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When periodic current is injected into an integrate-and-fire model neuron,
the voltage as a function of time converges from different initial condi-
tions to an attractor that produces reproducible sequences of spikes. The
attractor reliability is a measure of the stability of spike trains against
intrinsic noise and is quantified here as the inverse of the number of dis-
tinct spike trains obtained in response to repeated presentations of the
same stimulus. High reliability characterizes neurons that can support a
spike-time code, unlike neurons with discharges forming a renewal pro-
cess (such as a Poisson process). These two classes of responses cannot
be distinguished using measures based on the spike-time histogram, but
they can be identified by the attractor dynamics of spike trains, as shown
here using a new method for calculating the attractor reliability.

We applied these methods to spike trains obtained from current in-
jection into cortical neurons recorded in vitro. These spike trains did not
form a renewal process and had a higher reliability compared to renewal-
like processes with the same spike-time histogram.

1 Introduction

Features that are present in the spike patterns elicited in response to a
stimulus repeated across multiple trials can form the basis of a neuronal
code. Here, we introduce a novel reliability measure in order to study the
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reproducibility of sequences of precise spike times produced in vitro by
cortical neurons (Mainen & Sejnowski, 1995). We show that spike trains ob-
tained from in vitro cortical neurons and integrate-and-fire model neurons
have more deterministic structure than spike trains obtained from renewal
processes with the same interspike interval and spike-time probability dis-
tribution. This structure cannot be detected from the spike-time histogram.

The response of a neuron to a stimulus can be characterized as an attrac-
tor, defined as the voltage trajectory (and associated spike train) to which
the neuron’s membrane potential converges from different initial conditions
(Strogatz, 1994; Jensen, 1998). An attractor is stable against noise: weak noise
introduces spike-time jitter, but the sequence of spike times and the input-
induced correlations between interspike intervals is conserved. Here, the
sequence of spike times is considered the output signal. When the neuron
stays on the attractor, it transmits a unique signal.

The dynamics of a model neuron can undergo a bifurcation when its
parameter values are varied. During a bifurcation, a small change in the
value of a parameter introduces a large change in the spike times: a different
attractor emerges. When a neuron is close to a bifurcation point, noise can
induce a transition to another attractor. If the new “attractor” is unstable,
the neuron will return to the original attractor after a finite time, but if it
is stable, the neuron stays on the new attractor. The attractor reliability is
defined as the inverse of the number of distinct spike trains that are obtained
after a large number of trials.

This article consists of two parts. First, a test is given to determine whether
a spike train forms a temporally modulated renewal process. Second, we
quantify the extra—non-Poisson—structure present in spike trains using
the attractor reliability. These techniques are illustrated using spike trains
obtained from experimental data and numerical model simulations. A sys-
tematic study of the attractor and bifurcation structure of in vitro and model
neurons driven by periodic, quasiperiodic, and random currents will be pre-
sented elsewhere.

2 Methods

2.1 Experimental Methods. The voltage response of cortical neurons as
measured in a rat slice preparation was described previously (Fellous et al.,
2001). Protocols for these experiments were approved by the Salk Institute
Animal Care and Use Committee, and they conform to U.S. Department
of Agriculture regulations and National Institutes of Health guidelines for
humane care and use of laboratory animals. Briefly, coronal slices of rat pre-
limbic and infralimbic areas of prefrontal cortex were obtained from 2- to 4-
week-old Sprague-Dawley rats. Rats were anesthetized with isoflurane and
decapitated. Their brain was removed and cut into 350 µm thick slices on a
Vibratome 1000. Slices were then transfered to a submerged chamber con-
taining artificial cerebrospinal fluid (ACSF, mM: NaCl, 125; NaH2CO3, 25;
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D-glucose, 10; KCl, 2.5; CaCl2, 2; MgCl2, 1.3; NaH2PO4, 1.25) saturated with
95% O2/5% CO2 at room temperature. Whole cell patch clamp recordings
were achieved using glass electrodes containing (4-10 MÄ: mM; KmeSO4,
140; Hepes, 10; NaCl, 4; EGTA, 0.1; Mg-ATP, 4; Mg-GTP, 0.3; Phosphocreatine
14). Patch clamp was performed under visual control at 30–32◦C. In most ex-
periments, Lucifer yellow (RBI, 0.4%) or Biocytin (Sigma, 0.5%) was added
to the internal solution for morphological identification. In all experiments,
synaptic transmission was blocked by D-2-amino-5-phosphonovaleric acid
(D-APV; 50 µM), 6,7-dinitroquinoxaline-2,3, dione (DNQX; 10 µM), and
biccuculine methiodide (Bicc; 20 µM). All drugs were obtained from RBI or
Sigma, freshly prepared in ACSF and bath applied. Data were acquired with
Labview 5.0 and a PCI-16-E1 data acquisition board (National Instrument)
and analyzed with MATLAB (The Mathworks). We used regularly spiking
layer 5 pyramidal cells that were identified morphologically.

2.2 Simulation Algorithm. The membrane potential V of an integrate-
and-fire neuron driven by a periodic current satisfied,

dV
dt
= −V + I + A sin

2π
T

t+ ξ(t), (2.1)

where I was a time-independent driving current, A was the amplitude of
the drive, T = 2 was the period, and ξ was a white noise current, with zero
mean and variance D, that represented the effects of intrinsic noise. When
the voltage V reached threshold, V(t) = 1, a spike was emitted, and the
voltage was instantaneously reset to zero, V(t) = 0.

Dimensionless units were used in model simulations. One voltage unit
corresponded to the distance between resting membrane potential and ac-
tion potential threshold, approximately 20 mV; one time unit corresponded
to the membrane time constant, approximately 40 ms.

Equation 2.1 was integrated directly using the fourth-order Runge-Kutta
algorithm (Press, Teukolsky, Vetterling, & Flannery, 1992), with step size
dt = 0.01. The calculated voltage differed by less than 10−11 from the voltage
obtained by analytically integrating equation 2.1 for a sinusoidal current
and with D = 0. The spike time ts, given by the expression V(ts) = 1,
was determined by linear interpolation (Hansel, Mato, Meunier, & Neltner,
1998).

3 Results

3.1 Example of Deterministic Structure in Spike Trains. In most ex-
periments, the same stimulus was presented on different trials, and the
resulting spike trains were analyzed. The spike trains of a hypothetical ex-
periment are presented in a rasterplot in Figure 1Aa. The computation of
reliability and precision based on the spike-time histogram (STH) followed
the procedure in Mainen and Sejnowski (1995). The length of a trial was
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Figure 1: Reliability based on the spike-time histogram is insensitive to deter-
ministic structure in spike trains. (A, B) The same spike times, with the trials
ordered differently. On each row: (a) Rasterplot, with each measured spike rep-
resented as a circle, its x-ordinate is the spike time and its y-ordinate the trial
index; (b) the spike-time histogram (STH)—the number of spikes in a particular
time bin normalized by the number of trials. Events were defined as threshold
crossings of the spike-time histogram. The event reliability was the fraction of
trials during which a spike occurred during the event; the precision was the
inverse of the standard deviation of the spike times in the event. The reliability
of the response, RSTH, was the event reliability averaged over all events. (A) In
each of the 100 trials, a spike was present during the first event; hence, its re-
liability was 1. (B) The trials of A were composed of two distinct spike trains,
indicated by the filled and open circles in a. In b, the resulting STH for each
group is plotted separately as filled and open peaks, respectively. The first peak
in A was in fact made up of two separate events.

divided into discrete bins, and the number of spikes that fell in each bin
was counted. The spike count in a bin was normalized by the number of
trials. The set of bins was convolved with a smoothing function. The STH
so obtained usually contained a number of peaks, each consisting of a set of
consecutive bins that contain more spike counts than average. Peaks were
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detected by setting a threshold and determining when the smoothed STH
crossed it (see Figure 1Ab). The peaks constitute events; the reliability of
an event was the fraction of trials during which a neuron spiked during
the event. The reliability of the spike train, RSTH, was the reliability of each
event averaged over all events. (An equivalent procedure for RSTH is given
in equation 3.5.) The precision of an event was the inverse of the standard
deviation of the spike times that were part of the peak. The reliability based
on the STH depended on the size of the bins, the smoothing function, and
the value of the peak-detection threshold. The STH reliability so defined
was insensitive to deterministic structure in the spike trains.

An example of how STH reliability can miss important deterministic
structure in spike trains is shown in Figure 1. The data shown in Figure 1Aa
were obtained by randomly mixing two types of spike trains: the open and
filled circles in Figure 1Ba. Hence, Figures 1Aa and 1Ba are the same, except
that the trials are reordered. On each trial, there was a spike present in the
first event in Figure 1Ab; hence, its “reliability” was 1. However, that single
event in fact consisted of two events (see Figure 1Bb). In other words, there
were two distinct spike trains (attractors) present across different trials.

3.2 Testing of Renewal Property. A temporally modulated renewal
spike train is fully characterized by its spike-time probability density and
its interspike-interval distribution. The defining property of a renewal spike
train is that the intervals between spikes are independent. There is no deter-
ministic structure in renewal spike trains apart from the structure induced
by a time-varying firing rate (see below). In contrast, for an attractor, the
spikes occur at particular times and in a particular sequence (see section 1):
there are correlations between the spike times, and there is deterministic
structure in the spike train. Hence, it is different from a renewal process.
Spike trains that form a renewal process are not reliable. It is therefore im-
portant to distinguish renewal processes from nonrenewal processes (Reich,
Victor, & Knight, 1998).

The Poisson process is an example of a renewal process with rate λ. The
probability of finding a spike between times t and t+ dt is λdt and does not
depend on previous spike times. Hence, the spike times themselves are also
independent. The probability λ is time independent and is estimated from
the spike-time histogram. The distribution of interspike intervals is expo-
nential; the probability of obtaining an interspike interval between τ and
τ + dτ is λe−τλdτ . There is no correlation between the length of consecutive
intervals. The coefficient of variation (CV), the standard deviation divided
by the mean of τ , is equal to 1. Another example of a renewal process is
a gamma process of order r. The probability of obtaining a spike between
times t and t+ dt again is λdt. However, the distribution of interspike inter-
vals is given by a gamma probability distribution and is less disperse, with
CV = 1√

r
and r > 1. The gamma process of integer order is closely related
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to the Poisson process. For instance, a gamma process of order 2 is obtained
from a Poisson process of twice the rate, 2λ, by removing every other spike.

Shuffling procedures can form the basis for a test of the renewal character
of spike trains. First, generate a number of different spike trains (trials) using
the same process. Then shuffle the spike times randomly across different
trials. The probability of obtaining a spike at a given time is conserved, since
exactly the same spike times were used. If the spikes were generated by a
Poisson process, then they are independent of each other. Hence, the new
set of spike trains cannot be distinguished statistically from the original set
of spike trains. The shuffling procedure leads to an exponential distribution
of interspike intervals, and CV = 1. For spike trains generated by a gamma
process of order r, CV = 1√

r
. However, after shuffling, the CV changed to

1, and the new set of spike trains can be distinguished from the original set
of spike trains by comparing the CVs. Hence, shuffling of spike times is not
appropriate for a gamma process. However, when the interspike intervals
are shuffled randomly across trials and then used to calculate the new spike
times, the interspike interval distribution is conserved. Since the intervals
in a renewal process are independent, the new set of spike trains should
be indistinguishable from the original set. Note that the actual spike times
are not conserved. As a result, the spike-time probability (the spike-time
histogram) is different at the boundaries, close to the beginning and end of
the trial. However, at some distance from the boundaries, it is approximately
the same. An example is discussed below.

The spike-time histogram obtained from neural spike trains usually is
time dependent: λ(t) is a function of time. The spike trains may still form a
temporally modulated renewal process; the probability of obtaining a spike
between t and t+dt isλ(t)dt. The time dependence ofλ(t)makes testing of the
renewal character difficult, since the distribution of interspike intervals de-
pends on time via λ(t). However, temporally modulated renewal processes
(referred to as “simply modulated renewal process” in Reich et al. (1998))
can be mapped into a time-independent (homogeneous) renewal process by
“transforming” time. In what follows, we describe the test of the renewal
property in detail. It consisted of three steps. First, time t was mapped into
a new time s. Then the interspike intervals were shuffled randomly across
trials. Finally, the test statistic was evaluated, and its significance was de-
termined. The procedure is applied to spike trains obtained from repeated
current injection into cortical neurons in vitro.

3.2.1 Experimental Data Set. The stimulus wave forms shown in Fig-
ure 2Ac were injected in a cortical neuron in current-clamp mode. The stim-
ulus consisted of a 200 ms constant depolarizing current followed by a 1600
ms sinusoidal current with period 100 ms. The height of the initial depo-
larizing pulse was varied to bring the neuron to different initial voltages at
the start of the sinusoidal wave form. For a large enough amplitude, a spike
was obtained during the current pulse (see Figure 2Ab). After a transient
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Figure 2: Effect of initial condition on spike timing in cortical neurons. The
stimulus wave form consisted of a 200 ms long constant depolarizing current
followed by a 1600 ms long sinusoidal current with period 100 ms. The am-
plitude of the initial depolarizing current was varied over 11 different values.
Each of the resulting wave forms was presented 20 times, yielding 220 trials.
(A) (a, b) Recorded voltage response during the presentation of the first and
eleventh stimulus wave form, respectively; (c) the 11 stimulus wave forms. (B,
C) In each row, (a) the rastergram and (b) the spike-time histogram is plotted
using (B) the experimental data; (C) Poisson spike trains that were obtained by
randomly shuffling spike times across trials. The spike-time histograms were
identical, and the rastergrams looked similar. However, the experimental spike
trains did not form a renewal process (see Figure 4).
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of approximately three cycles, the neuron generated on average about one
action potential on every two cycles. The rastergram and spike-time his-
togram of the spike trains obtained during 20 presentations of 11 different
wave forms (220 trials) are shown in Figure 2B. A Poisson process with the
same spike-time histogram was generated by randomly shuffling the spike
times across different trials (see Figure 2C).

3.2.2 Mapping the Spike Times. The spike time probability λ(t) was es-
timated from the spike-time histogram P(t). Note that P(t) was evaluated
in discrete bins; however, for simplicity, the notation used here does not
reflect this. Time t was transformed into a new time variable s such that the
probability of obtaining a spike between s and s + ds was independent of
time s (Reich et al., 1998). This procedure transformed an inhomogeneous
renewal process into a homogeneous renewal process. The transformation
was t→ s = g(t) with

g(t) = TSTH

∫ t
0 du P(u)∫ TSTH

0 du P(u)
, (3.1)

where u was an integration variable and TSTH was the length of each trial.
The transformation ti

n → si
n was performed without explicitly calculating

P(t) (see Figure 3). Let {ti
1, ·, ti

Ni
} be the set of Ni spike times during the ith

trial, i = 1, ·, Ntr, where Ntr was the number of trials (see Figure 3A). The set
of all spikes in all trials was collected into one set labeled by a dummy index
j, {t1, ·, tM}, and sorted in increasing value, tj(1) ≤ tj(2) ≤ · ≤ tj(k) ≤ · ≤ tj(M),

here, M = ∑Ntr
i=1 Ni was the total number of spikes across all trials (see

Figure 3B). The transformed time was

si
n =

k(j)
M

TSTH. (3.2)

Here, k(j)was the index of the jth spike time tj = ti
n in the sorted set, i was the

trial index, and n was the spike index (see Figure 3C). For the experimental
data set, the rasterplot of transformed spike times si

n = g(ti
n) consisted of

dots that were uniformly distributed in the plane, and the STH was constant
(see Figures 4Aa and 4Ab).

3.2.3 Random Shufflings of the Interspike Intervals. The interspike inter-
vals in transformed time were defined as νi

n = si
n − si

n−1. The 0th spike
time was defined as si

0 = 0, so that there are as many intervals as there are
spikes; however, si

0 was not included in the analysis (and was not shown
in the graphs). The intervals νi

n were randomly shuffled across trials, and
the new spike times were then obtained from the shuffled intervals ν̂i

n as,
ŝi

n =
∑n

j=1 ν̂
i
j (j is a dummy index). This procedure was repeated to obtain
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Figure 3: Procedure to obtain a homogeneous renewal process. (A) Spike trains
obtained on different trials. ti

n was the nth spike time in the ith trial. (B) Spike
times across all trials were combined into one set and sorted from low to high
values (the index is indicated below the ticks). (C) The index k in the ordered
set as a function of the spike time. The new spike time was si

n = kTSTH/M and
took values between 0 and TSTH. (D) The resulting spike-time histogram was
time independent.

Ns different independent realizations of the corresponding renewal process.
These realizations will be referred to as surrogate spike trains. One realiza-
tion generated from the experimental data set is shown in Figure 4B. As
mentioned before, the STH (see Figure 4Bb) is reduced compared with the
STH of the original spike trains (see Figure 4Ab) near the beginning and
end of the stimulus presentation. The structure of the transformed inter-
spike intervals, νi

n (see Figure 4Ac) is different from the one obtained from
the surrogates (see Figure 4Bc). That difference will be quantified next.

3.2.4 Test Statistics for Renewal Processes. For a temporally modulated
renewal process, all the time dependence can be removed by making the
transformation t→ s. However, if there was nonrenewal structure present
in the original spike trains, there could still be a time dependence. Here,
we focus on the time dependence of interspike intervals. The time axis was
divided in Nν discrete bins of width 1s. The mean ν(m) was calculated of
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Figure 4: Spike trains of cortical neurons did not form a renewal process. Time
was rescaled according to t → s = g(t), such that the spike-time probability
distribution—the spike-time histogram—is independent of time s (see text). In
A, rescaled spike trains from Figure 2 and in B renewal spike trains obtained
by randomly shuffling the interspike intervals from A across different trials
were shown. In each row were plotted (a) the rastergram of rescaled spike times
si

n = g(ti
n) (ti

n is the nth spike time in the ith trial), (b) the spike-time histogram
of rescaled spike times, and (c) the rescaled interspike intervals, ν i

n = si
n − si

n−1,
versus si

n−1. (C) The starting time of each interval was binned (bin width was 1.5
ms), and the average interval ν(s) was determined for each bin (solid line with
filled circles). Confidence intervals, ν̂ ± σ̂ (dashed lines), were determined for a
renewal process with the same interval distribution using 20 random shufflings
(one example was shown in B). The experimental spike trains were significantly
different from renewal spike trains, χ 2 = 2.8 for the bins between 700 and 1600
ms at significance p < 10−11.
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all νi
n with starting points si

n−1 that fell in the mth bin, (m − 1)1s ≤ si
n−1 <

m1s. The same procedure was performed on all of the Ns surrogate spike
trains, l = 1, . . . ,Ns, yielding ν̂l(m). The mean and standard deviation were
subsequently determined:

ν̂(m) = 1
Ns

Ns∑
l=1

ν̂l(m),

σ̂ (m) =
√√√√ 1

Ns − 1

Ns∑
l=1

(ν̂l(m)− ν̂(m))2.

The original spike trains are nonrenewal when ν(m) lies outside the con-
fidence interval given by ν̂(m) − σ̂ (m) and ν̂(m) + σ̂ (m) of the equivalent
renewal proces. The test statistic was:

χ2 = 1
Nν

Nν∑
m=1

(
ν(m)− ν̂(m)

σ̂ (m)

)2

. (3.3)

The hypothesis that the spike train was generated by a renewal process
was rejected when p = 1 − C(Nνχ

2,Nν) was smaller than a prescribed
critical value. Here we assume that C(Nνχ

2,Nν) was the cumulative χ2

probability distribution with Nν degrees of freedom (Abramowitz & Stegun,
1974; Larsen & Marx, 1986; Press et al., 1992). In the following, the continuous
notation ν(s) will be used instead of ν(m).

The confidence intervals for the experimental recordings are shown to-
gether with ν(s) in Figure 4C. For the original process, the interval distribu-
tion depended on time, whereas for the renewal process, it did not depend
on time. The χ2 statistic based on Ns = 20 surrogates was χ2 = 2.8 for 60
degrees of freedom. Hence, the difference was highly significant, p < 10−11,
and the discharge produced by the neuron was not a renewal process.

3.3 Attractor Reliability. The attractor reliability was calculated in three
steps. First, events were found (see Figure 5). Second, the binary represen-
tation for each trial was determined (see Figure 7). Third, the entropy of the
distribution of spike trains was calculated (see Figure 8). The procedure was
applied to the experimental data from Figure 2 and surrogate spike trains.

3.3.1 Determination of Events. An event was defined as a spike time
that occurred across multiple trials. The following algorithm can be used
to determine the spike times that are part of a given event. All spike times
were combined in one set and ordered from low to high values, yielding
{t1, . . . , tk, . . . , tM}. Here, k denotes the index of the spike time in the or-
dered sequence. The spike time versus k curve had a steplike structure
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Figure 5: Procedure for determining events in the rastergram. Data from cortical
neuron in Figure 2. (A) All the spike times were combined into one set and were
ordered increasing from left to right. (B) The first difference of the sorted spike
times was thresholded (threshold was 40 ms, dashed line). Spike times between
two consecutive upward threshold crossings constituted an event. (C) The stan-
dard deviation of the spike times in an event and (D) the number of spikes in
an event plotted as a function of event index.

(see Figure 5A). A step was formed by spike times with similar values and
corresponded to an event. Between events and steps, spike times changed
quickly. The first difference of the ordered spike times, τk = tk+1 − tk, was
small within an event (roughly, the jitter divided by the number of trials)
and large between different events, when k was part of one event and k+ 1
was part of the other event. Hence, the time series τk consisted of large
values separated by many small values (see Figure 5B).

The set of k values, k1, . . . , kE, where τk−1 crossed a threshold from below
was determined. E is the number of events that were detected. For e =
1, . . . ,E, event e consisted of {tke−1 , . . . , tke−1}with the definition ke=0 = 1. The
number of spikes in an event was Ne = ke−ke−1. The spike-time jitter (called
“precision” in Mainen & Sejnowski (1995)) was the standard deviation of
all the spike times in a given event e,

σe =

√√√√√
 1

Ne

ke−1∑
j=ke−1

t2
j

− t2
e , (3.4)

te = 1
Ne

ke−1∑
j=ke−1

tj.
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The threshold should be chosen such that the number of spikes per event
is large (but smaller than the number of trials) and the spike-time jitter is
small. For the experimental data, we used a threshold of 40 ms, and 17 events
were obtained. The spike-time jitter was approximately 5 ms for all events
except the first (see Figure 5C). The number of spikes in an event decreased
from a maximum of 220 (all trials) at the second event to approximately 110
(half the number of trials) in the last event (see Figure 5D). The STH-based
reliability was

RSTH = 1
ENtr

E∑
e=1

Ne. (3.5)

Here, Ntr was the number of trials and E was the number of events, as before.
For the experimental data, RSTH ≈ 0.64.

3.3.2 Determination of the Binary Representation. Each trial i was then
characterized by a binary value,

Xi =
E∑

e=1

ni
e2

E−e. (3.6)

Here, ni
e = 1 when there was a spike during event e on the ith trial and

ni
e = 0 otherwise. Binary numbers were also associated with subsets of the

spike trains, Xi
bL for the events e = b, . . . , b+ L− 1 of trial i:

Xi
bL =

L∑
j=1

ni
b+j−12L−j. (3.7)

Here, j was a dummy index, and L was the word length. It follows that
Xi = Xi

1E.

3.3.3 Surrogate Spike Trains. Surrogate spike trains were constructed to
compare the experimental spike trains with the equivalent Poisson pro-
cess. Spike times could be randomly shuffled across trials, as before. How-
ever, in that case, there could be more than one spike time during an event
on a given trial. This resulted in an ambiguous binary representation that
could be resolved by, for instance, using ternary numbers. However, a differ-
ent Poisson-like surrogate was constructed instead by randomly permuting
spike times across trials for each event separately. Let {ti

ni
} be all the spike

times during event e, and denote the absence of a spike during a given trial
i by - (ni is the index of the spike in the ith trial that is part of event e).
Then the spike times during an event could be, for instance, {t1

n1
, -, -, t4

n4
}

(see Figure 6A). A surrogate obtained by a random permutation would be,
for instance, {t4

n4
, t1

n1
, -, -} (see Figure 6B). Consider the case that the original
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Figure 6: Procedure to generate Poisson-like surrogate spike trains. (A) Original
set of spike trains: on trials 1 and 4, attractor 1 (At1) and on trials 2 and 3, attractor
2 (At2) was reached. (B) The spike times in each event e were randomly shuffled
across trials. The resulting spike trains no longer resembled the attractors.

spike trains had deterministic structure and were either one of two attrac-
tor spike trains (see Figure 6A). The above procedure then breaks up the
attractor spike trains and removes the non-Poisson structure (see Figure 6B).
Hence, by comparing, for instance, the binary representation of the origi-
nal and surrogate spike trains, the amount of non-Poisson structure can be
assessed.

3.3.4 Binary Representation of Experimental Spike Trains. A transient was
discarded, and binary representations were calculated based on 10 events
starting from the eighth spike, yielding Xi

8,10 (see Figure 7Aa). The trials
were sorted according to the binary representation starting from the lowest
value. There were two plateaus in the X8,10 versus index graph (indicated
by * in Figure 7Aa). Each of the X8,10 values were obtained on 6% of the trials
(* in Figure 7Ab). These spike sequences corresponded to the two 1:2 mode-
locking attractors: the neuron produced spikes on either the odd cycles or
only on the even cycles. On a larger number of trials, neurons were on these
attractors for a shorter duration, which led to a triangle-like structure in the
rastergram (see Figure 7Ac).

The same analysis was performed on surrogate spike trains, and the
results are shown in Figure 7B. There were no plateaus in the X8,10 versus
index graph (see Figure 7Ba). Each X8,10 occurred with approximately equal
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Figure 7: Cortical neuron spike trains had a deterministic structure not present
in Poisson-like spike trains. Each trial was assigned a binary representation as
described in the text. In A, the original data from Figure 2 and in B spike trains
obtained by randomly shuffling spike times of each event across trials were
used. In each row, (a) binary representation X8,10, (b) distribution of X8,10 values
across 220 trials, and (c) rastergram with trials ordered according to value of X8,10,
increasing from bottom to top. The stars (*) and the arrows (←) are described
in the text.

probability (see Figure 7Bb). The length of time that a neuron spent on an
attractor on a given trial was reduced compared to the original spike trains.
In particular, the triangle-like structure in the ordered rastergram was not
present (see Figure 7Bc). The difference between the two sets of spike trains
is quantified next using the entropy.

3.3.5 Entropy of Spike Trains. Let PbL(XbL) be the probability of obtaining
a trial with binary representation XbL. It was estimated using a finite number
of trials by determining all the distinct words XbL and counting how often
each of them occurred across trials. The count was then normalized by
the number of trials to obtain a probability. An example was shown in
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Figure 7Ab. The entropy of this distribution was

SbL = −
∑
XbL

P(XbL) log2 P(XbL). (3.8)

The entropy was then averaged over all allowed b values,

SL = 1
E− L+ 1

E−L+1∑
b=1

SbL. (3.9)

The entropy of the distribution of the binary representation for the whole
trial length was S = S1E,

S = −
∑

X

P(X) log2 P(X). (3.10)

The attractor reliability was defined as

Ra = 2−S. (3.11)

The attractor probability can be interpreted as the inverse of the number
of different Xi (this would be exact if each X value occurred with equal
probability).

3.3.6 Entropy of Surrogate Spike Trains. The entropy of the surrogates
was estimated as the mean of S and SL over independent surrogates. An
analytical expression for the entropy of the surrogate spike train was cal-
culated. Let the probability of obtaining a spike during event e on a given
trial be pe. The probability for a trial X with event occupation numbers
{ne} = {n1, . . . ,nE}was

P(X) =
E∏

e=1

pne
e (1− pe)

(1−ne), (3.12)

and the entropy of this distribution was

S = −
∑
{ne}

P(X) log2 P(X)

= −
E∑

e=1

[pe log2 pe + (1− pe) log2(1− pe)]. (3.13)

Here
∑
{ne} =

∑1
n1=0, . . . ,

∑1
nE=0 is the sum over all possible combinations of

event occupation numbers. The final result followed since the entropy of a
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Figure 8: The binary representations of the experimental spike trains were less
variable than those of Poisson-like processes. Binary representations with word
length L were determined for each trial, and the entropy was calculated as
described in the text, starting from (A) the first spike time and (B) the eighth
spike time. The entropy of experimental spike trains (dashed line), entropy of
surrogate spike trains averaged over 10 random shufflings (filled circles), their
difference (dot-dashed line), and the analytical result for the entropy of surrogate
spike trains (solid line) are shown. The standard deviation of the surrogate spike-
train entropy was of the order of the circle size.

product of probability density functions is the sum over the entropy of each
probability distribution. The analytical entropy of the surrogate spike trains
increased linearly with E. However, for Ntr trials, the maximum entropy was
log2 Ntr; hence, the analytical limit may not be reached if too few trials are
available for analysis.

The entropy of the experimental spike trains was determined as a func-
tion of the word length L (see Figure 8). The entropy of the surrogate spike
trains was calculated in two ways: first by determining the mean entropy
of 10 surrogate spike trains and then analytically by using equation 3.13.
The probability pe of a spike during event e was estimated as the number of
spikes during that event in the original data divided by the number of trials.
The entropy of the original spike train was always lower than that of the sur-
rogate spike train. This implies that there was additional structure present
in the original spike train that was not present in surrogate spike trains.

The entropy of surrogate spike trains started to differ from the analytical
result at L = 8 (see Figure 8A). This indicated that the number of trials was
not large enough to sample the probability distribution of the binary rep-
resentations adequately. Initially, the difference between the entropy of the
original and surrogate spike trains increased with L, but when the sampling
effects occurred, it decreased. As a result, the difference had a maximum
that was a sampling artifact (dot-dashed line in Figure 8A). Similar results
were obtained for spike trains starting from the eighth event (see Figure 8B).
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3.4 Simulated Spike Trains. The statistical test for renewal behavior
and the procedure to determine the attractor reliability were also applied to
simulated spike trains. As an example, the spike trains of a noisy integrate-
and-fire neuron that was 1:2 entrained to a sinusoidal drive were examined
(see Figure 9A). The entropy of the original spike trains was lower than the
surrogate spike trains (see Figure 9B). The spike trains were nonrenewal;
the probability of obtaining the same ν(s) (see Figure 9C) from a renewal
spike train was zero. The attractor reliability was Ra = 2−3.74 ≈ 0.075.

4 Discussion

Other statistical tests to determine whether neural spike trains form a re-
newal process have been proposed previously, such as the power ratio (Re-
ich et al., 1998). The critical value of the power ratio depended on the interval
distribution of the (rescaled) spike train. The test introduced here could be
applied to all interval distributions, and its significance value was deter-
mined using the χ2 distribution.

Oram, Wiener, Lestienne, and Richmond (1999) proposed a procedure
to determine whether certain patterns of spikes in multiple unit recordings
were present above chance levels (see also Abeles & Gat, 2001). The attrac-
tor reliability introduced here is related to this procedure since it assesses
whether certain patterns—attractors—occur more often than expected for
Poisson processes with the same spike-time histogram.

The number of distinct spike trains was determined using a simple pro-
cedure. This procedure succeeds if (1) the spike times within an event are
sufficiently precise and (2) the distance between different events is larger
than the spike-time jitter within an event. The latter condition is not always
satisfied; for instance, in Poisson spike trains, spikes can occur with arbitrar-
ily small interspike intervals. In real spike trains, there is always a minimum
interspike interval equal to the refractory period. When either of the two
conditions is not satisfied, a different method is required to separate spike
trains into groups. Two alternatives are the k means method for clustering
(Gershenfeld, 1999) or an algorithm based on spike metrics such as in Victor
and Purpura (1996). To calculate the entropy of spike trains and compare to
equivalent renewal processes, a sufficient number of trials was needed. We
found 40 to 1000 trials to be sufficient for most analyses.

Recent experimental studies show that the amplitude of a postsynap-
tic conductance in response to a presynaptic action potential depends on
the previous presynaptic spike times (Markram & Tsodyks, 1996; Abbott,
Varela, Sen, & Nelson, 1997; Markram, Wang, & Tsodyks, 1998). As a re-
sult, synapses are sensitive to temporal correlations in input spike trains
(Brenner, Strong, Koberle, Bialek, & de Ruyter van Steveninck, 2000; Eguia,
Rabinovich, & Abarbanel, 2000; Tiesinga, 2001). For instance, a Poisson spike
train and a periodic spike train with the same average rate will yield dif-
ferent postsynaptic amplitudes. When there are more distinct spike trains



Attractor Reliability in Neuronal Spike Trains 1647

Figure 9: Spike trains obtained from a noisy integrate-and-fire neuron that was
1:2 entrained to a sinusoidal drive. The spike trains had deterministic structure
and did not form a renewal process. (A) The rastergrams (a) in original order
and (b) ordered on binary representation. (B) Spike-train entropy; curves were
annotated as in Figure 8A. (C) Average rescaled interspike interval as a function
of time with confidence intervals (notation as in Figure 4C). Model parameters
were I = 1.0, A = 0.17, D = 10−4, T = 2. To facilitate comparison to experimental
data, time was rescaled by a factor of 40 ms.
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across trials, the synaptic drive gets more variable. The attractor reliability
is a measure for this type of synaptic variability. If the task of a neuron is
to transmit information about its input into its output spike train, then this
variability would be considered noise since it is not related to the input.
The impact on a postsynaptic neuron of the unreliability-induced synaptic
variability is not clear. Cortical neurons receive a large number of synaptic
inputs from different cells (reviewed in Shadlen & Newsome, 1998) and
synapses themselves are unreliable (Bekkers, Richerson, & Stevens, 1990;
Allen & Stevens, 1994; Zador, 1998). This issue remains for further study.

A more immediate issue is how reliability depends on the characteristics
of the driving input and the intrinsic neuronal dynamics. In previous experi-
mental and theoretical studies (Mainen & Sejnowski, 1995; Nowak, Sanchez-
Vives, & McCormick, 1997; Tang, Bartels, & Sejnowski, 1997; Hunter, Milton,
Thomas, & Cowan, 1998; Warzecha, Kretzberg, & Egelhaaf, 1998, 2000; Cec-
chi et al., 2000; Kretzberg, Egelhaaf, & Warzecha, 2001; Fellous et al., 2001), it
was shown, using a different reliability measure, that neurons fire unreliably
in response to constant depolarizing current, but fire reliably when driven
by inputs containing high-frequency components. The reliability measure
introduced here forms part of a theoretical framework that allows for the
systematic study of neuronal reliability. Elsewhere, we will investigate how
the attractor reliability depends on the type and number of attractors and
their bifurcation structure.
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We thank Jack Cowan, Jorge José, Bruce Knight, Susanne Schreiber, and
Peter Thomas for discussions and suggestions and Greg Horwitz, Arnaud
Delorme, and the anonymous referees for comments that helped improve
the presentation of the article. Some of the numerical calculations were
performed at the High Performance Computer Center at Northeastern Uni-
versity. This work was partially funded by the Sloan-Swartz Center for
Theoretical Neurobiology (P.T.) and the Howard Hughes Medical Institute
(J.M.F., T.J.S.).

References

Abbott, L., Varela, J., Sen, K., & Nelson, S. (1997). Synaptic depression and cortical
gain control. Science, 275, 220–224.

Abeles, M., & Gat, I. (2001). Detecting precise firing sequences in experimental
data. J. Neurosci. Methods, 107, 141–154.

Abramowitz, M., & Stegun, I. (1974). Handbook of mathematical functions. New
York: Dover.

Allen, C., & Stevens, C. (1994). An evaluation of causes for unreliability of synap-
tic transmission. Proc. Natl. Acad. Sci., 91, 10380–10383.



Attractor Reliability in Neuronal Spike Trains 1649

Bekkers, J., Richerson, G., & Stevens, C. (1990). Origin of variability in quantal
size in cultured hippocampal neurons and hippocampal slices. Proc. Natl.
Acad. Sci., 87, 5359–5362.

Brenner, N., Strong, S., Koberle, R., Bialek, W., & de Ruyter van Steveninck, R.
(2000). Synergy in a neural code. Neural Comput., 12, 1531–1552.

Cecchi, G., Sigman, M., Alonso, J., Martinez, L., Chialvo, D., & Magnasco, M.
(2000). Noise in neurons is message dependent. Proc. Natl. Acad. Sci., 97,
5557–5561.

Eguia, M., Rabinovich, M., & Abarbanel, H. (2000). Information transmission
and recovery in neural communications channels. Phys. Rev. E, 62, 7111–
7122.

Fellous, J.-M., Houweling, A., Modi, R., Rao, R., Tiesinga, P., & Sejnowski, T.
(2001). The frequency dependence of spike timing reliability in cortical pyra-
midal cells and interneurons. J. Neurophys., 85, 1782–1787.

Gershenfeld, N. (1999). The nature of mathematical modeling. Cambridge: Cam-
bridge University Press.

Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations
of integrate-and-fire neural networks. Neural Comput., 10, 467–483.

Hunter, J., Milton, J., Thomas, P., & Cowan, J. (1998). Resonance effect for neural
spike time reliability. J. Neurophysiol., 80, 1427–1438.

Jensen, R. (1998). Synchronization of randomly driven nonlinear oscillators.
Phys. Rev. E, 58, 6907–6910.

Kretzberg, J., Egelhaaf, M., & Warzecha, A. (2001). Membrane potential fluctu-
ations determine the precision of spike timing and synchronous activity: A
model study. J. Comput. Neurosci., 10, 79–97.

Larsen, R., & Marx, M. (1986). An introduction to mathematical statistics and its
applications. Englewood Cliffs, NJ: Prentice Hall.

Mainen, Z., & Sejnowski, T. (1995). Reliability of spike timing in neocortical
neurons. Science, 268, 1503–1506.

Markram, H., & Tsodyks, M. (1996). Redistribution of synaptic efficacy between
neocortical pyramidal neurons. Nature, 382, 807–810.

Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same
axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci., 95, 5323–5328.

Nowak, L., Sanchez-Vives, M., & McCormick, D. (1997). Influence of low and
high frequency inputs on spike timing in visual cortical neurons. Cereb. Cortex,
7, 487–501.

Oram, M., Wiener, M., Lestienne, R., & Richmond, B. (1999). Stochastic nature
of precisely timed spike patterns in visual system neuronal responses. J.
Neurophysiol., 81, 3021–3033.

Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes.
Cambridge: Cambridge University Press.

Reich, D., Victor, J., & Knight, B. (1998). The power ratio and the interval maps:
Spiking models and extracellular recordings. J. Neurosci., 18, 10090–10104.

Shadlen, M., & Newsome, W. (1998). The variable discharge of cortical neu-
rons: Implications for connectivity, computation, and information coding. J.
Neurosci., 18, 3870–3896.

Strogatz, S. (1994). Nonlinear dynamics and chaos. Reading, MA: Addison-Wesley.



1650 P. H. E. Tiesinga, J.-M. Fellous, and Terrence J. Sejnowski

Tang, A., Bartels, A., & Sejnowski, T. (1997). Effects of cholinergic modulation
on responses of neocortical neurons to fluctuating input. Cereb. Cortex, 7,
502–509.

Tiesinga, P. (2001). Information transmission and recovery in neural communi-
cations channels revisited. Phys. Rev. E, 64, 012901: 1–4.

Victor, J., & Purpura, K. (1996). Nature and precision of temporal coding in
visual cortex: a metric-space analysis. J. Neurophysiol., 76, 1310–1326.

Warzecha, A., Kretzberg, J., & Egelhaaf, M. (1998). Temporal precision of the
encoding of motion information by visual interneuron. Curr. Biol., 8, 359–
368.

Warzecha, A., Kretzberg, J., & Egelhaaf, M. (2000). Reliability of a fly motion-
sensitive neuron depends on stimulus parameters. J. Neurosci., 20, 8886–8896.

Zador, A. (1998). Impact of synaptic unreliability on the information transmitted
by spiking neurons. J. Neurophys., 79, 1219–1229.

Received July 25, 2001; accepted January 4, 2002.


