same burst. The second
parameter n sets the minimum number of spikes that are required
to be present in order for such a fast sequence to be considered a
burst. The third parameter is simply a scaling factor taking values
between 0 and 1, and is used to control the extent to which bursts
are emphasized relative to single spikes.

The first step in computing this measure is to convolve the spike
trains with a Gaussian kernel, in exactly the same manner as is
done in computing the standard spike correlation measure to yield
a continuous function f(t). Note that isolated single spikes appear
as Gaussians of height equal to 1.

We  then apply a piecewise linear transformation N(x) to each
of the resulting convolved spike trains, where N(x) is defined as
follows:

N(f (t)) = H(f (t) − �T)(f (t) − �T)

where here H is the Heaviside theta function (H(u) = 0 for u ≤ 0,
H(u) = 1 when u > 0). Also, T is a function of the parameters n, b and
�, and dictates what is and is not considered a burst, while � in [0,1]
is a scaling factor that determines the extent to which single spike
information is discounted in favor of bursts. Setting this parameter
equal to 1 is equivalent to completely ignoring all spikes that are
not part of a bursts, whereas setting it to 0 recovers the original,
unmodified spike correlation measure.

The threshold function T(n, b, �) is specified entirely in terms of
the parameters that describe the minimum number of spikes (n)
in a burst and the maximum ISI between consecutive spikes (b)
in a burst, along with � (the width of the Gaussian kernel used in
the original convolution step). It is important to note here that T
is a function of n, b and �, and not a separate parameter in and
of itself We  define T(n, b, �) as the maximum value of the func-
tion obtained by convolving a Gaussian kernel with a sequence of
exactly n spikes, where each spike is exactly b ms away from the
spikes that immediately precede or follow it. This function repre-
sents a sort of “worst-case scenario” in the sense that any sequence
of spikes that has either more than n spikes or inter-spike inter-
vals less than b will have a higher maximum value. Hence T can be
computed from n, b and � using the following formula:

T(n, b, �) =
k=n∑
k=1

e
−(p−kb)2

�2
where the variable p is obtained by noting that the maximum value
of the function that results from convolving a Gaussian kernel with
a train of equally spaced spikes is reached either at the midpoint
(i.e. the average of the spike times), or at the exact time of one of
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Fig. 3. Burst sensitive measure. (A) Cartoon illustrating how the threshold T is cal-
culated on the basis of the minimum number of spikes � and maximum intra-burst
ISI  b. T is set to the maximum value of the function that results from convolving a
Gaussian kernel with a single burst that meets these minimum requirements. (B)
Illustration of the thresholding transformation of a convolved spike train. The top
figure shows the result of convolving a given spike train (vertical marks) that con-
tains a burst with a Gaussian kernel. The resulting function is then transformed via a
thresholding operation, which leads to the function f(t) shown at the bottom panel.
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he distance is computed using the resulting functions as inputs to the standard
orrelation measure. Note that after the convolved spike train is transformed, the
ingle spikes are de-emphasized in favor of the burst.

he two spikes closest to the midpoint. This idea is illustrated in
ig. 3. Since we are looking only at a specific “worst case” example,
t is easy to show that p is given either by:

p1(n, b) = b(n+1)
2 or p2(n, b) = b(n+2)

2 and hence:

 = max(T(p1), T(p2))

The convolved spike trains will only take on values less than
 when no bursts (as defined by n and b) are present, while the
onvolved spike trains will take on values greater than T over the
ourse of individual bursts. Hence, the nonlinear transformation
ill de-emphasize single spikes and over-emphasize bursts. The

everity of the transformation is controlled by �, which can be tuned
o suit the needs of the experimenter.

Finally, the value of the measure is obtained by applying the
tandard correlation measure to the non-linearly transformed, con-
olved spike trains.

S(f, g) = 1 −
∫ L

0
N(f (t))N(g(t)) dt√∫ L

0
N(f (t))2 dt

√∫ L

0
(N(g(t)))2 dt

.3. Combining the two measures
Both intuition and the results of our computational tests indicate
hat focusing exclusively on the correlation between inter-spike
ntervals may  result in missing important spike-based features such
ience Methods 199 (2011) 296– 309 301

as bursts. However, by construction, the ISI correlation measure can
be combined quite naturally with the spike correlation measure
by taking the weighted average of the two. This results in a new
measure which can be computed as:

dLF (f, g) = WSdS(f, g) + WBdB(f, g)

Here dS and dB are, respectively, the silence and burst sensitive
measures, and WS and WB are weighting parameters such that
WS + WB = 1. This weighting provides flexibility in terms of choos-
ing which feature of the data one wishes to emphasize. By default,
one may  simply set WS = WB = 0.5.

3.4. Choosing parameters for a particular data set

Both of the measures that we propose contain free parameters.
In this section we suggest a set of guidelines on how to choose
these parameters for a given dataset. In addition to these parame-
ters, if the measures are combined, then the respective weights of
the two components must be set. The appropriate choice of weights
depends on some a priori knowledge of the physiology of the sys-
tem being studied, and thus there are no general rules regarding
how they can be selected. However, the fact that the possible values
of the weights are constrained (they must sum to (1) allows them to
be systematically varied. Furthermore, a systematic search across
the range of weights may  reveal the extent to which single spikes,
bursts, or silent periods individually contribute to the similarity (or
lack thereof) between two  spike trains, which could provide use-
ful information regarding how the spike trains in question may  be
encoding information.

3.4.1. Parameters of the silence sensitive component
The silence sensitive component of our measure maps spike

trains to functions that are set to zero at each spike, and after a
short delay of length � begin to grow linearly until the next spike
occurs, at which point they are again reset to zero. The duration
of this delay, �, is a free parameter that allows for short or aver-
age inter-spike intervals to be ignored, such that only atypically
long inter-spike intervals will affect the value of the similarity
measure. This is motivated by the idea that such atypically long
“silences” are features of interest, perhaps reflecting periods of inhi-
bition upstream. Consequently, the choice of this parameter should
reflect some timescale present in the data. For example, it could be
set to the average length of the inter-spike intervals in the spike
trains under analysis. Setting this parameter to be proportional to
the mean inter-spike interval could allow selective emphasis to be
placed upon inter-spike intervals that are longer than average. The
slope of the linearly increasing function is by default set to 1, and
the actual value of this parameter should be of no consequence,
since the dot product in ds is normalized.

3.4.2. Parameters of the burst sensitive component
The bursts sensitive component of our measure has four param-

eters. As introduced above, the first two  are n, the minimum
number of spikes for a fast sequence to be considered a burst, and
b, the maximum inter-spike interval allowable for two  subsequent
spikes to be treated as part of the same burst. While both of these
parameters can be chosen a priori or explored systematically, it is
also possible to estimate them on the basis of the data under anal-
ysis. Spike trains in which bursts are a prominent feature typically
display a bimodal distribution of ISIs, and the maximum intra-burst
ISI can be estimated by examining the first peak in the ISI distribu-

tion. Once this parameter has been chosen, a simple burst detection
algorithm can be used to determine the typical or minimum num-
ber of spikes in a burst. The third parameter � sets the severity of the
thresholding that is applied to the convolved spike trains (Fig. 3).
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Fig. 4. Example spike trains used in the burst and silence sensitivity tests. (A) Spike trains used for testing burst sensitivity. The top spike train is the original, and contains
both  bursts and isolated spikes. The middle train has had 12 isolated spikes removed, while in the bottom train 4 bursts (3 spikes each) have been deleted, while isolated
spikes  are preserved. The burst sensitivity test involved subtracting the distance between the original train and the train with the single spike removals from the distance
between the original train and the train with the burst deletions. (B) Illustration of trains used in the silence sensitivity test. The first pair consists of uncorrelated Poisson
spike  trains. The second pair also contains independently generated Poisson spike trains, but a silent period of length L has been inserted into both. For display purposes the
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rains  here are shorter and have a lower firing rate, the trains used in the actual test
istance between trains changes as a function of the length of their shared silent pe

his parameter takes values from 0 to 1, which makes it easy to
ary systematically across the entire range. Intuitively, this param-
ter controls the extent to which simple spikes are ignored in favor
f bursts. When it is set to zero, the resulting measure is simply
he original spike correlation measure. Finally, the fourth param-
ter is inherited from the original spike correlation measure, and
s the width of the Gaussian kernel used in the initial convolution
tep.

. A comparison of different spike train similarity measures

.1. Dataset and parameter tuning

For our two empirical tests, we use two different surrogate
atasets. The first dataset, used for the burst sensitivity tests, con-
ists of 50, 8-s long spike trains in which the timing of the “events”
either a burst or a single spike) in each train is given by a Poisson
rocess with rate 40 Hz. Each spike train contains 25 bursts, where
ach burst consists of 4 spikes with an inter-spike interval of 5 ms.
he second dataset contained no bursts, but each train had some
eriod of silence of variable length inserted at random onset times.

Several of the published measures discussed above contain one
r more free parameters, which typically are used to set the time

cale at which two spikes are treated as being synchronous. In
eneral, it was impractical to choose a single, ideal time constant
arameter for each measure. As a result, for all measures containing

 free parameter which could not be chosen in an obvious manner
 5 s long and 40HZ The silence sensitivity test involves measuring how the pairwise

from the data set, we  simply ran our tests using both a “small”
parameter value (typically 2–5 ms  as a lower bound) and a large
parameter (typically 20–25 ms  as an upper bound). Each step in
the analysis was repeated with both the short time constant and
with the long time constant. We  also attempted to fix parameters
for the various previously published measures in such a way that
our test results would be comparable across measures.

Encouragingly, we found that the qualitative results of all our
tests were not affected by the choice of parameters in the different
measures, as long as the parameter values used were within the
physiological range (i.e. not infinitesimally small or unreasonably
large). We  do not re-state the results for multiple parameter values,
since the differences in the results are minimal. Consequently we
report only the results obtained using the “small” set of parameters.

In the case of our new measure, there are several parameters
in addition to those used to tune the sensitivity to precise spike
timing. For the burst sensitive component, the parameters cor-
responding to the minimal definition of a burst were chosen to
correspond to the pre-chosen values used in the artificial data set.
The measure also involves a parameter � that controls the extent to
which bursts are emphasized over single spikes. For simplicity, this
parameter was set to 0.5, although again, the results did not change
appreciably unless the parameter was set to zero, in which case

the results corresponding to the original spike correlation measure
were reproduced. For the silence-sensitive component, the time
scale parameter was  set to match the mean ISI of the trains in the
data sets being examined, which in this case was  25 ms.
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ositive  and increases as more bursts are removed. (B) The BSI is always zero for 

Synapse-like” variant on van Rossum metric show negative BSI values that decrea

.2. Testing for sensitivity to bursts

We developed a test to determine the extent to which the var-
ous similarity measures account for the presence of bursts. The
asic rationale of the test is that the removal of a burst of spikes
rom a train should be detected by the measure as a more signifi-
ant deviation from the original train than the removal of an equal
umber of isolated spikes. In other words, the distance between an
rbitrary (burst-containing) train and a modified version of itself
ith one or more bursts deleted should be greater than the dis-

ance between that same train and a version of itself in which an
qual number of isolated spikes have been deleted.

.2.1. Test procedures

The basic procedure by which we tested the metrics for burst

ensitivity began as follows: First, using our artificial dataset, we
dentified all of the bursts in each train. Once all of the bursts for
very train had been identified, we constructed two new sets of
le spikes. (A) For the van Rossum and spike correlation measures, the BSI is always
the Victor–Purpura and event synchronization measures. (C) The ISI-distance and
n more bursts are removed.

trains: one in which a specified number of bursts had been deleted
at random from each train, and a second train where a correspond-
ing number of isolated spikes were deleted at random. Thus, for
example, if a spike train in the original set (spike train ‘A’) was mod-
ified in the second dataset to create a new train (spike train ‘B’), via
the deletion of 5 bursts, each of which was made up of 4 spikes, then
the corresponding train in the third data set (train ‘C’) will be the
result of deleting 20 random isolated spikes from the original train
“A”. Care was taken to ensure that these isolated spikes were not
components of any bursts. These modified data sets were created
independently for different numbers of burst removals, specifically
2, 5, 10, 15, and 20. An example set of trains constructed in this way
can be seen in Fig. 4A.

When the modified data sets had all been constructed, the mea-

sures were compared in the following way: for each measure d(x,y),
we took a train ‘A’ from the original data set, its counterpart (train
‘B’) in the data set where some number of bursts had been deleted,
and computed d(A,B). We  then compared the original train ‘A’ to its
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ig. 6. Burst sensitivity test for the new LF measure (combined burst and silence sen
eight  of the silence-sensitive component. Note that WB + WS = 1. (A) WB = 1, WS = 0

ounterpart in the third data set in which the equivalent number of
solated spikes had been deleted (train ‘C’) by computing d(A,C). We

anted to see if, on average, the measure would detect the dele-
ion of bursts as a more significant modification to the original train
han the deletion of single spikes. If a measure has this property,
hen d(A,B) will be greater than the quantity d(A,C), and hence the
uantity:

DiffA = d(A, B) − d(A, C)

ill be positive across the entire data set. Since the various mea-
ures have different intrinsic scales, it is a priori difficult to compare
hem directly. To remove this intrinsic scaling, for each measure,
e kept track of all the values of d(A,B) and d(A,C), for every spike
rain in the data set, and identified the maximum of all of these dis-
ance values. Then the entire array of dDiff values was  normalized
y dividing each entry by this maximum distance. We  refer to this
ormalized difference in distances as the Burst Sensitivity Index
 components). Here W is the weight of the burst sensitive component, and W is the
B = 0.75, WS = 0.25. (C) WB = 0.5, WS = 0.5. (D) WB = 0.25, WS = 0.75. (E) WB = 0, WS = 1.

(BSI), which became our criteria by which the burst sensitivity of
the various measures was  evaluated.

4.2.2. Results
Figs. 5 and 6 show the results of this test applied to a set of

existing measures and our new measure, respectively. The hori-
zontal axis of each panel shows the number of bursts removed,
while the vertical axis displays the average BSI of the measure (see
above). The various previously proposed measures responded to
bursts in three ways (Fig. 5). The convolution (van Rossum) and
spike correlation measures, unambiguously “passed” the test, i.e.
the values of dDiff are always greater than zero, and increase as
the number of burst removals increases. For the Victor–Purpura
and event synchronization measures, the BSI values are identically

zero in all cases, indicating that removing bursts and removing
spikes are treated as equivalent modifications of the original trains.
These measures are therefore insensitive to bursts. Finally, the ISI-
distance and synapse-like variant of the convolution metric, display
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ig. 7. Results of the silence sensitivity test for previously published measures. For a
xis  is the mean value of the similarity measure for 10 randomly generated pairs o
etric.  (C) Convolution (van Rossum) metric. (D) Synapse-like convolution metric. 

he opposite of burst sensitivity, in that the BSI values are always
egative, and decrease as the number of bursts decreases. This

ndicates that the removal of isolated spikes in these measures
epresents a more significant change than the removal of bursts.

Fig. 6 shows the result of these tests for the LF measure for sev-
ral pairs of weights (WS, WB) measuring the contribution of the
ilence and bursts sensitive components. One can see here that
hen the burst-sensitive component is taken alone (Fig. 5A), or is

iven a higher (or equal) weight than the silence-sensitive compo-
ent (Fig. 5B and C), the measure displays burst-sensitive behavior.
his sensitivity degrades smoothly when the silence-sensitive com-
onent is assigned a higher weight (Fig. 6E).
Qualitatively, it appears that the previously published measures
all into three categories: burst-sensitive (positive BSI values that
ncrease with the number of bursts removed), burst-insensitive (BSI
alues identically or on average equal to zero), or spike-sensitive
hs, the horizontal axis is the length of the silent period (ms). Plotted on the vertical
s sharing a common silent period of length L. (A) ISI-distance. (B) Victor–Purpura

ike correlation measure. (F) Event synchronization.

(negative BSI values that decrease with the number of bursts
removed). Thus, these tests are able to distinguish whether a par-
ticular measure places more, less, or equal emphasis on bursts vs.
singe spikes, which could be an important practical consideration
in choosing which measure to use for a specific data analysis task.
We also see that our new measure can display all three behaviors,
for different combinations of weights, but that an unbiased choice
of weights (WB = WS = 0.5) yields a clear burst-sensitivity behavior.

4.3. Testing for sensitivity to silences

Recalling the discussion in Section 3.1, we  argue that long peri-

ods of inactivity may be a meaningful feature of spike trains, and
therefore, pairs of trains that share a common period of silence
should be considered “closer” than pairs which do not. The extent
to which these trains are close should depend upon the length of the
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ig. 8. Results of the silence sensitivity test for the new LF measure. Here WB is th
omponent. Note that WB + WS = 1. (A) WB = 0, WS = 1. (B) WB = 0.25, WS = 0.75. (C) W

hared silence, i.e. the longer the shared silent period, the “closer”
he trains. Furthermore we claim that ideally, as the silent period
rows longer, the value of the similarity measure should approach
ero. In a more general sense, similarity measures should be able to
istinguish between cases in which a shared inactive period existed
nd those in which it did not. Here we implement a simple test
ased upon this intuitive premise.

.3.1. Test description and explanation
We  generated a set of 50 pairs of 5 s long spike trains with uncor-

elated Poisson statistics, all with firing rates set to approximately
0 Hz. We  then inserted a silent period of some length L at the same

oint (2.5 s) into every train by simply shifting all spikes occurring
fter 2.5 s forward in time by L ms.  An illustration of pairs of trains
oth with and without a shared silent period can be seen in Fig. 4B.
e computed the mean distance for each pair of trains using the
ght of the burst sensitive component, and W is the weight of the silence-sensitive
, WS = 0.5. (D) WB = 0.75, WS = 0.25. (E) WB = 1, WS = 0.

similarity measures discussed above. This was  repeated 10 times
for each value of L ranging from L = 0 ms  to L = 500 ms  in increments
of 25 ms.  As in the test for burst sensitivity, for each measure, we
normalized all values by dividing by the maximum distance obtain-
able by any two  trains in the artificial dataset. Our objective was  to
assess the manner in which the mean distance between random,
uncorrelated Poisson trains would decrease as a function of the
shared silent period.

4.3.2. Results
The results of this test can be observed in Figs. 7 and 8. For a

measure to be deemed “silence-sensitive” in the context of this test,

the pairwise distances between the random trains should decrease
as the length of the shared silent period increases. First note that
all the measures we tested failed to behave in this way, although
the ISI-distance seemed to display a slight downward trend as a
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Fig. 9. Comparisons of the measures. (A) Sample test trains. Trains 1a and 1b contain random spikes, but share 3 bursts and two periods of silence. Single spikes are
uncorrelated, and assumed to be “noise.” Trains 2a and 2b are simply uncorrelated, random trains. All four trains have approximately the same rate. (B) Comparison of the
distance between the first pair vs. the distance between the second pair averaged across 25 sets of such trains using all measures. Error bars show standard deviations. For
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he  van Rossum, synapse-like van Rossum, and Victor–Purpura measures, the distan
et,  prior to computing the mean. The LF distances (with 3 different sets of weights
f  spike trains.

unction of distance (Fig. 7A). It is arguable, however, whether this
rend is pronounced enough to reliably detect shared periods of
ilence. This is evident in the negligible average difference in the
alues obtained via this measure between pairs of trains with no
hared silent period and trains sharing a silent period that is 10
imes the length of the average ISI (specifically, 250 ms  and 25 ms,
espectively). Also, note the small dynamic range of values (Y axes,
t most between 0.8 and 1) in all these tests.

In contrast, with our new measure, even when the silence-
ensitive component is weighted less heavily than the burst-
ensitive component (Fig. 8A–D), the distinction is quite clear at
hese time scales. Some downward trend is observed in all cases
xcept when the burst-sensitive component is considered alone
Fig. 8E). Again, the unbiased LF measure (WB = WS = 0.5, Fig. 8C)
ives a quite acceptable sensitivity to silences.

.4. Comparing existing measures to the LF measure for spike
rains containing bursts and periods of inhibition

To explicitly illustrate the potential utility of the new measure,
e constructed a new set of 50 pairs of spike trains. The spikes
n the first 25 pairs of spike trains are uncorrelated, but there are
 bursts and 2 silent periods that are aligned (Fig. 9A, trains 1a
nd 1b). The second set of 25 pairs consists of two totally uncor-
elated Poisson random trains (Fig. 9A, trains 2a and 2b). We  then
e all normalized by dividing by the largest of the 25 different distance values in the
erform the others in their ability to distinguish between the first and second pairs

applied each of the similarity measures discussed here to both sets
of pairs, to study the extent to which the measures could distin-
guish between the two  cases. Fig. 9 shows the results (note the
results for the van Rossum and Victor–Pupura measures have been
scaled for comparison, see below). These results clearly show that
most previously published measures do not distinguish between
the two  cases. In other words, the inclusion of common bursts
and common periods of inhibition are ignored, and the two  spike
trains are considered as dissimilar as two random Poisson processes
(Fig. 9B). As expected and unlike other measures, the new LF mea-
sure we propose here could effectively distinguish between the
two  cases (Fig. 9B, rightmost 3 pairs of bars). Note that the unbi-
ased (equal weights) measure outperforms all the other measures
tested.

4.5. Other considerations

In addition to considering the sensitivity of the various mea-
sures to specific, computationally relevant spike train features, it is
also important to examine other aspects of these measures and how
they may  or may  not be relevant for practical applications. In partic-

ular, we shall discuss briefly here the implications (or lack thereof)
of whether a given measure is a metric in the strict mathematical
sense, whether or not a measure has tunable free parameters, and
whether it is bounded or unbounded.
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.5.1. Metrics vs. non-metrics
All of the measures considered here can be thought of as func-

ions d(x,y), where x and y are spike trains. In all cases the output
f the function lies within the set of real numbers (or some subset
f them, i.e. the interval [0,1]). Such a function is called a metric if
t satisfies the following conditions:

. d(x,y) ≥ 0, for all x, y, and d(x,y) = 0 if and only if x = y (non-
negativity)

. d(x,y) = d(y,x) for all x and y (symmetry)

. For all x, y, and z, d(x,y) ≤ d(x,z) + d(z,y) (triangle inequality)

The van Rossum and Victor–Purpura measures are metrics in
he true sense of the word, in that they satisfy all three constraints
van Rossum, 2001; Victor, 2005). The other measures (with the
xception of the ISI Distance, which satisfies the triangle inequality
ut may  fail to satisfy the first constraint in a special case) all satisfy
he first two but not the third constraint (see Appendix).

We  note this distinction as an interesting means of classifying
he measures along theoretical lines. However, for practical pur-
oses, it remains an open question as to whether it actually matters

f a similarity measure is a metric in the strict sense of the word or
ot. Since the non-metric measures typically only fail to satisfy the
riangle inequality, examining the importance of this constraint in
ractical applications such as spike train clustering appears to be a
romising route to understanding the significance of this distinc-
ion. However a formal investigation of this possibility has not yet
een done, and is beyond the scope of this paper.

.5.2. Free parameters
The convolution, Victor–Purpura, spike correlation, Silence Cor-

elation, and the LF measures all contain one or more tunable free
arameters. In contrast, the event synchronization measure and

SI-distance do not contain any free parameters. It was  argued that
hese parameter-free measures are advantageous, making them
elf-adaptive to the intrinsic time scales of the data and hence mak-
ng them more objective (Kreuz et al., 2007; Quiroga et al., 2002).
urthermore, the choice of free parameters may  sometimes be dif-
cult and non-intuitive and may  require that the parameter space
e explored, which adds an extra step to the analysis. However, it
ould be argued that having free parameters gives the experimenter
ore control over the interpretation of the data analysis. In many

ases, it may  be advantageous to have this additional flexibility. For
xample, when a free parameter controls the sensitivity of a mea-
ure to precise spike timing, the ability to vary such a parameter
ystematically may  be useful in investigating hypotheses about the
mportance of spike timing in particular neural systems at particu-
ar time scales. Furthermore, in the measure we propose, one may
djust the weights of the different components of the measure in
uch a way as to be sensitive to either bursts or silent periods, on
he basis of some prior knowledge or hypotheses of which features

ay  be more important.

.5.3. Bounded and unbounded measures
Some measures are bounded, meaning that the maximum dis-

imilarity value assigned to any pair of spike trains is less than
ome finite limiting value. Examples of such measures include the
orrelation-based measures, the LF measure as well as the ISI dis-
ance. Conversely, other measures are in principle unbounded, so
hat given any arbitrarily large number, it is possible to construct

 pair of spike trains such that the dissimilarity value of that pair
s greater than that number. The Victor–Purpura and van Rossum
etrics are examples of such measures. This distinction may  be
mportant for practical applications. For example, in clustering
pplications, bounded measures may  benefit from the application
f a nonlinear filtering of the dissimilarity values, in order to accen-
ience Methods 199 (2011) 296– 309

tuate small difference in the values (Fellous et al., 2004). Fully
understanding the practical consequences of using bounded vs.
unbounded measures remains an interesting question to explore.

5. Conclusions

Experimental and theoretical work, from sensory (Lestienne,
2001) to central areas (Averbeck and Lee, 2004) have shown that
neural responses in isolation, or seen within an ensemble can carry
significant information about stimuli. The basis of the neural code is
however in general unknown. The most common and parsimonious
method to understand the manner in which a neuron’s activity
contains information about a stimulus is to present that stimulus
multiple times, record the activity of the cell, and assess what (if
anything) is similar from trial to trial. Inherently in this assessment
is the notion of similarity between neural responses. Whether the
information is in single spikes, bursts, instantaneous firing rates, or
a combination thereof depends on the specifics of the experiment
and of the neuron recorded.

Here we  proposed and implemented a set of methods aimed
at assessing the extent to which spike train similarity measures
can capture similarities in bursts and period of inhibition between
spike trains. While others have attempted to classify measures in
terms of their response to other spike train features, such as rate,
or spike “jitter” (Paiva et al., 2010), our analysis is unique in its
focus on bursts and silences as computationally relevant features.
It reveals clear differences between existing measures, and allows
for clearer distinctions to be made between them. The importance
of shared silence in particular has typically been neglected despite
the potential physiological relevance that this feature may  have
in some systems (De Schutter and Steuber, 2009). Similarly, most
measures are not sensitive to the occurrence of bursts, which many
have thought of as significant features of neural activity (Kepecs and
Lisman, 2003; Lisman, 1997).

We introduced a new spike train measure that is unique in its
ability to group together spike trains on the basis of shared silences.
In addition, we suggest a modification of the spike correlation mea-
sure of Schreiber et al. (2003) that emphasizes bursts, and show
how these two measures can be combined. Given that these fea-
tures may  be of particular interest in certain experimental contexts,
we hope to extend the range of tools available to experimenters.
Further work will involve subjecting this new measure to the types
of analysis conducted in (Paiva et al., 2010) to further elucidate its
properties. Another promising avenue is to compare this new mea-
sure to others on the basis of clustering performance, as has been
done with other measures (Kreuz et al., 2007).
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Appendix A. The correlation-based and event
synchronization measures do not satisfy the triangle
inequality

A.1. Correlation based metrics
We  show that this measure (Schreiber et al., 2003) does not sat-
isfy the triangle inequality by means of a counterexample. Consider
three spike trains, labeled A, B, and C, respectively. Train A consists
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f a single spike at time t = 1, train B consists of a single spike at
ime t = 3, and train C consists of two spikes, one at time t = 1 and

 second at time t = 3. We  would like to show that, when d(x,y) is a
orrelation-based distance, that

(A, B) > d(A, C) + d(B, C)

For simplicity we assume a boxcar kernel function of unit height
nd unit width. This is to make the calculations easier, and this
ounterexample should generalize to a wider class of kernel func-
ions.

Using this assumption:

(A, B) = 1 −
〈

f (A), f (B)
〉∣∣|f (A)|

∣∣
2

∣∣|f (B)|
∣∣
2

= 1 − 0
1

= 1

And

(A, C) = 1 −
〈

f (A), f (C)
〉∣∣|f (A)|

∣∣
2

∣∣|f (C)|
∣∣
2

= 1 − 1√
2

<
1
2

Similarly, d(B, C) = 1 − 1√
2

< 1
2

Therefore the triangle inequality does not hold, and hence the
orrelation-based measure is not a true metric.

.2. Event synchronization

One can show that the event synchronization measure (Quiroga
t al., 2002) does not satisfy the triangle inequality by using the
ame counterexample. Take A, B, and C as before. Then:

ES(A, B) = 1 − 0√
2

= 1

and

ES(A, C) = dES(B, C) = 1 − (1/2) + (1/2)√
2

= 1 − 1√
2

<
1
2

ppendix B. A note on the ISI-distance

It remains unclear whether the ISI-distance (Kreuz et al., 2007)
atisfies all of the properties of a metric. It is worth noting that two
eriodic trains that are different by a phase lag will be assigned

 distance very near to zero. In fact only the boundary conditions
revent this distance from being identically zero, and one could

n principle construct choices for the boundary conditions of this
easure where this may  be the case. If this is done, then the first

ondition for a measure to be a true metric, that d(x,y) = 0 iff x = y,
ould be violated. However, Kreuz et al. have recently introduced a
ew, spike-centered similarity measure that is not subject to these
roblems (Kreuz et al., 2011).

One can show, however, that this measure does satisfy the trian-
le inequality. We  reproduce here an outline of the proof courtesy
f Romain Brasselet (personal communication):

Let X, Y and Z be three spike trains defined on the time interval
0,T], and let t be an arbitrary time within this interval. We  first
how that the triangle inequality holds locally at t. The first step in
alculating the ISI distance is to construct functions for each spike
rain such that the value of each function at time t is given by the
ength of the inter-spike interval in which t lies. Let f, g, and h be
uch functions defined for X, Y, and Z, respectively. We  assume,
ithout loss of generality, that at time t, f(t) ≤ g(t) ≤ h(t). We must

hen show that:
(i) 1 − f(t)/h(t) ≤ 1 − f(t)/g(t) + 1 − g(t)/h(t)
(ii) 1 − f(t)/g(t) ≤ 1 − f(t)/h(t) + 1 − g(t)/h(t)
iii) 1 − g(t)/h(t) ≤ 1 − f(t)/g(t) + 1 − f(t)/h(t)
ience Methods 199 (2011) 296– 309 309

To see that the first statement is true, note that it is equivalent to
the expression: 0 ≤ g(t)f(t) − h(t)f(t) − g(t)g(t) + h(t)g(t), which can
be re-written as 0 ≤ (f(t) − g(t))(g(t) − h(t)), which is always true,
since f(t) ≤ g(t) ≤ h(t). Propositions (ii) and (iii) can also be easily
checked using a similar argument. Since the triangle inequality
holds for all t in [0,T], it will continue to hold after integrating both
sides over t from 0 to T, and hence, dISI(X,Y) ≤ dISI(X,Z) + dISI(Z,Y) for
arbitrary spike trains X, Y and Z.
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