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The investigation of neural interactions is crucial for understanding in-
formation processing in the brain. Recently an analysis method based
on information geometry (IG) has gained increased attention, and the
property of the pairwise IG measure has been studied extensively in re-
lation to the two-neuron interaction. However, little is known about the
property of IG measures involving more neuronal interactions. In this
study, we systematically investigated the influence of external inputs
and the asymmetry of connections on the IG measures in cases ranging
from 1-neuron to 10-neuron interactions. First, the analytical relationship
between the IG measures and external inputs was derived for a network
of 10 neurons with uniform connections. Our results confirmed that the
single and pairwise IG measures were good estimators of the mean back-
ground input and of the sum of the connection weights, respectively.
For the IG measures involving 3 to 10 neuronal interactions, we found
that the influence of external inputs was highly nonlinear. Second, by
computer simulation, we extended our analytical results to asymmetric
connections. For a network of 10 neurons, the simulation showed that the
behavior of the IG measures in relation to external inputs was similar
to the analytical solution obtained for a uniformly connected network.
When the network size was increased to 1000 neurons, the influence
of external inputs almost disappeared. This result suggests that all IG
measures from 1-neuron to 10-neuron interactions are robust against the
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influence of external inputs. In addition, we investigated how the strength
of asymmetry influenced the IG measures. Computer simulation of a
1000-neuron network showed that all the IG measures were robust against
the modulation of the asymmetry of connections. Our results provide
further support for an information-geometric approach and will provide
useful insights when these IG measures are applied to real experimental
spike data.

1 Introduction

The interaction between neurons plays a key role in information processing
in the brain. A number of attempts at understanding the contribution of
correlations to information processing have been made by studying pair-
wise and higher-order neural correlations (Gerstein & Perkel, 1969; Abeles
& Gerstein, 1988; Aertsen, Gerstein, Habib, & Palm, 1989; Zhang, Ginzburg,
McNaughton, & Sejnowski, 1998; Panzeri & Schultz, 2001; Grün, Diesmann,
& Aertsen, 2002a, 2002b; Brown, Kass, & Mitra, 2004; Fellous, Tiesinga,
Thomas, & Sejnowski, 2004; Czanner, Grün, & Iyengar, 2005; Shimazaki &
Shinomoto, 2007; Amari, 2009; Peyrache, Benchenane, Khamassi, Wiener, &
Battaglia, 2009; Shimokawa & Shinomoto, 2009; Lopes-dos-Santos, Conde-
Ocazionez, Nicolelis, Ribeiro, & Tort, 2011). Recently information geometry
(IG) has provided an information-theoretic approach based on differential
geometry and has been used as a powerful tool for analyzing neuronal ac-
tivity patterns (Amari & Nagaoka, 2000; Amari, 2001; Nakahara & Amari,
2002; Amari, Nakahara, Wu, & Sakai, 2003; Tatsuno & Okada, 2004; Eleu-
teri, Tagliaferri, & Milano, 2005; Ikeda, 2005; Miura, Okada, & Amari, 2006;
Nakahara, Amari, & Richmond, 2006; Tatsuno, Fellous, & Amari, 2009; Ince
et al., 2010; Ohiorhenuan & Victor, 2011; Nie & Tatsuno, 2012; Shimazaki,
Amari, Brown, & Grün, 2012). The advantages of the IG approach include
an orthogonal decomposition of higher-order interactions (Amari, 2001;
Nakahara & Amari, 2002; Amari, 2009) and the direct relationship between
IG measures and connection weights (Tatsuno & Okada, 2004; Tatsuno et al.,
2009; Nie & Tatsuno, 2012).

Many of the previous theoretical studies, including information geom-
etry, have focused on the pairwise interaction or relatively low orders of
interactions. However, since the brain may process information with highly
coordinated neural activity, the development of a correlation measure that
is capable of estimating interactions with more neurons is important. The IG
measures are ideal for this purpose because they can be extended to higher-
order interactions in a straightforward manner (Amari, 2001). However, a
systematic investigation of the relationship between different orders of IG
measures and their dependency on network parameters has not yet been
conducted. In this study, we investigated how the IG measures derived
from up to 10-neuronal interactions were influenced by a correlated input,
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a background input, and the asymmetry of connections. First, we derived
the analytical relationship between the IG measures and external inputs
using a network of 10 neurons that were connected by uniform weights.
Second, we extended our investigation to an asymmetrically connected
neural network by computer simulation. We investigated how the IG mea-
sures were influenced by external inputs and the level of asymmetry of
connections.

This study is organized as follows. In section 2, we introduce information
geometry, a model network, and a recursive formula for analytically calcu-
lating the IG measures. In section 3, we describe the analytical relationship
between the IG measures and the external inputs for 10 neurons that are
uniformly connected. In section 4, we show the numerical results for an
asymmetrically connected neural network of up to 1000 neurons. And in
section 5, we summarize the results, discuss the limitations of this work,
and propose direction for future studies.

2 Information Geometry, Model Network, and a Recursive Formula
for Analytically Calculating the IG Measures

2.1 Information Geometry. In this section, we describe an information-
geometric approach (for background, see Amari & Nagaoka, 2000). xi is a
binary variable that represents the state of the ith neuron in cases where
it is silent (xi = 0) or produces a spike (xi = 1). px1x2,...,xN

is the probability
of an N-neuron system where we assume px1x2,...,xN

> 0. The full Nth order
log-linear model (LLM) of an N-neuron system is given by:

logpx1x2...xN
=

∑
i

θ (N,N)
i xi +

∑
i< j

θ
(N,N)

i j xix j + . . .

+
∑

i< j<···<m

θ
(N,N)

i j,...,mxix j . . . xm

+ · · · + θ
(N,N)

12,···Nx1x2 . . . xN − ψ(θ)(N,N), (2.1)

where θ
(N,N)

i j,...,m (1 ≤ m ≤ N) represents the m-neuron interaction and ψ(θ)(N,N)

is the normalizing factor so that
∑

px1,x2,...,xN
= 1 (Amari & Nagaoka, 2000).

The first and second superscripts represent the order of LLM and the num-
ber of neurons in the system, respectively. We call θ

(N,N)

i j,...,m the m–neuron IG
measure of the fully expanded LLM (Tatsuno & Okada, 2004). For simplic-
ity, we also refer to the one-neuron IG measure as the single IG measure
and the two-neuron IG measure as the pairwise IG measure. The first few
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IG measures and the normalizing factor are expressed as

θ (N,N)
i = log

px1=0,...,xi=1,...,xN=0

px1=0,...,xN=0
,

θ
(N,N)

i j = log
px1=0,...,xi=1,...,x j=1,...,xN=0 px1=0,...,xN=0

px1=0,...,xi=1,...,x j=0,...,xN=0 px1=0,...,xi=0,...,x j=1,...,xN=0
,

θ
(N,N)

i jk = log
pxi=1,x j=1,xk=1;xN−i, j,k=0 pxi=1;xN−i=0 px j=1;xN− j=0 pxk=1;xN−k=0

pxi=1,x j=1;xN−i, j=0 px j=1,xk=1;xN− j,k=0 pxi=1,xk=1;xN−i,k=0 px1:N=0
,

θ
(N,N)

i jkl

= log

⎛
⎝ pxi=1,x j=1,xk=1,xl=1;xN−i, j,k,l=0 pxi=1,x j=1;xN−i, j=0 pxi=1,xk=1;xN−i,k=0

pxi=1,x j=1,xk=1;xN−i, j,k=0 pxi=1,x j=1,xl=1;xN−i, j,l=0 pxi=1,xk=1,xl=1;xN−i,k,l=0

×
pxi=1,xl=1;xN−i,l=0 px j=1,xk=1;xN− j,k=0 px j=1,xl=1;xN− j,l=0 pxk=1,xl=1;xN−k,l=0

px j=1,xk=1,xl=1;xN− j,k,l=0 pxi=1;xN−i=0 px j=1;xN− j=0 pxk=1;xN−k=0

×
px1:N=0

pxl=1;xN−l=0

)
,

. . . . . . . . .

ψ(θ)(N,N) = − log px1=0,...,xN=0 (2.2)

where 1 ≤ i < j < k < l ≤ N. Note that for θ
(N,N)

i jk and θ
(N,N)

i jkl , we used the
following form of representation:

pxi=1,x j=1,xk=1;xN−i, j,k=0 = px1=0,...,xi=1,...,x j=1,...,xk=1,...,xN=0

pxi=1,x j=1,xk=1,xl=1;xN−i, j,k,l=0 = px1=0,...,xi=1,...,x j=1,...,xk=1,...,xl=1,...,xN=0. (2.3)

In general terms, the partially expanded kth order LLM of an N-neuron
system is expressed by

log px1x2...xk∗...∗
=

∑
i

θ (k,N)
i xi +

∑
i< j

θ
(k,N)

i j xix j

+ · · · +
∑

i< j<···<m

θ
(k,N)

i j,...,mxix j . . . xm

+ · · · + θ
(k,N)

12,...kx1x2 . . . xk − ψ(θ)(k,N), (2.4)
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where θ
(k,N)

12,...,m (1 ≤ m ≤ k ≤ N) is the m-neuron IG measure of the partially
expanded kth order LLM. The first few terms and normalizing factor are
given as follows:

θ (k,N)
i = log

px1=0,...,xi=1,...,xk=0,∗...∗
px1=0,...,xk=0,∗...∗

,

θ
(k,N)

i j = log
px1=0,...,xi=1,...,x j=1,...,xk=0,∗...∗ px1=0,...,xk=0,∗...∗

px1=0,...,xi=1,...,x j=0,...,xk=0,∗...∗ px1=0,...,xi=0,...,x j=1,...,xk=0,∗...∗
,

θ
(k,N)

i jq = log
pxi=1,x j=1,xq=1;xk−i, j,q=0;∗ pxi=1;xk−i=0;∗ px j=1;xk− j=0;∗ pxq=1;xk−q=0;∗

pxi=1,x j=1;xk−i, j=0;∗ px j=1,xq=1;xk− j,q=0;∗ pxi=1,xq=1;xk−i,q=0;∗ px1:k=0;∗
,

θ
(k,N)

i jqr =

log

⎛
⎝ pxi=1,x j=1,xq=1,xr=1;xk−i, j,q,r=0;∗ pxi=1,x j=1;xk−i, j=0;∗ pxi=1,xq=1;xk−i,q=0;∗

pxi=1,x j=1,xq=1;xk−i, j,q=0;∗ pxi=1,x j=1,xr=1;xk−i, j,r=0;∗ pxi=1,xq=1,xr=1;xk−i,q,r=0;∗

×
pxi=1,xr=1;xk−i,r=0;∗ px j=1,xq=1;xk− j,q=0;∗ px j=1,xr=1;xk− j,r=0;∗ pxq=1,xr=1;xk−q,r=0;∗

px j=1,xq=1,xr=1;xk− j,q,r=0;∗ pxi=1;xk−i=0;∗ px j=1;xk− j=0;∗ pxq=1;xk−q=0;∗

×
px1:k=0;∗

pxr=1;xk−r=0;∗

)
,

. . . . . . . . .

ψ(θ)(k,N) = − log px1=0,...,xk=0,∗...∗, (2.5)

where ∗ . . . ∗ represents the marginalization over the (N − k) neurons. Also
note that for θ

(k,N)

i jq and θ
(k,N)

i jqr , we used the following form of representation:

pxi=1,x j=1,xq=1;xk−i, j,q=0;∗ = px1=0,...,xi=1,...,x j=1,...,xq=1,...,xk=0,∗...∗,

pxi=1,x j=1,xq=1,xr=1;xk−i, j,q,r=0;∗ = px1=0,...,xi=1,...,x j=1,...,xq=1,...,xr=1,...,xk=0,∗...∗

(2.6)

Both θ
(N,N)

i j,...,m (the IG measure from the full model) and θ
(k,N)

i j,...,m (the IG mea-
sure from the kth order partial model) represent the m-neuron interactions.
However, note the difference between them: θ

(N,N)

i j,...,m is calculated from the

full information of all N neurons. By contrast, θ
(k,N)

i j,...,m is calculated from the
partial information of k neurons by marginalizing (N − k) neurons. It has
been shown that θ

(N,N)

i j,...,N is statistically orthogonal to any 〈xi〉 where 〈xi〉 rep-
resents the expectation of xi. On the other hand, θ

(k,N)

i j,...,k is orthogonal to 〈xi〉
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for i that is included in the k neurons (Amari, 2001; Nakahara & Amari,
2002).

To calculate the IG measures, it is often convenient to use the relationship
between the marginal and coincident firings (〈xi〉, 〈xix j〉, . . . , 〈x1x2 . . . xN〉)
and the probability of events (px1x2

, px1x2x3
. . . , px1x2...xN

). For the IG measures
with the full LLM, by extending the previous study (Nie & Tatsuno, 2012),
we have

px1=0,...,xN=0 = 1−
∑

i

〈xi〉 +
∑
i< j

〈xix j〉 −
∑

i< j<k

〈xix jxk〉 + · · · ± 〈x1x2 . . . xN〉,

p0,...0,xq=1,0...,0 = 〈xq〉 −
∑
i �=q

〈xqxi〉 +
∑
i, j �=q

〈xqxix j〉 − · · · ∓ 〈x1x2 . . . xN〉,

p0,...0,xq=1,0...0,xr=1,0...,0 = 〈xqxr〉 −
∑
i �=q,r

〈xqxrxi〉 + · · · ± 〈x1x2 . . . xN〉,

p0,...0,xq=1,0...0,xr=1,0...,0,xs=1,0...0

= xqxrxs −
∑

i �=q,r,s

〈xqxrxsxi〉 + · · · ∓ 〈x1x2 . . . xN〉,

. . . . . . . . .

px1=1,...,xN=1 = 〈x1x2 . . . xN〉, (2.7)

where an upper sign (lower sign) at the last term on the right-hand side is
taken when N is an even (odd) number. Similarly, for the partly expanded
kth order IG measures, the formula becomes

px1=0,...,0,xk=0,∗...∗ = 1 −
k∑

i=1

〈xi〉 +
k−1∑
i=1

k∑
j=i+1

〈xix j〉 − · · · ± 〈x1x2 . . . xk〉,

px1=0,...,0,xq=1,0...0,xk=0,∗...∗

= 〈xq〉 −
k∑

i=1,i �=q

〈xqxi〉 +
k−1∑

i=1,i �=q

k∑
j=i+1, j �=q

〈xqxix j〉 − · · · ∓ 〈x1x2 . . . xk〉,

px1=0,...,0,xq=1,0...0,xr=1,0...0,xk=0,∗...∗=〈xqxr〉−
k∑

i=1,i �=q,r

〈xqxrxi〉+· · · ± 〈x1x2 . . . xk〉,

px1=0,...,0,xq=1,0...0,xr=1,0...0,xs=1,0...0,xk=0,∗...∗

= 〈xqxrxs〉 −
k∑

i=1,i �=q,r,s

〈xqxrxsxi〉 + · · · ∓ 〈x1x2 . . . xk〉,

. . . . . . . . .

px1=1,...,xk=1,∗...∗ = 〈x1x2 . . . xk〉, (2.8)
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where an upper sign (lower sign) at the last term on the right-hand side is
taken when k is an even (odd) number.

In summary, the probability of events (px1x2
, px1x2x3

, . . . , px1x2...xk
, . . . ,

px1x2...xN
) can be calculated from the marginal and coincident firings

(〈xi〉, 〈xix j〉, . . . , 〈x1x2 . . . xk〉, . . . , 〈x1x2 . . . xN〉) using equation 2.7 for the
full LLM and equation 2.8 for the partially expanded LLM. The
IG measures with any neuronal interactions can be then calculated
with equation 2.2 for the full LLM and with equation 2.5 for the
partially expanded LLM. However, performing these calculations for
large N is difficult. In addition, obtaining the relationship between
(〈xi〉, 〈xix j〉, . . . , 〈x1x2 . . . xk〉, . . . , 〈x1x2 . . . xN〉) and network parameters such
as external inputs for an arbitrary network structure is not straightforward.
Therefore, in the analytical part of this study, we focused on a uniformly
connected network of 10 neurons. Our goal was to obtain insight into how
the IG measures derived from up to 10-neuron interactions were related to
external inputs. We also expanded the study to include asymmetric con-
nections and a network with more neurons through the use of computer
simulation. In the next section, we describe the structure and dynamics of
the neural network that we used in this study.

2.2 Model Network

2.2.1 General Description. We begin with a general description of a net-
work (see Figure 1). The network consists of a layer of recurrently connected
N neurons ni (i = 1, . . . , N), where a connection strength from a presynaptic
neuron ( j) to a postsynaptic neuron (i) is represented by Jij. Each neuron in
the layer receives a correlated input from a single upstream neuron n0 with a
connection strength represented by Wi0. It also receives a background input
hi. The upstream neuron n0 receives a background input h0. We assume that
a background input is a random variable hi ∼ N

(
mi, σi

)
, where N

(
mi, σi

)
is

the normal distribution with the mean (mi) and variance (σ 2
i ). If we let xi(t)

be the state of the ith neuron at time t, the binary values 0 and 1 correspond
to a quiescent and active state, respectively. Under these conditions, the
total input to the ith neuron ni in the layer and to the upstream neuron n0
is written as follows:

ui(t) =
∑
j �=i

Ji jx j(t) + Wi0x0(t) + hi(t), (2.9)

u0(t)= h0(t). (2.10)

The first term on the right-hand side of equation 2.9 represents inputs from
the neurons in the same layer. The second and third terms on the right-hand
side of equation 2.9 represent a correlated input from the upstream neuron
n0 and uncorrelated background input, respectively.
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Figure 1: Schematic of a network. Neurons in the upper layer, ni (i = 1, . . . , N),
are connected by the connection weight Jij from a presynaptic neuron ( j) to a
postsynaptic neuron (i). Each neuron in the layer receives a correlated input
from a single upstream neuron n0 with a connection strength represented by
Wi0. It also receives a background input hi. The upstream neuron n0 receives a
background input h0. A background input is a random variable hi ∼ N

(
mi, σi

)
where N

(
mi, σi

)
is the normal distribution with the mean (mi) and variance

(σ 2
i ).

The response of the model neuron is stochastic, depending on the total
input ui. Following the work of Ginzburg and Sompolinsky (1994), we write
the transition rate w between the binary states as

w
(
xi → (

1 − xi

)) = 1
2τ0

{
1 − (

2xi − 1
) [

2g(ui) − 1
]}

, (2.11)

where τ0 is a microscopic characteristic time and g(ui) is a monotonically
increasing sigmoidal function whose value is bounded in the interval [0, 1].
The firing probability of a neuronal state variable 〈xi(t)〉 is

τ0
d
dt

〈xi(t)〉 = −〈xi(t)〉 + 〈g(ui(t))〉. (2.12)

Note that

〈xi(t)〉 = p∗...∗xi(t)=1∗...∗ (2.13)

is the marginal probability distribution of xi(t) where the ith neuron takes
the value 1, while all the other N − 1 neurons take arbitrary values (0 or
1). Similarly, the coincident firing of the ith and jth neurons, 〈xi(t)x j(t)〉 =

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00633&iName=master.img-000.jpg&w=239&h=136
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p∗...∗,xi(t)=1,∗...∗,x j (t)=1,∗...∗, is expressed as

τ0
d
dt

〈xi(t)x j(t)〉 = −2〈xi(t)x j(t)〉 + 〈xi(t)g(uj(t))〉 + 〈x j(t)g(ui(t))〉.

(2.14)

The coincident firing of N neurons, 〈x1(t)x2(t) . . . xN(t)〉 =
px1(t)=1,x2(t)=1,...,xN (t)=1 , is written as

τ0
d
dt

〈x1(t)x2(t) . . . xN(t)〉
= −N〈x1(t)x2(t) . . . xN(t)〉 + 〈x2(t)x3(t) . . . xN−1(t)xN(t)g(u1(t))〉

+〈x1(t)x3(t) . . . xN−1(t)xN(t)g(u2(t))〉
+ · · · + 〈x1(t)x2(t) . . . xN−2(t)xN−1(t)g(uN(t))〉. (2.15)

For mathematical clarity, we investigate neural interactions when the net-
work is in the equilibrium state. Equations 2.12, 2.14, and 2.15 then reduce
to

〈xi〉= 〈g(ui)〉. (2.16)

〈xix j〉= 1
2
(〈xig(uj〉) + 〈x jg(ui)〉), (2.17)

〈x1x2 . . . xN〉 = 1
N

(〈x2x3 . . . xN−1xNg(u1)〉
+ 〈x1x3 . . . xN−1xNg(u2)〉
+ · · · + 〈x1x2 . . . xN−2xN−1g(uN)〉). (2.18)

Note that 〈xi〉 = p∗...∗,xi=1,∗...∗, 〈xix j〉 = p∗...∗,xi=1,∗...∗,x j=1,∗...∗ and

〈x1x2 . . . xN〉 = px1=1,x2=1,...,xN=1 do not depend on t.

2.2.2 Simplified Network. Our goal for the analytical part of this study
is to find the explicit relationship between (〈xi〉, 〈xix j〉, . . . , 〈x1x2 . . . xN〉, . . . ,
〈x1x2 . . . xN〉) in equations 2.16, 2.17, and 2.18 and external inputs (a corre-
lated input Wi0 and a background input hi). To help facilitate the analytical
investigation, we set all recurrent connections to be equal (uniform): Ji j = J.
In addition, for mathematical clarity, we assumed that a connection weight
from the upstream neuron (n0) to a neuron (ni) is uniform and that the
background input to a neuron (ni) has the same mean (h) and variance σ 2
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(hi ∼ N(h, σ )). These assumptions simplified equation 2.9 as follows:

ui(t) = J
∑
j �=i

x j(t) + Wx0(t) + hi(t). (2.19)

For a sigmoidal activation function g(ui), we used:

g(ui) = 1 + tanh(ui − m)

2
, (2.20)

where m is a parameter controlling the firing probability of a model neuron.
In the equilibrium limit, the influence of the background input is char-

acterized by its mean value h. In the following section, we investigate how
the strength of a correlated input (W ) and the mean of a background input
(h) influence the IG measures.

2.3 Derivation of System Equations in the Equilibrium Limit

2.3.1 Two-Neuron System. Before we investigate the 10-neuron network,
it is instructive to consider a simpler case where the layer contains only
2 neurons. In the equilibrium limit, equation 2.16 for the 2 neurons in the
layer is written as

〈x1〉 = 〈g(u1)〉 = 〈g(Jx2 + Wx0 + h)〉, (2.21)

〈x2〉 = 〈g(u2)〉 = 〈g(Jx1 + Wx0 + h)〉. (2.22)

By taking advantage of the relationship,

g(Jx j + Wx0 + h) = x0x jg(J + W + h) + x j(1 − x0)g(J + h)

+ (1−x j)x0g(W +h)+ (1−x j)(1−x0)g(h), (2.23)

and considering 〈x1〉 = 〈x2〉, 〈x0x1〉 = 〈x0x2〉, equations 2.21 and 2.22 reduce
to one equation:

〈x1〉 = 〈x0x1〉{g(J + W + h) − g(W + h) − (g(J + h) − g(h))}
+ 〈x1〉{g(J + h) − g(h)} + 〈x0〉{g(W + h) − g(h)} + g(h). (2.24)
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For an upstream neuron x0, we have

〈x0〉 = g(h0). (2.25)

For the joint firing of two neurons, equation 2.17 becomes:

〈x1x2〉= 1
2

[(〈x0x1〉 + 〈x0x2〉){g(J + W + h) − g(J + h)}

+ (〈x1〉 + 〈x2〉)g(J + h)], (2.26)

〈x0x1〉=
1
2

[〈x0x2〉{g(J + W + h)−g(W + h)}+〈x0〉g(W + h) + 〈x1〉g(h)],

(2.27)

〈x0x2〉=
1
2

[〈x0x1〉{g(J + W + h)−g(W + h)}+〈x0〉g(W + h) + 〈x2〉g(h)].

(2.28)

Considering 〈x1〉 = 〈x2〉, 〈x0x1〉 = 〈x0x2〉, equations 2.27 and 2.28 become
identical. Therefore, equations 2.26, 2.27, and 2.28 reduce to two equations:

〈x1x2〉 = 〈x1x0〉{g(J + W + h) − g(J + h)} + 〈x1〉g(J + h), (2.29)

〈x0x1〉= 1
2

[〈x0x1〉{g(J+W +h)−g(W +h)}+〈x0〉g(W +h)+ 〈x1〉g(h)].

(2.30)

For the coincident firing of three neurons, equation 2.18 translates to

〈x0x1x2〉 = 1
3

[(〈x0x1〉 + 〈x0x2〉)g(J + W + h) + 〈x1x2〉g(h0)]

= 1
3

[2〈x0x1〉g(J + W + h) + 〈x1x2〉g(h0)]. (2.31)

Note that we used 〈x0x1〉 = 〈x0x2〉 from the first to the second lines on the
right-hand side of the equation.

We now have five equations (2.24, 2.25, 2.29, 2.30, and 2.31) for five
marginal and coincident firings (〈x0〉, 〈x1〉, 〈x0x1〉, 〈x1x2〉, and 〈x0x1x2〉). By
solving these equations simultaneously, we represent the marginal and
coincident firings in terms of the network parameters J, W, h, h0, and m. We
then use these parameters in equations 2.7 or 2.8 to obtain the probability of
events such as px0

, px0x1
, . . . , px0x1x2

. Finally, the IG measures for the full LLM
are calculated by using equation 2.2, and the IG measures for the partially
expanded LLM are calculated by using equation 2.5.
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In the following section, we use a simplified notation such as 〈x1x2〉 for
〈xix j〉 and θ

(k,N)

12 for θ
(k,N)

i j because all IG measures of the same order in the
layer are identical due to the uniform connection assumption.

2.3.2 Ten-Neuron System. The equations for a 10-neuron system can be
obtained by expanding the procedure in the previous section. Therefore,
we solved 21 equations simultaneously for the following 21 marginal and
coincident firings: 〈x0〉, 〈x1〉, 〈x0x1〉, 〈x1x2〉, 〈x0x1x2〉, 〈x1x2x3〉, 〈x0x1x2x3〉,
〈x1x2x3x4〉, 〈x0x1x2x3x4〉, 〈x1x2x3x4x5〉, 〈x0x1x2x3x4x5〉, 〈x1x2x3x4x5x6〉,
〈x0x1x2x3x4x5x6〉, 〈x1x2x3x4x5x6x7〉, 〈x0x1x2x3x4x5x6x7〉, 〈x1x2x3x4x5x6x7x8〉,
〈x0x1x2x3x4x5x6x7x8〉, 〈x1x2x3x4x5x6x7x8x9〉, 〈x0x1x2x3x4x5x6x7x8x9〉,
〈x1x2x3x4x5x6x7x8x9x10〉, and 〈x0x1x2x3x4x5x6x7x8x9x10〉. Since space does
not allow us to write all 21 equations, we provide an equation for the
first-order marginal 〈x1〉 as an example in the appendix.

Next, we analytically calculated the IG measures with all possible neu-
ronal interactions: the 1-neuron IG (θ (1,10)

1 - θ
(10,10)

1 ), the 2-neuron IG (θ (2,10)

12 −
θ

(10,10)

12 ), the 3-neuron IG (θ (3,10)

123 − θ
(10,10)

123 ), the 4-neuron IG (θ (4,10)

1234 − θ
(10,10)

1234 ),
the 5-neuron IG (θ (5,10)

12345 − θ
(10,10)

12345 ), the 6-neuron IG (θ (6,10)

123456 − θ
(10,10)

123456 ), the 7-
neuron IG (θ (7,10)

1234567 − θ
(10,10)

1234567), the 8-neuron IG (θ (8,10)

12345678 − θ
(10,10)

12345678), the 9-
neuron IG (θ (9,10)

123456789 − θ
(10,10)

123456789), and the 10-neuron IG (θ (10,10)

12345678910). To this
end, we took advantage of a simplified network structure where equation
2.2 for the full LLM reduces to

θ
(N,N)

123...(2s)=log

p1 . . . 1︸ ︷︷ ︸
2s

· 0 . . . 0︸ ︷︷ ︸
N−2s

· p1 . . . 1︸ ︷︷ ︸
2s−2

00·0 . . . 0︸ ︷︷ ︸
N−2s

(
2s
2

)
· p1 . . . 1︸ ︷︷ ︸

2s−4

0000·0 . . . 0︸ ︷︷ ︸
N−2s

(
2s
4

)
· · · p0 . . . 0︸ ︷︷ ︸

N

p1 . . . 1︸ ︷︷ ︸
2s−1

0·0 . . . 0︸ ︷︷ ︸
N−2s

(
2s
1

)
· p1 . . . 1︸ ︷︷ ︸

2s−3

000·0 . . . 0︸ ︷︷ ︸
N−2s

(
2s
3

)
· · · p10 . . . 0︸ ︷︷ ︸

2s−1

· 0 . . . 0︸ ︷︷ ︸
N−2s

(
2s
1

) ,

(2.32)

θ
(N,N)

123...(2s+1)
= log

⎛
⎜⎜⎜⎜⎝

p1 . . . 1︸ ︷︷ ︸
2s+1

· 0 . . . 0︸ ︷︷ ︸
N−(2s+1)

· p1 . . . 1︸ ︷︷ ︸
2s−1

00· 0 . . . 0︸ ︷︷ ︸
N−(2s+1)

(
2s+1

2

)

p1 . . . 1︸ ︷︷ ︸
2s

0· 0 . . . 0︸ ︷︷ ︸
N−(2s+1)

(
2s+1

1

)
p1 . . . 1︸ ︷︷ ︸

2s−2

000· 0 . . . 0︸ ︷︷ ︸
N−(2s+1)

(
2s+1

3

)

×
p1 . . . 1︸ ︷︷ ︸

2s−3

0000· 0 . . . 0︸ ︷︷ ︸
N−(2s+1)

(
2s+1

4

)
· · · p0 . . . 0︸ ︷︷ ︸

2s

· 0 . . . 0︸ ︷︷ ︸
N−(2s+1)

(
2s+1

1

)

p1 . . . 1︸ ︷︷ ︸
2s−4

000· 0 . . . 0︸ ︷︷ ︸
N−(2s+1)

(
2s+1

5

)
· · · p0 . . . 0︸ ︷︷ ︸

N

⎞
⎟⎟⎟⎟⎠ (2.33)
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where s is the integer and (
n
k ) represents a binomial coefficient. Note that

px1...x2s+1·x2s+2...xN

(
2s+1

i ) expresses possible combinations on the first (2s + 1)

variables. Similarly, equation 2.5 for the partial LLM reduces to

θ
(k,N)

123...(2s) = log

⎛
⎜⎜⎜⎜⎝

p1 . . . 1︸ ︷︷ ︸
2s

· 0 . . . 0︸ ︷︷ ︸
k−2s

· ∗ . . . ∗︸ ︷︷ ︸
N−k

· p1 . . . 1︸ ︷︷ ︸
2s−2

00·0 . . . 0︸ ︷︷ ︸
k−2s

· ∗...∗︸︷︷︸
N−k

(
2s
2

)

p1 . . . 1︸ ︷︷ ︸
2s−1

0·0 . . . 0︸ ︷︷ ︸
k−2s

· ∗...∗︸︷︷︸
N−k

(
2s
1

)
· p1 . . . 1︸ ︷︷ ︸

2s−3

000·0 . . . 0︸ ︷︷ ︸
k−2s

· ∗...∗︸︷︷︸
N−k

(
2s
3

)

×
p1 . . . 1︸ ︷︷ ︸

2s−4

0000·0 . . . 0︸ ︷︷ ︸
k−2s

· ∗...∗︸︷︷︸
N−k

(
2s
4

)
· · · p0 . . . 0︸ ︷︷ ︸

k

· ∗ . . . ∗︸ ︷︷ ︸
N−k

p1 . . . 1︸ ︷︷ ︸
2s−5

000·0 . . . 0︸ ︷︷ ︸
k−2s

· ∗...∗︸︷︷︸
N−k

(
2s
5

)
· · · p1 0 . . . 0︸ ︷︷ ︸

2s−1

· 0 . . . 0︸ ︷︷ ︸
k−2s

· ∗...∗︸︷︷︸
N−k

(
2s
1

)

⎞
⎟⎟⎟⎟⎠ (2.34)

θ
(k,N)

123...(2s+1)
= log

⎛
⎜⎜⎜⎜⎝

p1 . . . 1︸ ︷︷ ︸
2s+1

· 0 . . . 0︸ ︷︷ ︸
k−(2s+1)

· ∗ . . . ∗︸ ︷︷ ︸
N−k

· p1 . . . 1︸ ︷︷ ︸
2s−1

00· 0 . . . 0︸ ︷︷ ︸
k−(2s+1)

· ∗...∗︸︷︷︸
N−k

(
2s+1

2

)

p1 . . . 1︸ ︷︷ ︸
2s

0· 0 . . . 0︸ ︷︷ ︸
k−(2s+1)

· ∗...∗︸︷︷︸
N−k

(
2s+1

1

)
· p1 . . . 1︸ ︷︷ ︸

2s−2

000· 0 . . . 0︸ ︷︷ ︸
k−(2s+1)

· ∗...∗︸︷︷︸
N−k

(
2s+1

3

)

×
p1 . . . 1︸ ︷︷ ︸

2s−3

0000· 0 . . . 0︸ ︷︷ ︸
k−(2s+1)

· ∗...∗︸︷︷︸
N−k

(
2s+1

4

)
· · · p1 0 . . . 0︸ ︷︷ ︸

2s

· 0 . . . 0︸ ︷︷ ︸
k−(2s+1)

· ∗ . . . ∗︸ ︷︷ ︸
N−k

(
2s+1

1

)

p1 . . . 1︸ ︷︷ ︸
2s−4

000· 0 . . . 0︸ ︷︷ ︸
k−(2s+1)

· ∗...∗︸︷︷︸
N−k

(
2s+1

5

)
· · · p0 . . . 0︸ ︷︷ ︸

k

· ∗ . . . ∗︸ ︷︷ ︸
N−k

⎞
⎟⎟⎟⎟⎠
(2.35)

In the next section, we describe how W (the strength of a correlated
input to neurons in the layer) and h (the mean of a background input to the
neurons in the layer) influence the IG measures using a simplified 10-neuron
network.

3 Analytical Study of IG Measures by Uniformly
Connected Ten Neurons

In the analytical study in this section, we vary the strength of the correlated
input W between 0 and 5J where J is the strength of the intrinsic connection
between neurons in a layer. J is set to 1/10 following the general scaling rule
of J = 1/N where N is the number of neurons. The range of values is chosen
to cover the strength of correlated inputs that could be observed in the brain.
For example, the mossy fiber from the dentate gyrus to the CA3 region of
the hippocampus is known to make a very strong synaptic connection. This
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strength has been estimated to be 5- to 10-fold of the intrinsic recurrent
connections in CA3 (Urban, Henze, & Barrionuevo, 2001). Therefore, W =
[0, 50J] is wide enough to cover the vast majority of correlated inputs that
could be observed experimentally. The strength of the mean background
input h is varied between 0 and 5J. The difference of the range between
W and h comes from the different implementation of these inputs. While
the correlated input W was modeled with an upstream neuron n0, the
background input h was implemented as a direct input to each neuron in
a layer (see equation 2.19). This was done so that the model was consistent
with previous studies (Ginzburg & Sompolinsky, 1994; Tatsuno & Okada,
2004; Tatsuno et al., 2009; Nie & Tatsuno, 2012). The parameter m that
controls the firing probability of a model neuron in equation 2.24 was set
to 1. It corresponds to the firing probability of approximately 0.15 when
the network receives the weakest inputs

(
W = 0, h = 0

)
and approximately

0.64 when the network receives the maximum inputs
(
W = 50J, h = 5J

)
.

In the following section, we summarize the results in four categories
of the IG measures: the IG measure for a single neuron (θ (k,10)

1 ), the IG
measure for a 2-neuron interaction (θ (k,10)

12 ), the IG measures for 3- to 5-

neuron interactions (θ (k,10)
123 , θ

(k,10)
1234 , θ

(k,10)
12345 ), and the IG measures for 6- to

10-neuron interactions (θ (k,10)
123456 , θ

(k,10)
1234567, θ

(k,10)
12345678, θ

(k,10)
123456789, θ

(10,10)

12345678910).

3.1 The IG Measure for a Single Neuron Interaction, θ
(k,10)
1 . The IG

measure for a single neuron is the coefficient θ
(N,N)
i in the full LLM (see equa-

tion 2.1) and θ
(k,N)
i in the partially expanded LLM (see equation 2.4). Under

the condition that there is no correlated input (W = 0), a previous study
(Tatsuno et al., 2009) showed that θ

(2,N)
i can be related to an uncorrelated

background input hi such as

θ (2,N)
i ∝ 2

(
hi − m

) + O
(

1
N

)
. (3.1)

Below, we investigate the influence of a correlated input W and the mean of
a background input h to θ

(k,N)
i where k is systematically varied from 1 to 10.

For a simplified 10-neuron network, θ
(k,N)
i reduces to θ

(k,N)

1 , and is given by

θ
(N,N)

1 = log
p1·000000000

p0·000000000
,

(
Full LLM

)
(3.2)

θ
(k,N)

1 = log

p1·0 . . . 0︸ ︷︷ ︸
k−1

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p0·0 . . . 0︸ ︷︷ ︸
k−1

· ∗ . . . ∗︸ ︷︷ ︸
10−k

.
(
Partial LLM

)
(3.3)
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Figure 2A shows how θ
(k,10)
1 is influenced by a correlated input W in the

absence of a background input h (data with a background input are not
shown because the overall tendency is the same). The calculation shows

that θ
(k,10)
1 is linearly related to the strength of W initially but that it becomes

insensitive to it (asymptotic flat line). In addition, the influence of W was
decreased with the increase of the order of LLM. In contrast, we found
that a background input h was related to θ

(k,10)
1 linearly regardless of the

existence of W (see Figure 2B for W = 0, data where W �= 0 were not shown
because the overall tendency was same). Furthermore, the figures showed

that the linear relationship between θ
(k,10)
1 and h described in equation

3.1 holds more strongly for the higher-order LLM, the exact relationship
θ

(10,10)

1 = 2
(
h − m

)
being obtained at k = 10 (full LLM; see Figure 2B). In

summary, the analytical calculation shows that the single IG measure θ
(k,10)
1

is not sensitive to the strength of a correlated input W, but that it is linearly
related to the strength of the background input h. In practice, this property
could be useful to estimate the relative amount of background input that a
neuron receives.

3.2 The IG Measure for a Two-neuron Interaction, θ(k,10)
12 . The IG mea-

sure for a two-neuron interaction θ
(k,N)

i j has been extensively studied (Amari,
2001). It has been shown that the measure is statistically independent from
firing rate modulation (Nakahara & Amari, 2002; Amari, 2009). Under the
assumption that there is no correlated input (W = 0), it has also been shown
that it is directly related to the sum of connection weights (Tatsuno et al.,
2009),

θ
(2,N)

i j ∝
(

Ji j + J ji

)
+ O

(
1
N

)
,

(
Asymmetric connection

)
(3.4)

θ
(2,N)

i j ∝ 2Ji j + O
(

1
N

)
.

(
Symmetric connection

)
(3.5)

Furthermore, even under the influence of a correlated input W, it has been
shown that the pairwise measure with the fourth- or fifth-order LLM, θ (4,N)

i j

or θ
(5,N)

i j , is able to estimate the connection weight provided that the size of
the network is sufficiently large (N = 103 − 104) (Nie & Tatsuno, 2012).

For the simplified 10-neuron network, the pairwise IG measure is calcu-
lated as

θ
(N,N)

12 = log
p11·00000000 p00·00000000

p10·00000000 p01·00000000
,

(
Full LLM

)
(3.6)
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θ
(k,N)

12 = log

p11·0 . . . 0︸ ︷︷ ︸
k−2

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p00·0 . . . 0︸ ︷︷ ︸
k−2

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p10·0 . . . 0︸ ︷︷ ︸
k−2

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p01·0 . . . 0︸ ︷︷ ︸
k−2

· ∗ . . . ∗︸ ︷︷ ︸
10−k

.
(
Partial LLM

)
(3.7)

Here, we analytically investigated the influence of a correlated input W

and a background input h on θ
(k,10)
12 where k was systematically varied

Figure 2: Relationship between the IG measures (θ (k,10)
1 , θ

(k,10)
12 , θ

(k,10)
123 , θ

(k,10)
1234 ,

θ
(k,10)
12345 ), a correlated input (W ), and a background input (h) for a 10-neuron

uniformly connected network. The network parameters are set asJ = 1/10 and
h0 = 0.5. W is modified in the range of [0, 50J], and h is modified in the range

of [0, 5J]. (A) θ
(k,10)
1 when a correlated input (W ) is varied in the absence of a

background input (h = 0). (B) θ
(k,10)
1 when background input (h) is varied in the

absence of a correlated input (W = 0). θ
(1,10)

1 , θ
(2,10)

1 , θ
(3,10)

1 , θ
(4,10)

1 , θ
(5,10)

1 , θ
(6,10)

1 ,
θ

(7,10)

1 , θ
(8,10)

1 , θ
(9,10)

1 , and θ
(10,10)

1 are represented by a black solid line, a black
dashed line, a black dotted line, a black dash-dot line, a gray solid line, a gray
dashed line, a gray dotted line, a gray dash-dot line, a light gray solid line, and

a light gray dashed line. (C) θ
(k,10)
12 when a correlated input (W ) is varied in the

absence of a background input (h = 0). (D) θ
(k,10)
12 when a background input

(h) is varied in the absence of a correlated input (W = 0). θ
(2,10)

12 , θ
(3,10)

12 , θ
(4,10)

12 ,
θ

(5,10)

12 , θ
(6,10)

12 , θ
(7,10)

12 , θ
(8,10)

12 , θ
(9,10)

12 , and θ
(10,10)

12 are represented by a black solid
line, a black dashed line, a black dotted line, a black dash-dot line, a gray solid
line, a gray dashed line, a gray dotted line, a gray dash-dot line, and a light

gray solid line. (E) θ
(k,10)
123 when a correlated input (W ) is varied in the absence

of a background input (h = 0). (F) θ
(k,10)
123 when a background input (h) is varied

in the absence of a correlated input (W = 0). θ
(3,10)

123 , θ
(4,10)

123 , θ
(5,10)

123 , θ
(6,10)

123 , θ
(7,10)

123 ,
θ

(8,10)

123 , θ
(9,10)

123 , and θ
(10,10)

123 are represented by a black solid line, a black dashed
line, a black dotted line, a black dash-dot line, a gray solid line, a gray dashed

line, a gray dotted line, and a gray dash-dot line. (G) θ
(k,10)
1234 when a correlated

input (W ) is varied in the absence of a background input (h = 0). (H) θ
(k,10)
1234

when a background input (h) is varied in the absence of a correlated input
(W = 0). θ

(4,10)

1234 , θ
(5,10)

1234 , θ
(6,10)

1234 , θ
(7,10)

1234 , θ
(8,10)

1234 , θ
(9,10)

1234 , and θ
(10,10)

1234 are represented by
a black solid line, a black dashed line, a black dotted line, a black dash-dot line,
a gray solid line, a gray dashed line, and a gray dotted line. (I) θ

(k,10)
12345 when a

correlated input (W ) is varied in the absence of a background input (h = 0).

(J) θ
(k,10)
12345 when a background input (h) is varied in the absence of a correlated

input (W = 0). θ (5,10)

12345 , θ (6,10)

12345 , θ (7,10)

12345 , θ (8,10)

12345 , θ (9,10)

12345 , and θ
(10,10)

12345 are represented by a
black solid line, a black dashed line, a black dotted line, a black dash-dot line, a
gray solid line, and a gray dashed line.
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from 2 to 10. When W was modified, θ
(k,10)
12 was affected, but to a lesser

extent for higher-order k of the LLM (see Figure 2C). Interestingly, when

a background input existed, θ
(k,10)
12 was less likely to be affected by the

correlated input (data not shown). Note that θ
(k,10)
12 = 0.2 = 2J is the correct

answer for estimating the sum of the connection weights (a horizontal

dashed line). When h was modified, θ (k,10)
12 was weakly affected when there

was no correlated input (see Figure 2D). For the full LLM (k = 10), θ
(k,10)
12

was completely independent of the modulation of h, providing the correct
answer of 0.2 (2J = 0.2, the horizontal dashed line). When a correlated input

existed, the value of θ
(k,10)
12 was affected more severely, especially when the

order of LLM k was low (data not shown).

In summary, the analysis shows that the pairwise IG measure θ
(k,10)
12 is a

good estimator of the sum of connection weights, even under the influence
of both a correlated input W and a background input h. This is especially
true if the order of LLM k is high. In practice, the calculation of θ

(10,10)

12
might not be easy to obtain because of the limited size of experimental
data. However, as we previously discussed, θ

(4,N)

12 or θ
(5,N)

12 would provide
a reasonable estimation of connection weights provided that the size of
the network is large (e.g., N = 1000; Nie & Tatsuno, 2012). Therefore, θ

(k,N)

12
could be a useful measure for estimating the sum of connection weights in
electrophysiological recordings.

3.3 The IG Measures for Three- to Five-Neuron Interactions, (θ(k,10)
123 ,

θ
(k,10)
1234 , θ(k,10)

12345 ). To investigate whether the brain processes information with
higher-order neural interactions, several studies have started using the IG
measures with a couple of neuronal interactions (Ohiorhenuan et al., 2010;
Ganmor, Segev, & Schneidman, 2011; Shimazaki et al., 2012). Therefore, it
is important to understand how the IG measures at these interaction levels
are influenced by correlated and background inputs. For the simplified
10-neuron network, they are calculated as

θ
(10,10)

123 = log
p111·0000000 p001·0000000 p010·0000000 p100·0000000

p011·0000000 p101·0000000 p110·0000000 p000·0000000
,

(
Full LLM

)
(3.8)

θ
(k,10)

123 = log

p111·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p001·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p010·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p100·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p011·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p101·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p110·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p000·0 . . . 0︸ ︷︷ ︸
k−3

· ∗ . . . ∗︸ ︷︷ ︸
10−k

,

(Partial LLM) (3.9)
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θ
(10,10)
1234 = log

p1111·000000 · p0011·000000 · p0000·000000

(
4
2

)

p0111·000000

(
4
1

)
· p0001·000000

(
4
1

) , (Full LLM) (3.10)

θ
(k,10)

1234 = log

p1111·0 . . . 0︸ ︷︷ ︸
k−4

· ∗ . . . ∗︸ ︷︷ ︸
10−k

· p0011·0 . . . 0︸ ︷︷ ︸
k−4

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
4
2

)
· p0000·0 . . . 0︸ ︷︷ ︸

k−4

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p0111·0 . . . 0︸ ︷︷ ︸
k−4

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
4
1

)
· p0001·0 . . . 0︸ ︷︷ ︸

k−4

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
4
1

) ,

(
Partial LLM

)
(3.11)

θ
(10,10)

12345 = log
p11111·00000 · p00111·00000

(
5
2

)
· p00001·00000

(
5
1

)

p01111·00000

(
5
1

)
· p00011·00000

(
5
2

)
· p00000·00000

,

(
Full LLM

)
(3.12)

θ
(k,10)

12345 = log

p11111·0 . . . 0︸ ︷︷ ︸
k−5

· ∗ . . . ∗︸ ︷︷ ︸
10−k

· p00111·0 . . . 0︸ ︷︷ ︸
k−5

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
5
2

)
· p00001·0 . . . 0︸ ︷︷ ︸

k−5

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
5
1

)

p01111·0 . . . 0︸ ︷︷ ︸
k−5

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
5
1

)
· p00011·0 . . . 0︸ ︷︷ ︸

k−5

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
5
2

)
· p00000·0 . . . 0︸ ︷︷ ︸

k−5

· ∗ . . . ∗︸ ︷︷ ︸
10−k

.

(
Partial LLM

)
(3.13)

Note that (
m
i ) represents a binomial coefficient and that px1...xm·xm+1...x10

(
m
i )

runs over the possible combinations on the first m variables.

The analytical results for θ
(k,10)
123 , θ

(k,10)
1234 , and θ

(k,10)
12345 are plotted from Fig-

ures 2E to 2J. When a correlated input W is 0, all the measures are zero
regardless of the existence of a background input h (see Figures 2E, 2G, and
2I). Since the network reduces to a Hopfield-type network where W = 0, the
result is consistent with the finding that the energy function has terms only
up to the second order. For W > 0, the IG measures deviate from 0 because
a nonzero W introduces higher-order interactions. The analytical calcula-

tion shows that θ
(k,10)
123 is affected monotonically by W (see Figure 2E) while

θ
(k,10)
1234 and θ

(k,10)
12345 are influenced in a nonlinear manner (see Figures 2G and

2I). Interestingly, θ
(k,10)
123 was less affected by W if there was a background

input h (data not shown), as was the case for the pairwise IG measure

θ
(k,10)
12 . This tendency was not obvious for the other IG measures θ

(k,10)
1234 and

θ
(k,10)
12345 . For all the IG measures investigated here, the values approach zero

when the order of LLM k increases. When a background input h is varied,
the IG measures stay very close to 0 if there is no correlated input W (see
Figures 2F, 2H, and 2J). However, when W > 0, the IG measures are more
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strongly influenced (data not shown). The range of modulation for W > 0
was approximately on the order of 0.1, almost 10 to 103 times larger than
when W = 0. The values approach zero when the order of LLM k increases,
suggesting that the IG measures calculated by higher-order LLM may be
more robust to interferences from a background input h.

In summary, the analysis shows that the IG measures for three- to
five-neuron interactions are affected by a correlated input W in a highly
nonlinear manner. The influence by a background input h was insignifi-
cantly small if the correlated input did not exist, but it increased significantly
when the correlated input was present.

3.4 The IG Measures for Six- to Ten-Neuron Interactions, (θ
(k,10)
123456,

θ
(k,10)
1234567, θ

(k,10)
12345678, θ

(k,10)
123456789, θ

(10,10)
12345678910). The IG measures with this many

neuronal interactions have not yet been used in data analysis. However, re-
cent developments in recording technology should allow the simultaneous
recording of a large number of neurons in the near future. Therefore, it is im-
portant to investigate how these IG measures are influenced by correlated
and background inputs. They are calculated as follows:

θ
(10,10)

123456 = log
p111111·0000 · p001111·0000

(
6
2

)
· p000011·0000

(
6
2

)
· p000000·0000

p011111·0000

(
6
1

)
· p000111·0000

(
6
3

)
· p000001·0000

(
6
1

) ,

(
Full LLM

)
(3.14)

θ
(k,10)
123456 = log

⎛
⎜⎜⎜⎜⎝

p111111·0 . . . 0︸ ︷︷ ︸
k−6

· ∗ . . . ∗︸ ︷︷ ︸
10−k

· p001111·0 . . . 0︸ ︷︷ ︸
k−6

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
6
2

)

p011111·0 . . . 0︸ ︷︷ ︸
k−6

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
6
1

)
· p000111·0 . . . 0︸ ︷︷ ︸

k−6

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
6
3

)

×
p000011·0 . . . 0︸ ︷︷ ︸

k−6

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
6
2

)
· p000000·0 . . . 0︸ ︷︷ ︸

k−6

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p000001·0 . . . 0︸ ︷︷ ︸
k−6

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
6
1

)

⎞
⎟⎟⎟⎟⎠ .

(
Partial LLM

)

(3.15)

θ
(10,10)

1234567 = log

⎛
⎝ p1111111·000 · p0011111·000

(
7
2

)

p0111111·000

(
7
1

)
· p0001111·000

(
7
3

)

× p0000111·000

(
7
3

)
· p0000001·000

(
7
1

)

p0000011·000

(
7
2

)
· p0000000·000

⎞
⎠ ,

(
Full LLM

)
(3.16)
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θ
(k,10)
1234567 = log

⎛
⎜⎜⎜⎜⎝

p1111111·0 . . . 0︸ ︷︷ ︸
k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

· p0011111·0 . . . 0︸ ︷︷ ︸
k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
7
2

)

p0111111·0 . . . 0︸ ︷︷ ︸
k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
7
1

)
· p0001111·0 . . . 0︸ ︷︷ ︸

k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
7
3

)

×
p0000111·0 . . . 0︸ ︷︷ ︸

k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
7
3

)
· p0000001·0 . . . 0︸ ︷︷ ︸

k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
7
1

)

p0000011·0 . . . 0︸ ︷︷ ︸
k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
7
2

)
· p0000000·0 . . . 0︸ ︷︷ ︸

k−7

· ∗ . . . ∗︸ ︷︷ ︸
10−k

⎞
⎟⎟⎟⎟⎠ ,

(
Partial LLM

)
(3.17)

θ
(10,10)

12345678 = log

⎛
⎝ p11111111·00 · p00111111·00

(
8
2

)
· p00001111·00

(
8
4

)

p01111111·00

(
8
1

)
· p00011111·00

(
8
3

)

× p00000011·00

(
8
2

)
· p00000000·00

p00000111·00

(
8
3

)
· p00000001·00

(
8
1

)
⎞
⎠ ,

(
Full LLM

)
(3.18)

θ
(k,10)

12345678 =

log

⎛
⎜⎜⎜⎜⎝

p11111111·0 . . . 0︸ ︷︷ ︸
k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

· p00111111·0 . . . 0︸ ︷︷ ︸
k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
8
2

)
· p00001111·0 . . . 0︸ ︷︷ ︸

k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
8
4

)

p01111111·0 . . . 0︸ ︷︷ ︸
k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
8
1

)
· p00011111·0 . . . 0︸ ︷︷ ︸

k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
8
3

)

×
p00000011·0 . . . 0︸ ︷︷ ︸

k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
8
2

)
· p00000000·0 . . . 0︸ ︷︷ ︸

k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

p00000111·0 . . . 0︸ ︷︷ ︸
k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
8
3

)
· p00000001·0 . . . 0︸ ︷︷ ︸

k−8

· ∗ . . . ∗︸ ︷︷ ︸
10−k

(
8
1

)

⎞
⎟⎟⎟⎟⎠ ,

(
Partial LLM

)
(3.19)

θ
(10,10)

123456789 = log

⎛
⎝ p111111111·0 · p001111111·0

(
9
2

)
· p000011111·0

(
9
4

)

p011111111·0

(
9
1

)
· p000111111·0

(
9
3

)
· p000001111·0

(
9
4

)

× p000000111·0

(
9
3

)
· p000000001·0

(
9
1

)

p000000011·0

(
9
2

)
· p000000000·0

⎞
⎠ ,

(
Full LLM

)
(3.20)
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θ
(9,10)

123456789 = log

⎛
⎝ p111111111·∗ · p001111111·∗

(
9
2

)
· p000011111·∗

(
9
4

)

p011111111·∗

(
9
1

)
· p000111111·∗

(
9
3

)
· p000001111·∗

(
9
4

)

× p000000111·∗

(
9
3

)
· p000000001·∗

(
9
1

)

p000000011·∗

(
9
2

)
· p000000000·∗

⎞
⎠ ,

(
Partial LLM

)
(3.21)

θ
(10,10)

12345678910 = log

⎛
⎝ p1111111111 · p0011111111

(
10
2

)
· p0000111111

(
10
4

)

p0111111111

(
10
1

)
· p0001111111

(
10
3

)
· p0000011111

(
10
5

)

× p0000001111

(
10
4

)
· p0000000011

(
10
2

)
· p0000000000

p0000000111

(
10
3

)
· p0000000001

(
10
1

)
⎞
⎠ ,

(
Full LLM

)
(3.22)

Note that the IG measure for a 9-neuron interaction θ
(k,10)
123456789 has only one

partially expanded LLM (k = 9) and the IG measure for a 10-neuron inter-
action θ

(10,10)

12345678910 has the full LLM (k = 10) only.

The analytical results for θ
(k,10)
123456 , θ (k,10)

1234567, θ (k,10)
12345678, θ (k,10)

123456789, and θ
(10,10)

12345678910
are shown in Figure 3. The general trend of dependency of these measures
on correlated and background inputs was similar to that of θ

(k,10)
1234 and

θ
(k,10)
12345 . When W = 0, all the measures are zero regardless of the existence of

a background input h (see Figures 3A, 3C, 3E, 3G, and 3I). However, when
W > 0, especially when W > 0.5 (= 5J), the IG measures deviated from zero
in a highly nonlinear manner. The values tended to approach zero when the
order of LLM k increased, although the trend was less obvious as compared
to IG measures involving three to seven neurons. When a background input
h is varied, the IG measures stay very close to zero if there is no correlated
input W (see Figures 3B, 3D, 3F, 3H, and 3J). When W > 0, the IG measures
are more strongly influenced (data not shown). The range of modulation
was almost 103- to 105-fold larger than when W = 0. When the order of
LLM k increased, the values became less variable.

In summary, this analysis shows that the IG measures for 6- to 10-neuron
interactions are affected by a correlated input W in a highly nonlinear
manner. The influence by a background input h was insignificantly small if
W = 0 but increased significantly for W > 0.

4 Simulation Study of IG Measures with Asymmetric Connections

Although the analytical relationship between the IG measures and net-
work parameters is useful, we had to apply a strong constraint of uniform
connectivity between neurons. We also had to use a small network size of
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10 neurons to obtain the analytical solutions. These constraints made it dif-
ficult to obtain further insights into a more general situation such as with
asymmetric connections. Therefore, we extended our investigation using
numerical computer simulation.

First, to demonstrate the accuracy of the simulation, we numerically
calculated the IG measures for a uniformly connected 10-neuron network
and compared them with the analytical results obtained in the previous
section. Second, we extended the connections from uniform to asymmetric.
We investigated how external inputs (correlated input W and background
input h) influenced the IG measures and how the network size affected their
relationship with network parameters. In addition, we investigated how
the magnitude of the asymmetry of connection weights influenced the IG
measures.

4.1 Comparison Between Computer Simulations and Analytical Re-
sults. We performed numerical simulations using ten uniformly connected
Ginzburg and Sompolinsky (1994) neurons. We computed the IG measures
from 1-neuron interaction (θ (k,10)

1 ) to 10-neuron interactions (θ (10,10)

12345678910)

with all possible LLM orders k, corresponding to Figures 2 and 3. We cal-
culated the IG measures by sampling a correlated input W from 0 to 50J
with an increment of 5J. We also calculated the IG measures by sampling a
background input h from 0 to 5J with an increment of 0.5J. At each value of
W and h, we performed 100 simulation trials where each trial consisted of
106 updates. The parameter m that controls the firing probability of a model
neuron in equation 2.24 was set to 1. The results are reported as the mean ±
SEM.

Figure 4 shows the representative examples in which we compare the
values of numerical simulations and the corresponding analytical results.
For clarity, we showed the results only for the single IG measure θ

(k,10)
1

(see Figures 4A and 4B), the pairwise IG measure θ
(k,10)
12 (see Figures 4C

and 4D), the 9-neuron IG measure θ
(k,10)
123456789 (see Figures 4E and 4F), and the

10-neuron IG measure θ
(10,10)

12345678910 (see Figures 4G and 4H). We also plotted
the results only for the lowest and highest LLM orders θ

(1,10)

1 ; and θ
(10,10)

1

for the single IG measure (see Figures 4A and 4B), θ
(2,10)

12 and θ
(10,10)

12 for
the pairwise IG measure (see Figures 4C and 4D), θ

(9,10)

123456789 and θ
(10,10)

123456789

for the 9-neuron IG measure (Figures 4E and 4F), and θ
(10,10)

12345678910 for the
10-neuron IG measure (see Figures 4G and 4H). Figure 4 shows that the
numerical simulations and analytical results strongly agree; all analytical
results are included within the mean ± SEM of the values obtained with
the numerical simulations. We also confirmed that the same relationship
holds true for all the IG measures that were not included in Figure 4 and
for all possible LLM orders. Taken together, these results demonstrate that
the numerical simulation reproduces the analytical results accurately and
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that they could be used for investigating the relationship between the IG
measures and network parameters in more general settings such as with
asymmetric connections.

4.2 Relationship Between the IG Measures and External Inputs for
Asymmetrically Connected Networks. In this section, we extended a uni-
formly connected neural network to an asymmetrically connected one.
We numerically calculated the IG measures for up to 10-neuronal inter-
actions with N = 10 and 1000 neurons. Asymmetric connections were set
as Ji j = 1/N + εi j at each simulation trial, where εi j was a random number
drawn from the normal distribution N

(
m, σ 2

)
with the mean m = 0 and

variance σ 2 = 1/N, respectively. Without losing generality, we calculated
the IG measures for a specific neuron group as follows. For the pairwise
IG measure θ

(k,N)

12 , we selected neurons 1 and 2 and set their connection
weights to J12 = 1/N + ε12 and J21 = 2

N − J12. In this way, the magnitude of
their total connections was kept constant (J12 + J21 = 2/N). We applied this

Figure 3: Relationship between the IG measures (θ (k,10)
123456 , θ

(k,10)
1234567, θ

(k,10)
12345678,

θ
(k,10)
123456789, θ

(10,10)

12345678910), a correlated input (W ), and a background input (h) for
a 10-neuron uniformly connected network. The network parameters are set
asJ = 1/10 and h0 = 0.5. W is modified in the range of [0, 50J] and h is modi-

fied in the range of [0, 5J]. (A) θ
(k,10)
123456 when a correlated input (W ) is varied in

the absence of a background input (h = 0). (B) θ
(k,10)
123456 when background input

(h) is varied in the absence of a correlated input (W = 0). θ
(6,10)

123456, θ
(7,10)

123456, θ
(8,10)

123456,
θ

(9,10)

123456, and θ
(10,10)

123456 are represented by a black solid line, a black dashed line, a

black dotted line, a black dash-dot line, and a gray solid line. (C) θ
(k,10)
1234567 when

a correlated input (W ) is varied in the absence of a background input (h = 0).

(D) θ
(k,10)
1234567 when a background input (h) is varied in the absence of a correlated

input (W = 0). θ
(7,10)

1234567, θ
(8,10)

1234567, θ
(9,10)

1234567, and θ
(10,10)

1234567 are represented by a black
solid line, a black dashed line, a black dotted line, and a black dash-dot line.
(E) θ

(k,10)
12345678 when a correlated input (W ) is varied in the absence of a background

input (h = 0). (F) θ
(k,10)
12345678 when a background input (h) is varied in the absence

of a correlated input (W = 0). θ
(8,10)

12345678, θ
(9,10)

12345678, and θ
(10,10)

12345678 are represented by

a black solid line, a black dashed line, and a black dotted line. (G) θ
(k,10)
123456789

when a correlated input (W ) is varied in the absence of a background input

(h = 0). (H) θ
(k,10)
123456789 when a background input (h) is varied in the absence of a

correlated input (W = 0). θ
(9,10)

123456789 and θ
(10,10)

123456789 are represented by a black solid
line and a black dashed line. (I) θ

(10,10)

12345678910 when a correlated input (W ) is varied
in the absence of a background input (h = 0). (J) θ

(10,10)

12345678910 when a background
input (h) is varied in the absence of a correlated input (W = 0). θ

(10,10)

12345678910 is
represented by a black solid line.
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constraint because we wanted to assess the robustness of the relationship
θ

(k,N)

12 ∼ (
J12 + J21

)
. The other connections were set following Ji j = 1/N + εi j.

Similarly, for the three-neuron IG measure θ
(k,N)

123 , we selected the neu-
rons 1, 2, and 3 and set their connection weights to (J12 = 1/N + ε12 and
J21 = 2/N − J12), (J23 = 1/N + ε23 and J32 = 2/N − J32), and (J31 = 1/N + ε31
and J13 = 2/N − J31). For clarity of the analysis, these constraints were ap-
plied to investigate the robustness of θ

(k,N)

123 . The other connections were set
following Ji j = 1/N + εi j. We used the same procedure for all the other IG
measures with four or more neuronal interactions. The influence of a com-
mon inputW was investigated in the range of [0, 50J]. Similarly, the influence
of a background input hi = h was investigated at 0 and 5J. As the theoreti-
cal calculation and simulation for uniform connections showed that the IG
measures were influenced by the common input W strongly (see Figures
2 to 4), more data points were sampled for W. Each simulation trial con-
sisted of 106 updates, and 100 trials were performed at each W and h value.
The parameter m that controls the firing probability of a model neuron in
equation 2.24 was set to 1. The results are presented as the mean ± SEM.

4.2.1 The IG Measures for Single and Pairwise Interactions, (θ
(k,N)

1 , θ (k,N)

12 ).

Figures 5A and 5B show how the single IG measure θ
(k,10)
1 is influenced by a

Figure 4: Comparison between a numerical simulation and an analytical so-
lution. The results of 100 simulation trials (mean ± SEM) are plotted against
the theoretical calculation in Figures 2 and 3. The network parameters are set
asJ = 1/10 and h0 = 0.5. W is modified in the range of [0, 50J], and h is modi-
fied in the range of [0, 5J]. The numerical simulations are represented by solid
lines with error bars. The analytical solutions are represented by gray lines.
(A) Comparison for the single IG measures θ

(1,10)

1 and θ
(10,10)

1 when correlated
input (W ) is varied in the absence of a background input (h = 0). (B) Compar-
ison for the single IG measures θ

(1,10)

1 and θ
(10,10)

1 when background input (h)

is varied in the absence of a correlated input (W = 0). (C) Comparison for the
pairwise IG measures θ

(1,10)

12 and θ
(10,10)

12 when correlated input (W ) is varied
in the absence of a background input (h = 0). (D) Comparison for the pair-
wise IG measures θ

(1,10)

12 and θ
(10,10)

12 when background input (h) is varied in the
absence of a correlated input (W = 0). (E) Comparison for the 9-neuron IG mea-
sures θ

(1,10)

123456789 and θ
(10,10)

123456789 when correlated input (W ) is varied in the absence
of a background input (h = 0). (F) Comparison for the 9-neuron IG measures
θ

(1,10)

123456789 and θ
(10,10)

123456789 when background input (h) is varied in the absence of
a correlated input (W = 0). (G) Comparison for the 10-neuron IG measures
θ

(1,10)

12345678910 and θ
(10,10)

12345678910 when correlated input (W ) is varied in the absence of
a background input (h = 0). (H) Comparison for the 10-neuron IG measures
θ

(1,10)

12345678910 and θ
(10,10)

12345678910 when background input (h) is varied in the absence of
a correlated input (W = 0).
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common inputW and a background input h, for an asymmetric network of 10
neurons. For clarity, we showed the results for the lowest and highest LLM
orders only (k = 1, dashed line; and k = 10, solid line), but we confirmed
that the IG measures with k = 2 to k = 9 reside between k = 1 and k = 10.
The simulation showed that θ

(1,10)

1 (dashed line, lowest LLM order) was
affected by both the common input and the background input. However,
θ

(10,10)

1 (solid line, highest LLM order) was robust against the common input
and was related to the background input only. Note the similarity between
the simulation results in Figure 5 and the analytical results for a uniformly
connected network in Figure 2. When the size of the network was increased
to N = 1000, the influence of a common input became significantly smaller
(see Figure 5C), even for θ

(1,1000)

1 (dashed line, lowest LLM order). Note
that the values of θ

(10,10)

1 and θ
(10,1000)

1 were more consistent than those of
θ

(1,10)

1 and θ
(1,1000)

1 , although their network size was 100 times different (see
Figures 5A–5D). Furthermore, we confirmed that the values of θ

(10,10)

1 and
θ

(10,1000)

1 were close to the values predicted from equation 3.1, even under
the influence of both the common input and the background input (data not
shown). This result suggests that θ

(1,10)

1 and θ
(10,1000)

1 , the single IG measure

Figure 5: Relationship between the IG measures (θ (k,N)

1 , θ (k,N)

12 ), a correlated input
(W ), and a background input (h) for an asymmetrically connected network. For
a 10-neuron network (N = 10), the network parameters are set asJ = 1/10 and
h0 = 0.5. For a 1000-neuron network (N = 1000), the network parameters are set
asJ = 1/1000 and h0 = 0.005. W is sampled from 0 to 50J, and h is sampled at 0
and 5J. The IG measures with the lowest LLM order (e.g., θ (1,10)

1 ) are represented
by a dashed line. The IG measures with the highest LLM order (e.g., θ

(10,10)

1 )

are represented by a solid line. (A) The single IG measures for a 10-neuron
network θ

(1,10)

1 and θ
(10,10)

1 when a correlated input (W ) is varied in the absence
of a background input (h = 0). (B) The single IG measures for a 10-neuron
network θ

(1,10)

1 and θ
(10,10)

1 when background input (h) is varied in the absence
of a correlated input (W = 0). (C) The single IG measures for a 1000-neuron
network θ

(1,1000)

1 and θ
(10,1000)

1 when a correlated input (W ) is varied in the absence
of a background input (h = 0). (D) The single IG measures for a 1000-neuron
network θ

(1,1000)

1 and θ
(10,1000)

1 when background input (h) is varied in the absence
of a correlated input (W = 0). (E) The pairwise IG measures for a 10-neuron
network θ

(2,10)

12 and θ
(10,10)

12 when a correlated input (W ) is varied in the absence
of a background input (h = 0). (F) The pairwise IG measures for a 10-neuron
network θ

(2,10)

12 and θ
(10,10)

12 when background input (h) is varied in the absence
of a correlated input (W = 0). (G) The pairwise IG measures for a 1000-neuron
network θ

(2,1000)

12 and θ
(10,1000)

12 when a correlated input (W ) is varied in the absence
of a background input (h = 0). (H) The pairwise IG measures for a 1000-neuron
network θ

(2,1000)

12 and θ
(10,1000)

12 when background input (h) is varied in the absence
of a correlated input (W = 0).
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with the highest LLM order in this study, was able to detect the background
input correctly even under the influence of the common input.

For the pairwise IG measure θ
(k,N)

12 , the results for an asymmetric net-
work of 10 neurons are shown in Figures 5E and 5F. The desired property
of the pairwise IG measure is to detect the two-neuron interaction cor-
rectly: θ12 ∼ J12 + J21 = 0.2 for N = 10. We observed that θ

(2,10)

12 (the measure
with the lowest LLM order) was strongly influenced by a common input
(see Figure 5E, dashed line), but the influence of a background input was
much weaker (see Figure 5F, dashed line). In contrast, the influence of ex-
ternal inputs to θ

(10,10)

12 (the measure with the highest LLM order) was much
weaker, and θ

(10,10)

12 was able to estimate the connection weight almost cor-
rectly (see Figures 5E and 5F, solid lines). It is also important to note the

similarity of θ
(k,10)
12 values to the corresponding analytical results for a uni-

form connection (see Figures 2C and 2D). When the size of the network
was increased to N = 1000, we observed a similar tendency (see Figures 5G
and 5H); θ

(10,1000)

12 (solid line) was more robust against the external inputs
than θ

(2,1000)

12 (dashed line). Also note that θ
(10,1000)

12 estimated the connection
weight almost correctly: θ

(10,1000)

12 ∼ J12 + J21 = 2 × 10−3.
In summary, the numerical simulation demonstrated that the single

IG measure θ
(10,N)

1 and the pairwise IG measure θ
(10,N)

12 (highest LLM or-
der) were able to detect the background input and the sum of connection
weights, for an asymmetrically connected network. We also found that the
influence of external inputs became less significant for a larger network.

4.2.2 The IG Measures for Three- to Ten-Neuron Interactions, (θ (k,N)

123 , θ
(k,N)

1234 ,
θ

(k,N)

12345 , θ
(k,N)

123456, θ
(k,N)

1234567, θ
(k,N)

12345678, θ
(k,N)

123456789, θ
(k,N)

12345678910). The influence of exter-
nal inputs to the IG measures with intermediate neural interactional levels,
θ

(k,N)

123 , θ
(k,N)

1234 , θ
(k,N)

12345, θ
(k,N)

123456, is summarized in Figure 6 and that with many
neural interactional levels, θ

(k,N)

1234567, θ
(k,N)

12345678, θ
(k,N)

123456789, θ
(k,N)

12345678910, is summa-
rized in Figure 7.

For the 3-neuron IG measure θ
(k,10)
123 with a 10-neuron network, θ

(3,10)

123
(the lowest LLM order) was strongly influenced by the common input (see
Figure 6A, dashed line) but the influence of the background input was
much weaker (see Figure 6B, dashed line). θ

(10,10)

123 (the highest LLM order)
was more robust for both common and background inputs (see Figures 6A

and 6B, solid lines). Also, the θ
(k,10)
123 values are similar to the corresponding

analytical values in Figures 2E and 2F. When the size of the network was

increased to N = 1000, the influence of external inputs on θ
(k,1000)
123 almost

disappeared and the values of θ
(k,1000)
123 stayed around zero (see Figures 6C

and 6D). This result suggests that the 3-neuron IG measure θ
(k,N)

123 for an
asymmetrically connected network is robust against external inputs and
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that its value is likely to be found around zero if the size of the network is
sufficiently large.

The results for the 4-neuron IG measure θ
(k,10)
1234 with a 10-neuron network

are summarized in Figures 6E and 6F. θ
(4,10)

1234 (the lowest LLM order) was
strongly influenced by the common input (see Figure 6E, dashed line), but
the influence of the background input was much weaker (see Figure 6F,
dashed line). The influence of both external inputs θ

(10,10)

1234 (the highest LLM

order) was negligibly small (see Figures 6E and 6F, solid lines). The θ
(k,10)
1234

values were similar to the corresponding analytical values in Figures 2G
and 2H. When the size of the network was increased to N = 1000, the
influence of external inputs on θ

(k,1000)
1234 disappeared (see Figures 6G and

6H). These results suggest that the nonlinear relationship between θ
(k,N)

1234
and the external inputs observed for a small asymmetric network is likely
to disappear for a large asymmetric network.

The results for the 5-neuron IG measure θ
(k,10)
12345 with a 10-neuron network

are summarized in Figures 6I and 6J. We found that the results were similar

to the 4-neuron IG measure θ
(k,10)
1234 . Mainly, θ

(5,10)

12345 (the lowest LLM order)
was strongly influenced by the common input (see Figure 6I, dashed line),
but the influence of the background input was much weaker (see Figure 6J,
dashed line). The influence of both external inputs to θ

(10,10)

12345 (the highest
LLM order) was negligibly small (see Figures 6I and 6J, solid lines). The

θ
(k,10)
12345 values were similar to the corresponding analytical values in Figures

2I and 2J. For a network of N = 1000, the influence of both external inputs

on θ
(k,1000)
12345 disappeared (see Figures 6K and 6L). These results suggest that

the nonlinear relationship between θ
(k,N)

12345,
and the external inputs observed

for a small asymmetric network is likely to disappear for a large asymmetric
network.

The results for the 6-neuron IG measure θ
(k,10)
123456 with a 10-neuron net-

work are summarized in Figures 6M and 6N and those for θ
(k,1000)
123456 with a

1000-neuron network in Figures 6O and 6P. As with the other intermediate
IG measures, we found that θ

(6,10)

123456 (the lowest LLM order) was strongly
influenced by the common input (see Figure 6M, dashed line), but the in-
fluence of the background input was much weaker (see Figure 6N, dashed
line). The influence of both external inputs to θ

(10,10)

123456 (highest LLM order)

was negligibly small (see Figures 6M and 6N, solid lines). The θ
(k,10)
123456 values

were similar to the corresponding analytical values in Figures 3A and 3B.

For a network N = 1000, the influence of both external inputs on θ
(k,1000)
123456

disappeared (see Figures 6O and 6P). These results suggest that the nonlin-
ear relationship between θ

(k,N)

123456 and the external inputs observed for a small
asymmetric network is likely to disappear for a large asymmetric network.
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In summary, the IG measures with intermediate neural interactional lev-
els θ

(k,N)

123 , θ (k,N)

1234 , θ (k,N)

12345, θ (k,N)

123456, for a small asymmetrically connected network
(N = 10) are strongly influenced by a common input. This finding was sim-
ilar to the analytical solution for a uniformly connected network. However,
when the size of the network becomes large (e.g., N = 1000), the influence
by the external inputs becomes negligibly small, and these IG measures are
likely to fluctuate around zero.

The influence of external inputs to the IG measures with many neural
interactional levels θ

(k,N)

1234567, θ
(k,N)

12345678, θ
(k,N)

123456789, θ
(k,N)

12345678910, is summarized in
Figure 7. In short, the results were very similar to those found for the
IG measures with intermediate interaction levels. The IG measures with
the lowest LLM orders (θ (7,10)

1234567, θ (8,10)

12345678, θ (9,10)

123456789, θ (10,10)

12345678910) were strongly
influenced by a common input (see the dashed line in Figures 7A, 7E, and 7I
and the solid line in Figure 7M), but the influence of a background input was
negligible (see the dashed line in Figures 7A, 7E, and 7I and the solid line
in Figure 7M). The influence of both external inputs to the highest-order IG
measures (θ (10,10)

1234567, θ
(10,10)

12345678, θ
(10,10)

123456789) was negligibly small (see Figures 7A,
7B, 7E, 7F, 7I, and 7J, solid lines). When the size of a network was increased
to N = 1000, the influence of both external inputs on the IG measures
disappeared (see Figures 7C, 7D, 7G, 7H, 7K, 7L, 7O, and 7P). These results

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00633&iName=master.img-005.jpg&w=311&h=257
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suggest that the nonlinear relationship between the IG measures with many
neuronal interactions, θ (k,N)

1234567, θ (k,N)

12345678, θ (k,N)

123456789, θ (k,N)

12345678910, and the external
inputs observed for a small asymmetric network is likely to disappear for
a large asymmetric network.

Figure 6: Relationship between the IG measures (θ (k,N)

123 , θ
(k,N)

1234 , θ
(k,N)

12345 , θ
(k,N)

123456),
a correlated input (W ), and a background input (h) for an asymmetrically
connected network. For a 10-neuron network (N = 10), the network parameters
are set asJ = 1/10 and h0 = 0.5. For a 1000-neuron network (N = 1000), the
network parameters are set as J = 1/1000 and h0 = 0.005. W is sampled from 0
to 50J, and h is sampled at 0 and 5J. The IG measures with the lowest LLM order
(e.g., θ (3,10)

123 ) are represented by a dashed line. The IG measures with the highest
LLM order (e.g., θ

(10,10)

123 ) are represented by a solid line. (A) The 3-neuron IG
measures for a 10-neuron network θ

(3,10)

123 and θ
(10,10)

123 when a correlated input
(W ) is varied in the absence of a background input (h = 0). (B) The 3-neuron IG
measures for a 10-neuron network θ

(3,10)

123 and θ
(10,10)

123 when background input (h)

is varied in the absence of a correlated input (W = 0). (C) The 3-neuron IG mea-
sures for a 1000-neuron network θ

(3,1000)

123 and θ
(10,1000)

123 when a correlated input
(W ) is varied in the absence of a background input (h = 0). (D) The 3-neuron
IG measures for a 1000-neuron network θ

(3,1000)

123 and θ
(10,1000)

123 when background
input (h) is varied in the absence of a correlated input (W = 0). (E) The 4-neuron
IG measures for a 10-neuron network θ

(4,10)

1234 and θ
(10,10)

1234 when a correlated input
(W ) is varied in the absence of a background input (h = 0). (F) The 4-neuron IG
measures for a 10-neuron network θ

(4,10)

1234 and θ
(10,10)

1234 when background input (h)

is varied in the absence of a correlated input (W = 0). (G) The 4-neuron IG mea-
sures for a 1000-neuron network θ

(4,1000)

1234 and θ
(10,1000)

1234 when a correlated input
(W ) is varied in the absence of a background input (h = 0). (H) The 4-neuron
IG measures for a 1000-neuron network θ

(4,1000)

1234 and θ
(10,1000)

1234 when background
input (h) is varied in the absence of a correlated input (W = 0). (I) The 5-neuron
IG measures for a 10-neuron network θ

(5,10)

12345 and θ
(10,10)

12345 when a correlated input
(W ) is varied in the absence of a background input (h = 0). (J) The 5-neuron IG
measures for a 10-neuron network θ

(5,10)

12345 and θ
(10,10)

12345 when background input
(h) is varied in the absence of a correlated input (W = 0). (K) The 5-neuron
IG measures for a 1000-neuron neuron network θ

(5,1000)

12345 and θ
(10,1000)

12345 when a
correlated input (W ) is varied in the absence of a background input (h = 0). (L)
The 5-neuron IG measures for a 1000-neuron network θ

(5,1000)

12345 and θ
(10,1000)

12345 when
background input (h) is varied in the absence of a correlated input (W = 0).
(M) The 6-neuron IG measures for a 10-neuron network θ

(6,10)

123456 and θ
(10,10)

123456 when
a correlated input (W ) is varied in the absence of a background input (h = 0).
(N) The 6-neuron IG measures for a 10-neuron network θ

(6,10)

123456 and θ
(10,10)

123456 when
background input (h) is varied in the absence of a correlated input (W = 0). (O)
The 6-neuron IG measures for a 1000-neuron network θ

(6,1000)

123456 and θ
(10,1000)

123456 when
a correlated input (W ) is varied in the absence of a background input (h = 0). (P)
The 6-neuron IG measures for a 1000-neuron network θ

(6,1000)

123456 and θ
(10,1000)

123456 when
background input (h) is varied in the absence of a correlated input (W = 0).
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In summary, the numerical simulation demonstrated that if the size of
network is sufficiently large (e.g., N = 1000), the influence of common and
background inputs on the IG measures with three or more neuronal inter-
actions becomes negligible even for an asymmetrically connected network.
For the simulations in this section, we used Ji j = 1/N + εi j, where εi j is a
random number drawn from the normal distribution N

(
m, σ 2

)
with the

mean m = 0 and variance σ 2 = 1/N. These results suggest that the single
and pairwise IG measures provide sufficient information about the network
parameters as long as the asymmetry of connections is moderate.

4.3 Relationship Between the IG Measures and Asymmetry of Con-
nections. In this section, we investigate whether the IG measures are influ-
enced by higher asymmetry of connections.

To modify the level of asymmetry of connections, we introduced a pa-
rameter λ; asymmetric connections were set as Ji j = 1/N + λεi j where εi j

is a random number drawn from the normal distribution N
(
m, σ 2

)
with

the mean m = 0 and variance σ 2 = 1/N, respectively, and λ is an integer
between 1 and 5. Note that λ = 1 corresponds to the connection setting
in the previous section. Similar to the procedure in section 4.2, without

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00633&iName=master.img-006.jpg&w=311&h=264
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losing generality, we calculated the IG measures for a specific neuron
group as follows. For the pairwise IG measure θ

(k,N)

12 , we selected neu-
rons 1 and 2 and set their connection weights to J12 = 1/N + λε12 and

Figure 7: Relationship between the IG measures (θ (k,N)

1234567, θ
(k,N)

12345678, θ
(k,N)

123456789,
θ

(k,N)

1234567890), a correlated input (W ), and a background input (h) for an asym-
metrically connected network. For a 10-neuron network (N = 10), the network
parameters are set asJ = 1/10 and h0 = 0.5. For a 1000-neuron network (N =
1000), the network parameters are set asJ = 1/1000 and h0 = 0.005. W is sam-
pled from 0 to 50J and h is sampled at 0 and 5J. The IG measures with the lowest
LLM order (e.g., θ (7,10)

1234567) are represented by a dashed line. The IG measures with
the highest LLM order (e.g., θ

(10,10)

1234567) are represented by a solid line. (A) The
7-neuron IG measures for a 10-neuron network θ

(7,10)

1234567 and θ
(10,10)

1234567 when a corre-
lated input (W ) is varied in the absence of a background input (h = 0). (B) The
7-neuron IG measures for a 10-neuron network θ

(7,10)

1234567 and θ
(10,10)

1234567 when back-
ground input (h) is varied in the absence of a correlated input (W = 0). (C) The
7-neuron IG measures for a 1000-neuron network θ

(7,1000)

1234567 and θ
(10,1000)

1234567 when a
correlated input (W ) is varied in the absence of a background input (h = 0).
(D) The 7-neuron IG measures for a 1000-neuron network θ

(7,1000)

1234567 and θ
(10,1000)

1234567
when background input (h) is varied in the absence of a correlated input
(W = 0). (E) The 8-neuron IG measures for a 10-neuron network θ

(8,10)

12345678 and
θ

(10,10)

12345678 when a correlated input (W ) is varied in the absence of a background in-
put (h = 0). (F) The 8-neuron IG measures for a 10-neuron network θ

(8,10)

12345678 and
θ

(10,10)

12345678 when background input (h) is varied in the absence of a correlated input
(W = 0). (G) The 8-neuron IG measures for a 1000-neuron network θ

(8,1000)

12345678 and
θ

(10,1000)

12345678 when a correlated input (W ) is varied in the absence of a background
input (h = 0). (H) The 8-neuron IG measures for a 1000-neuron network θ

(8,1000)

12345678

and θ
(10,1000)

12345678 when background input (h) is varied in the absence of a correlated
input (W = 0). (I) The 9-neuron IG measures for a 10-neuron network θ

(9,10)

123456789

and θ
(10,10)

123456789 when a correlated input (W ) is varied in the absence of a back-
ground input (h = 0). (J) The 9-neuron IG measures for a 10-neuron network
θ

(9,10)

123456789 and θ
(10,10)

123456789 when background input (h) is varied in the absence of a
correlated input (W = 0). (K) The 9-neuron IG measures for a 1000-neuron net-
work θ

(9,1000)

123456789 and θ
(10,1000)

123456789 when a correlated input (W ) is varied in the absence
of a background input (h = 0). (L) The 9-neuron IG measures for a 1000-neuron
neuron network θ

(9,1000)

123456789 and θ
(10,1000)

123456789 when background input (h) is varied in
the absence of a correlated input (W = 0). (M) The 10-neuron IG measure for
a 10-neuron network θ

(10,10)

12345678910 when a correlated input (W ) is varied in the
absence of a background input (h = 0). (N) The 10-neuron IG measure for a 10-
neuron network θ

(10,10)

12345678910 when background input (h) is varied in the absence
of a correlated input (W = 0). (O) The 10-neuron IG measure for a 1000-neuron
network θ

(10,1000)

12345678910 when a correlated input (W ) is varied in the absence of a
background input (h = 0). (P) The 10-neuron IG measure for a 1000-neuron
network θ

(10,1000)

12345678910 when background input (h) is varied in the absence of a
correlated input (W = 0).
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J21 = 2
N − J12. In this way, the asymmetry of connections between neurons

1 and 2 was controlled by the parameter λ, but the magnitude of their
total connections was kept constant (J12 + J21 = 2/N). The other connec-
tions were set following Ji j = 1/N + λεi j. Similarly, for the three-neuron

IG measure θ
(k,N)

123 , we selected neurons 1, 2, and 3 and set their connec-
tion weights to (J12 = 1/N + λε12 and J21 = 2/N − J12), (J23 = 1/N + λε23 and
J32 = 2/N − J32), and (J31 = 1/N + λε31 and J13 = 2/N − J31). The other con-
nections were set followingJi j = 1/N + λεi j. We used the same procedure
for all the other IG measures with four or more neuronal interactions. We
set N = 1000 because we are interested in the behavior of networks of bi-
ologically realistic sizes. To investigate the behavior under the influence of
both common and background inputs, we used the magnitude of the com-
mon input as W = 10J = 0.01 and the magnitude of the background input
as h = 5J = 0.005. The parameter m controlling the firing probability of a
model neuron in equation 2.24 was set to 1. For each λ value, we performed
100 simulation trials where each trial consisted of 106 updates. For clarity,
we show the results for the lowest and highest LLM orders only—for exam-
ple, θ (1,1000)

1 and θ
(10,1000)

1 for the single IG measure and θ
(2,1000)

12 and θ
(10,1000)

12
for the pairwise IG measure. However, we confirmed that the IG measures
for all other LLM orders fell between the IG measures with the lowest and
highest LLM orders. The results are reported as the mean ± SEM.

Figure 8 shows how the IG measures are influenced by the level of
asymmetry of connections. The figure is organized in ascending order; the

result for θ
(k,1000)
1 is in Figure 8A, and the result for θ

(10,1000)

12345678910 is in Figure
8J. Solid and gray lines represent the results for the IG measures with
the lowest and highest LLM orders, respectively. We found that all the IG
measures were robust against the change of asymmetry of connections in
the range from λ = 1 to λ = 5 (see Figures 8A–8J). We also found that the
IG measures with the highest LLM order provided the best result; for the
single IG measure, θ (10,1000)

1 fluctuated between −2 and −1.8 (see Figure 8A,

gray line). According to equation 3.1, a predicted value of θ
(k,1000)
1 is −1.99.

Figure 8A shows that θ
(10,1000)

1 has a strong agreement with the theoretical
prediction, even under a strong asymmetry of connections. Similarly, for
the pairwise IG measure, θ

(10,1000)

12 fluctuated around 2 × 10−3 (see Figure
8B, gray line). According to equation 3.4, the predicted value of θ

(10,1000)

12 is
2 × 10−3, which was exactly the value we found in Figure 8B. For the IG
measures with three or more neuronal interactions, the IG measures with
the highest LLM order (θ (10,1000)

123 to θ
(10,1000)

12345678910) fluctuated around zero.
In summary, the main findings in this section are that all the IG mea-

sures are robust against the increased asymmetry of connection and that the
IG measures with the highest LLM order provide the best results because
they have a strong agreement with the theoretical predictions. These re-
sults suggest that the IG measures provide useful insights into the network
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parameters, even for strongly asymmetric connections. The single IG mea-
sure θ

(k,N)

1 is linearly related to a background input, and the pairwise IG
measure θ

(k,N)

12 is linearly related to the sum of connection weights. Further-
more, the fact that the IG measures with three or more neuronal interactions
fluctuates around zero indicates that the single and pairwise IG measures
contain the majority of information for the asymmetric network investi-
gated in this letter.

5 Discussion

In this study, we investigated the influence of external inputs (a correlated
input and an uncorrelated background input) and the asymmetry of con-
nections on the IG measures beyond pairwise interactions. Our goal was
two-fold. First, we aimed at finding the analytical relationships between
the IG measures for up to 10-neuronal interactions and external inputs. For
mathematical clarity, we investigated the dynamics of a network of 10 uni-
formly connected binary model neurons. By investigating the relationships
in the equilibrium limit, we obtained the explicit relationship between the
IG measures and the strength of correlated input W and the background
input h. We confirmed that the single and pairwise IG measures were good
estimators of the background input and the sum of connection weights,
respectively. In contrast, for the IG measures with three or more neuronal
interactions, the influence of a correlated input was stronger than a back-
ground input, and it was highly nonlinear. Second, we aimed at extending
the findings for a small, uniformly connected network to an asymmetrically
connected network. By numerical simulation, we found that the influence
of external inputs, which was evident for a small-sized asymmetric net-
work, became much weaker for a larger network (e.g., 1000 neurons). We
also found that all the IG measures from 1-neuron to 10-neuron interactions
were robust against the increased asymmetry of connections and that the
IG measures with the highest LLM order provided the best result. Taken
together, this investigation demonstrated that the single and pairwise IG
measures were good estimators of a background input and of the sum of
connection weights, even under a strong asymmetry of connections. Our
study also showed that the IG measures with three or more neuronal inter-
actions were not influenced by the network parameters if a network was
sufficiently large. All of these findings support the usefulness of the IG
approach and should provide further insights when the IG method is used
for neural data analysis.

One of the important claims of the information-geometric approach is
that the single- and pairwise-IG measures are good estimators of the back-
ground input and the sum of connection weights, respectively. In other
words, the coefficients in the log-linear model can be related to the net-
work parameters in the model. From a neuroscientific point of view, the
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relationship between the pairwise IG measure and the connection weights
would be particularly interesting (Schneidman, Berry, Segev, & Bialek, 2006;
Tang et al., 2008; Tyler et al., 2012). However, we have to be careful as to
whether the coefficients in the log-linear model actually reflect the real
neuronal interaction strength. We also need to be cautious about whether
the obtained complicated analytical relationship between the IG measures
and external inputs is due to an oversimplified or inappropriate neural
network model. We have previously investigated these questions using the
Hodgkin-Huxley model (Hodgkin & Huxley, 1952). Using the NEURON
simulator, we constructed a small network of cortical neurons in which
each neuron was driven by an uncorrelated noisy input. The neurons were
asymmetrically connected by conductance-based AMPA receptors (Hines &
Carnevale, 1997; Lipa, Tatsuno, Amari, McNaughton, & Fellous, 2006; Lipa,
Tatsuno, McNaughton, & Fellous, 2007). We were able to show that the pair-
wise IG measure was linearly related to the sum of the AMPA receptor’s
synaptic conductances between the neurons. In addition, we also found that
the single IG measure was linearly related to the mean amplitude of noisy
synaptic inputs. Recently, we have also conducted numerical simulations
using a spiking neuron model (Izhikevich, 2003). One thousand cortical
pyramidal neurons and 250 inhibitory neurons were connected and driven
by oscillatory external inputs. We found again that the pairwise IG measure
was linearly related to the sum of the connection weights (Nie, Fellous, &
Tatsuno, 2014). These studies, which were conducted using more realistic

Figure 8: Relationship between the IG measures and asymmetry of connections.
An integer parameter λ that controls the level of asymmetry of connections is
modified between 1 and 5. The number of neurons is set to N = 1000, a common
input is set to W = 10J = 0.01, and the magnitude of a background input is set
to h = 5J = 0.005. The IG measures with the lowest LLM order (e.g., θ

(1,1000)

1 )

are represented by a black line. The IG measures with the highest LLM order
(e.g., θ (10,1000)

1 ) are represented by a gray line. (A) The single IG measures θ
(1,1000)

1

and θ
(10,1000)

1 when the asymmetry parameter (λ) is varied. (B) The pairwise IG
measures θ

(2,1000)

12 and θ
(10,1000)

12 when the asymmetry parameter (λ) is varied.
(C) The 3-neuron IG measures θ

(3,1000)

123 and θ
(10,1000)

123 when the asymmetry pa-
rameter (λ) is varied. (D) The 4-neuron IG measures θ

(4,1000)

1234 and θ
(10,1000)

1234 when
the asymmetry parameter (λ) is varied. (E) The 5-neuron IG measures θ

(5,1000)

12345

and θ
(10,1000)

12345 when the asymmetry parameter (λ) is varied. (F) The 6-neuron
IG measures θ

(6,1000)

123456 and θ
(10,1000)

123456 when the asymmetry parameter (λ) is varied.
(G) The 7-neuron IG measures θ

(7,1000)

1234567 and θ
(10,1000)

1234567 when the asymmetry pa-
rameter (λ) is varied. (H) The 8-neuron IG measures θ

(8,1000)

12345678 and θ
(10,1000)

12345678 when
the asymmetry parameter (λ) is varied. (I) The 9-neuron IG measures θ

(9,1000)

123456789

and θ
(10,1000)

123456789 when the asymmetry parameter (λ) is varied. (J) The 10-neuron IG
measure θ

(10,1000)

12345678910 when the asymmetry parameter (λ) is varied.
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neuron models and synaptic connections, suggested that the coefficients
in the log-linear model may be able to extract information about the real
neuronal interaction strength. However, further investigation is necessary
to clarify the relationship.

It is also important to note that the IG measures in this study are based
on the probability of spikes counts within the same (zero-lag) time bins. The
pairwise IG measure in the current form can estimate the sum of two con-
nections as θ

(k,N)

i j ∼ (Ji j + J ji) but not the directed interactions. One possible
extension is to use the time-lagged IG measures. We have previously per-
formed a preliminary study with directed connections and demonstrated
that the pairwise IG measure was able to detect directed interactions (Tat-
suno & Okada, 2004). Another study using a standard cross-correlogram
also suggested that the effect of a directed coupling could be detected as
a short latency peak or trough (Bartho et al., 2004). As the IG measure is
more directly related to the connection strength than to other correlation
measures such as correlation coefficient, more systematic investigation on
the time-lagged IG measures should be performed in the future.

In addition, neural firing exhibits nonstationary changes in real elec-
trophysiological experiments. The extension of our research to a time-
dependent domain would be a necessary step for the analysis of real neural
data (Shimazaki et al., 2012). Toward this end, we have recently investigated
the property of IG measures under oscillatory inputs and found that the
pairwise IG measure could estimate neural interactions (Nie et al., 2014).
Finally, the proposed IG measures rely on the successful binary represen-
tation by binning spike trains. As previously discussed in Nie and Tatsuno
(2012), the problem of binning needs to be treated with caution.

Despite these limitations, our study is the first effort to provide an an-
alytical relationship between the IG measures involving up to 10 neuronal
interactions and external inputs for a uniformly connected small network.
It also demonstrates numerically that the IG measures are robust against
the influence of external inputs and the asymmetry of connection weights if
the size of the network is sufficiently large. These findings further demon-
strate that the single and pairwise IG measures are robust estimators of
a background input and the sum of the connection weights. We believe
that this study provides useful information for the future use of IG mea-
sures. We also hope that the development of theoretical analyses, including
information-geometric approaches, could lead to further insights into neu-
ral information processing.

Appendix: The Equation of the First-Order Marginal x1
for a Ten-Neuron System

For a 10-neuron system, we solved 21 equations for 21 marginal and coinci-
dent firing variables. Below is an equation for the first-order marginal 〈x1〉.
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The equation corresponds to equation 2.28 for a two-neuron system. Equa-
tions for other marginal and coincident firings can be written in a similar
manner.

〈x1〉 = 〈x0x1x2x3x4x5x6x7x8x9〉
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