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Abstract

Rodent spatial navigation requires the dynamic evaluation of multiple sources of information,
including visual cues, self-motion signals and reward signals. The nature of the evaluation, its
dynamics and the relative weighting of the multiple information streams are largely unknown
and have generated many hypotheses in the field of robotics. We use the framework of the
traveling salesperson problem (TSP) to study how this evaluation may be achieved. The TSP
is a classical artificial intelligence NP-hard problem that requires an agent to visit a fixed set of
locations once, minimizing the total distance traveled. We show that after a few trials, rats
converge on a short route between rewarded food cups. We propose that this route emerges
from a series of local decisions that are derived from weighing information embedded in the
context of the task. We study the relative weighting of spatial and reward information and
establish that, in the conditions of this experiment, when the contingencies are not in conflict,
rats choose the spatial or reward optimal solution. There was a trend toward a preference for
space when the contingencies were in conflict. We also show that the spatial decision about
which cup to go to next is biased by the orientation of the animal. Reward contingencies are
also shown to significantly and dynamically modulate the decision-making process. This
paradigm will allow for further neurophysiological studies aimed at understanding the
synergistic role of brain areas involved in planning, reward processing and spatial navigation.
These insights will in turn suggest new neural-like architectures for the control of mobile

autonomous robots.

Introduction

The best way to go from point A to point B is on a straight line.
What is the best way to go through N points? This question is
the basis of the classic traveling salesman/salesperson problem
(TSP), in which an agent has to go through N different cities
using the shortest path without ever revisiting any city. This
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problem is NP-hard, in that there is no known algorithm that
can efficiently solve the problem in polynomial time. There
is not even a proof that such an algorithm exists. Decades of
research have produced algorithms and heuristics that have
achieved trade-offs between the variables involved in the
problem (Gutin and Punnen 2002, Applegate 2006). Many
of them have contributed to significant advances in theories of
complexity and decision-making. Some of these approaches
have been implemented in the context of autonomous robotics

© 2011 IOP Publishing Ltd  Printed in the UK


http://dx.doi.org/10.1088/1741-2560/8/6/065010
mailto:fellous@email.arizona.edu
http://stacks.iop.org/JNE/8/065010

J. Neural Eng. 8 (2011) 065010

L W de Jong et al

systems, efficient spatial navigation (Cardema et al 2004,
Blum ef al 2007) and in industrial process scheduling (Bagchi
et al 2006). Little is known, however, about the way the brain
solves problems of this sort. With the recent advances made
in understanding the neural substrates of decision-making and
spatial navigation in humans, monkeys and rats, the time is
ripe to revisit the issue from a neuroscience point of view.

Humans can find near-optimal solutions to computer-
based versions of the TSP, but they typically do this intuitively,
using perceptual information, and there is a large variability of
strategy from individual to individual (Tenbrink and Wiener
2009). Gestalt factors such as aesthetics or symmetry of
the city layout enter into play and correlate significantly
with the mathematical optimality of the routes (MacGregor
et al 2004, Vickers et al 2006). These findings indicate
that spatial optimization may be a very basic feature of the
nervous system, occurring as early as the sensory areas. It
is still difficult to study the neural basis of the TSP moment-
to-moment decision-making process in humans, as it would
involve invasive recording procedures available only in rare
cases. An animal model of the TSP in which the neural
substrate of spatial representations can be accessed would be
a significant advance in the field.

There have been many behavioral studies of spatial
navigation in bees, ants and other insects (Marshall et al
2009). Most have shown that their collective behavior yields
near-optimal and highly adaptable navigation. Studies of
optimal spatial navigation in vertebrates have been scarcer,
probably because of large individual differences in strategies
and cost functions. Chimpanzees are able to find near-
optimal TSP solutions with 18 baited locations (Menzel 1973).
Interestingly, when the type of bait included preferred and
non-preferred foods, animals changed their route to primarily
include preferred food, clearly demonstrating that the reward
value, not just location, was important to the animals. Similar
conclusions were reached with baboons (Noser and Byrne
2010). Studies in vervet monkeys showed that path planning
involved the consideration of at least three upcoming spatial
targets, demonstrating that their strategy was not simply to
go to the next closest location (Gallistel and Cramer 1996,
Cramer and Gallistel 1997). Similarly, in a perceptual version
of the task, macaques have been shown to optimize their
eye movements to minimize distance between visual targets
(Desrochers et al 2010). The ability to spatially ‘think ahead’
may be absent in some species such as pigeons which tend to
use the nearest-neighbor strategy (Gibson et al 2007, Miyata
and Fujita 2010). In a seminal study, rats were required to
navigate through six spatial locations in a small arena (Bures
et al 1992). After ten trials, the animals adopted a near-
optimal route. While reminiscent of the TSP, this task differed
in several significant ways: (1) reward was not given until
the sixth city had been visited; (2) most city configurations
were symmetrically positioned, and their maximum distance
was small (on the order of 20 cm), not requiring much effort;
and (3) animals were given the same city configuration for ten
trials each day over six days, which clearly engaged long-term
memory components that are not typically considered relevant
to the decision-making processes involved in the TSP.

Spatial navigation in the rodent relies on a well-known set
of brain structures, including the hippocampus and entorhinal
cortex (Andersen et al 2007, Mizumori 2008). A long history
of research has shown that these structures contain a complex
set of neurons that are sensitive to head orientation, visual
cues, spatial context, spatial location and task demands. These
structures, together with cortical structures such as the parietal
and the prefrontal cortices, compute the correct trajectory
required to reach a target goal (Ainge et al 2007, Hok et al
2007). In addition, there is some evidence that the firing
of these cells may be modulated by the location and/or
availability of rewards (Dupret et al 2010). There is also
evidence that the firing fields of these cells are modulated
by dopaminergic projections from the ventral tegmental area
(VTA), abrain region known to process rewards (Schultz 2010,
Martig and Mizumori 2011). Little, if anything, is known
about the manner in which these various brain areas cooperate
to compute a near-optimal route.

We propose a new rodent task reminiscent of the TSP. We
show that rats can naturally find short routes after a few trials
within a single session. We show that their spatial navigation
decisions depend on both spatial and reward cues. In the spatial
domain, their decision depends on distance and orientation.
In the reward domain, they are sensitive to the magnitude of
rewards. We also show that they dynamically replan their route
to ignore locations that have unexpectedly lost their rewarding
value.

Methods

Animals

Data were obtained from nine Brown Norway—Fisher 344
hybrid rats approximately 8—14 months old. All rats were kept
in separate cages in the same colony room operating under a
reverse 12:12 h light cycle. Experiments were performed
during the dark phase of this cycle. Upon arrival, rats were
handled for 30 min per day for four days while being kept on
free food to determine a baseline weight. After four days, the
rats were exposed to the experimental room for 30 min per
day while being food deprived. Once they reached 85% of
their baseline weight, rats were pretrained for 30-45 min per
day to exit a starting box and eat food pellets from small cups
positioned on an open field arena. Pretraining lasted up to two
weeks. Rats were always run on the orientation and distance
versus reward experiments, where they were only allowed
to visit one set of cups, before the fixed-N or variable-N
experiments where they were allowed to visit multiple reward
locations.

Behavioral apparatus

The open field arena was a round black table 152 cm in
diameter with a 33 cm high wall surrounding the circumference
(figure 1(A)). The feeder cups, created from plastic weighing
boats, were 4 x 4 cm? wide and elevated 3 cm so that the rats
could not see their contents unless they were very close. The
start box was designed to control orientation. The box was
black, 12 x 20 cm? wide and 28 cm tall and was elevated by
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Figure 1. Rats find near short solutions to the ‘fixed-N’ TSP. (A) Cartoon illustration of the five-city TSP configuration for trials T1 and
T10. (B) Average optimality ratio for paths with no revisits across rats and configurations. Optimality is taken as the ratio of the actual path
to the shortest straight-line path possible to visit all the target locations. The ‘n’ value corresponds to the number of configurations summed
across rats. (C) Average number of revisits per trial for the five-city configurations. There is no significant difference (p = 0.06) between the
number of revisits on the first and last trials. A total of 126 configurations were tested. (D) Top: theoretical distribution of optimality ratios
of all possible straight-line routes for the 24 five-city configurations used in our experiments. Bottom: distribution of optimality ratios for
routes chosen by rats for the last three trials of the same configurations as in (B) and (C). The n corresponds to the number of paths.

1 cm to protect the rats’ tails. It included a vertical guillotine-
style door. With the door removed, a rat could exit the box
through an 8 x 6 cm? cutout in the front of the box. The cutout
was small enough for a rat to exit by walking straight out. Rats
wore a reflective strip of Velcro positioned just behind their
forepaws that could be tracked by an overhead camera. The
room contained shelving with laboratory supplies, and a door
~3 ft from the arena. While no attempt was made to strictly
control for distal visual cues in the room, all major cues (e.g.
door, shelving) were kept constant. The high walls at the
periphery of the arena minimized the influence of local cues
outside the arena. At the end of any given trial, a large felt
cylinder was lowered over the rat. The cylinder was then
used to return the rat to its original starting location, where the
starting box was lowered back over the rat. This procedure was
designed so that the experimenter never physically handled the
rat during the experiment to minimize stress to the animal.

Fixed-N experiment. Rats were presented with spatial
configurations containing five reward locations (figure 1).
Cups were baited with 20 mg food pellets and could be located
at any of 21 possible locations evenly distributed on the table

so that the minimal and maximal distances between any two
cups were 25 and 120 cm, respectively. Configurations were
designed so that only one cup could be located along one of the
walls of the arena. The starting position of the box was always
located against the arena wall, and was chosen to maximize
the distance to the nearest cup. The starting box was always
oriented at 0°, toward the center of the arena. Rats were given
ten trials to learn each configuration, and 90 s to complete each
trial. This time constraint did not place additional demands on
the task, since rats typically completed each trial in less than
30 s. If arat timed out three times before completing ten trials,
anew configuration was presented. The experiment terminated
if arat failed to complete three configurations and was resumed
the next day. Rats were exposed to four configurations per day
until they completed six full days. For this experiment, three
rats were tested on 24 separate configurations and four rats
were tested on a reduced three-day, 12-configuration protocol.

Variable-N experiment. — The setup for the variable-N
experiment was the same as for the fixed-N experiment
except that configurations could consist of four—nine cities
(figure 4). Four rats were tested on a three-day protocol.
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Figure 2. Trajectory minimization. (A) Sample trajectories taken by the rat. For each pair of consecutively visited cities within a
configuration, blue colors represent paths taken during the initial trials and red colors are paths taken during the last trials. City locations and
paths have been rescaled so that one city occupies (0,0) and the other location (1,1). This sample was taken for a five-city configuration.

(B) Overall analysis across four—nine cities (all data in figure 1). The left bar is the average of the first three trials, the right bar is the average
of the last three trials for each configuration and the Y-axis is the ratio of the path length to the minimum path possible (sqrt(2) after
normalization). Only paths smaller than the Mahalanobis distance (here 2) have been included in the analyses, so as not to bias the analyses
with trajectories that were taken when the animal was exploring the maze. The ‘n’ corresponds to the number of trials.

(This figure is in colour only in the electronic version)

Two rats repeated the protocol for a total of six days. On
day one, rats were run on three seven-city and three four-city
configurations. Day two consisted of three eight-city and three
five-city configurations. Day three consisted of three nine-city
and three six-city configurations. A 15 min rest session was
always inserted between changes in the number of cities. The
rest session involved placing the rat in a covered container that
was placed at the center of the arena. The configurations were
identical across rats.

Orientation experiment. The configuration layout consisted
of two reward locations (figure 5) located 60 cm from the
starting location and +30° from the axis which bisected the
arena and passed through the starting location. Each reward
location had two feeder cups that contained one 40 mg food
pellet each, so that the overall amount of reward gathered
per trial in this experiment was comparable to that of the
other experiments. On a typical trial, the experimenter would
remove the door from the start box and the rat was allowed
to visit only one reward location. Rats were allowed 1 min
to leave the box and visit a reward location. If a rat timed
out, the trial was repeated at the end of the sequence. Testing
ended if a rat persistently timed out, and was restarted the next
day. In a given day, rats were tested on eight angles five times
each, randomly presented so that no angle was repeated in two
consecutive trials. Seven rats were run on this experiment until
they successfully completed three full days.

Distance versus reward experiment. The layout was similar
to the orientation experiment above, except that the starting
orientation was always held at 0°, and the reward locations on
each side could be at either near or far positions (figure 6).

The near positions were the same locations used in the
orientation experiment. The far positions were in the same
430° directions, but were located 110 cm from the starting
location. There were four possible categories of configuration
(figure 6). In the first, both targets were at the same distance
from the start box quantities, but had different reward with one
side having three baited cups while the other had only one. In
the second category, both sides had the same reward quantity
(two cups), but were located at different distances. In the third,
one side was closer and had greater reward. Finally, in the
fourth category one side had more reward while the other was
closer. Trials were counterbalanced with respect to left, right,
near and far. Rats were tested on all possible configurations
within each category each day. Each of these tests consisted
of four trials. The first trial was an exploratory trial in which
the rat was allowed to visit and learn the locations of both
goal locations. In the subsequent three trials, rats were only
allowed to visit one location. Performance criteria were the
same as for the orientation experiment, and all rats were run
until they completed three full days. Seven rats were included
in this group.

N-I experiment. Four rats were allowed ten trials to learn a
five-city configuration. On the 11th trial, one of the locations
was unbaited, with the cup left in place, and rats were given up
to 25 additional trials to exclude the unbaited cup from their
route (figure 7). The experiment ended when the rat excluded
the cup three consecutive times, or after completing the 25th
additional trial. We chose to unbait the cup furthest from other
cups in each configuration. The unbaited cup was never the
first or last cup visited in the route the rat settled on by the end
of the tenth trial.
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Figure 3. Theoretical and experimental pathlength distributions of the last three trials for four—nine cities. The five-city case is shown in
figure 1(D).
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Figure 4. Rats find short route solutions to the ‘variable-N" TSP. (A) Average optimality ratio for the last three trials for configurations with
four—nine cities. The n corresponds to the number of configurations. (B) Average time per trial spent solving the TSP during the last three
trials as a function of the city number. The number of city configurations tested were 16, 12, 18, 18, 19, 20 for four, five, six, seven, eight
and nine cities, respectively.

Data analyses. Rats’ instantaneous positions were tracked optimality ratio for each trial was calculated as
by an overhead camera and imported into MATLAB. A
custom script determined the most optimal straight-line path
for each configuration using an exhaustive search method. The = (Length of path taken)/(Length of optimal path),

Optimality ratio
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Figure 5. Influence of orientation on path choice. Probability of
choosing the city on the right in an ambiguous configuration as a
function of the starting orientation of the animal (inset). Each
starting orientation was presented a total of 90 times. All tests are
repeated measure ANOVASs between the data and ten randomly
generated distributions of choices. * = within subjects, # = between
subjects, ~ = interaction term.

where the length of path taken was found by integrating the
actual trajectory of the rat numerically in MATLAB.

Since the reflective jacket was located behind the forepaw
of the rat, the measured path could be slightly shorter
than the actual distance between reward locations. Post hoc
analyses revealed that this distance discrepancy was about

1.0
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© o o
~ o ©
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o
(V)
:

10%, and all distances were corrected accordingly. In all
statistical analyses (univariate repeated measures analysis),
## = p(between subjects) <0.01, # = p(between subjects)
<0.05, ** = p(within subjects) <0.01, * = p(within subjects)
<0.05, ™ = p(interaction) <0.01, © = p(interaction) <0.05.
In figures 5 and 6, each dataset (bar) was tested to assess
its significance with respect to random choices. For each
dataset, ten independent distributions of random choices were
generated, and the repeated measure ANOVA was conducted
on all ten pairs (data, random-distribution-n) and averaged.
For all figures, error bars are the standard error to the
mean.

Results

Rats find short route solutions

Effective route planning requires the ability to spatially
relate multiple goal locations within the broader context of
the environment. Since obtaining this information in real
space requires learning via repeated exposure to multiple
place sequences in the environment, we reasoned that rats
would choose shorter routes as they grew more familiar with
a configuration. We tested this hypothesis in a five-city
configuration (figure 1(A)). Figure 1(B) plots the optimality
ratio obtained at each of ten trials averaged across seven rats
and across the 24 five-cup configurations presented. Trial 1
corresponds to the first exposure of the rat to the maze. In
this graph, only the trials in which the animals did not revisit a
cup were considered. The average optimality ratio decreases

B Theoretical best
[[] Theoretical worst
B Spatial optimal

* Reward optimal

0.0

Figure 6. Relative influence of distance and reward on path choice. Four experiments (Exp. 1-4) were conducted and are schematized
under the X-axis. For Exp. 1-3, the solid black bars correspond to the probability that rats chose the theoretically better option, while the
white bars correspond the probability that the rats chose the theoretically worse option. For Exp. 4, the horizontally striped bar corresponds
to the probability that rats chose the closer reward (spatially optimal), while the diagonally striped bar corresponds to the probability that the
rats chose the larger reward (reward optimal). The ‘n’ value corresponds to the number of times the configuration was presented. Exp. 1 has
a higher ‘n’ because it was counterbalanced with respect to near and far positions. Statistical significance assesses the extent to which the

choices were different from random.
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linearly (R =0.67, slope = —0.013, offset = 1.32) across trials,
becoming significantly statistically different from trial 1 by the
third trial (n =91, p < 0.05). Trials 1 and 10 are significantly
different (n = 88, p < 0.01). Figure 1(C) shows the average
number of revisits per trial. This quantity decreases linearly as
training progresses (R = 0.66, slope = —0.06, offset = 1.29).
Rats typically revisited one or two cities on the first trials,
and quickly settled into a five-city, no revisit configuration
by the last three of the ten trials. These initial revisits can
be explained by the fact that unlike with the traditional TSP
where all cities are immediately accessible to the human or
computer algorithm, in this rodent paradigm food cups have
to be ‘discovered’ through active exploration during the first
two—three trials. In principle, the reduction in optimality ratio
can be due to a combination of three factors: (1) a better
choice of city order (the core of the ‘classic’ TSP problem,
figure 1(B)); (2) an improvement in the ability to not
revisit cities (figure 1(C)); and (3) an improvement in
trajectory planning between two cities (rats adopt a straighter
line/trajectory between any two cities from trial to trial).
Figure 2(A) shows a sample set of trajectories between
two cities for different trials and suggests that rats did not
significantly improve their trajectories across trials, adopting
a near linear route. Figure 2(B) shows the data pooled across
multiple rats and configurations. No differences are seen
between the first and last three trials. Altogether, these results
suggest therefore that the improvement in performance seen
across trials is not significantly due to rats adopting a straighter
path between pairs of cities.

We then compared the optimality ratios of the routes
chosen by rats to the optimality ratios of all possible
routes. In order to visit each one of five cities with no
revisits, five! different paths may be taken. Figure 1(D)
top shows the theoretical distribution of optimality ratios of
all possible routes for the 24 five-city configurations used
in our experiments. The distribution is unimodal with a
peak at 1.5 and a mean at 1.57, with 25% of the routes
falling below a ratio of 1.37. Figure 1(D) bottom shows
the experimental distribution of optimality ratios realized
by seven rats in the same 24 five-city configurations. The
distribution is significantly skewed toward low ratios (peak at
1.0, mean at 1.34) with 71.4% of the paths residing below
1.37. Figure 3 shows the same theoretical and experimental
distributions for four, six, seven, eight and nine cups. In all
cases, the experimental distribution is strongly skewed toward
near-1 optimality ratios. This result suggests that, rather
than choosing routes randomly, rats naturally and quickly
use spatial navigation strategies that emphasize short routes,
compatible with previous studies where rats had been trained
over many days (Bures ez al 1992). Random route selection
is of course the worst possible way to navigate in this task.
Further work should be conducted to determine the ‘default’
strategies used by naive rats (e.g. on trials 1-3), and if these
default strategies exist, determine the extent to which they vary
between individual rats.

One of the major challenges presented by strategies and
algorithms designed to solve the TSP is to minimize the
increase in the number of computational steps required to solve
configurations with increasing number N of city locations.
To date, the complexity of the best non-heuristically based
computer algorithm increases at a rate of 2N (Held and Karp
1962, Karp 1982). To begin to assess whether and how rats
were able to find short routes in the ‘variable-N’ version of
the TSP, in a separate set of experiments we exposed the
animals to configurations consisting of four-nine rewarded
locations. Figure 4(A) shows the average optimality ratios
during the last three trials for each of these configurations.
For each level of complexity, three different configurations
were presented. We found no trend toward either improved or
degraded performance as a function of the number of cities,
suggesting that rats were able to find short routes within
ten trials whether the number of cities was four, five, six,
seven, eight or nine. Interestingly, our datasets showed a
slightly lower performance for eight cities than for seven
and nine, possibly indicating a change of strategy by the
animals. The difference was not statistically significant, so
it was not pursued further. Figure 4(B) shows the total
time spent by the animals in the task during the last three
trials. The data points are well described by a linear fit
(R = 0.81, slope = 1.52, offset = 21.52). This linear
increase in time is most likely attributable to the greater
distance required to visit more locations, and the additional
time taken to eat the food, rather than to an increase in decision-
making time. Together, these results suggest that, within the
limitations of our experimental paradigm, as the complexity
of the task increases rats find a short route solution within ten
trials and that the time spent completing the task increases
linearly with N.
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Influence of orientation on route selection

Due to the fact that computer agents do not typically have
physical bodies, the TSP is traditionally simply viewed as
a minimization of linear travel distance. Since rats have
physical bodies that become directionally oriented in space
as a function of their past trajectory, they may simultaneously
minimize both linear travel distance and angular integration,
two relatively independent constraints. This hypothesis is
substantiated by the existence of populations of head-direction
cells that carry orientation-specific information into the spatial
navigation system (Taube 2010).

We examined this possibility by presenting rats with a
configuration featuring two equidistant cups containing the
same quantity of rewards and by systematically and randomly
varying their starting orientation (figure 5, inset). Figure 5
shows the probability of choosing the reward location on the
right (marked R) as a function of starting orientation (inset). A
zero angle represents a starting orientation directly in between
the two cups. For this starting orientation, the rats chose the
right and left goals with equal probability. Individual rats,
however, tend to settle on one side or the other. For 30°,
90° and 150°, rats were more likely to choose the location on
the right, while for —30° and —90°, they were more likely to
choose the location on the left (marked L). These results are
consistent with minimizing the angular integration to arrive
at a reward location. Interestingly, for 180° and —150°, rats
were more likely to choose the goal location on the right. This
suggests that when visual information about reward location
is poor, as when the animal faces away from goals, a left-
turning bias emerges; but when visual input is available, as
in the forward-facing orientations, rats are able to use it to
minimize angular integration. This result is compatible with
earlier work and may be attributable to asymmetries of the
hippocampus (Glick 1985, LaMendola and Bever 1997, Xiao
and Jordan 2002, Lister et al 20006).

Relative influence of reward quantity and spatial distance on
route choice

Route selection in real space is likely a highly dynamical
decision-making process that takes into account multiple
sensory and non-sensory modalities.  As expressed in
the majority of computational models, these streams of
information can be thought of as components of a general
‘cost function’ that needs to be minimized (Floresco et al
2008). Whether this cost function is explicitly computed in
the brain, or emerges implicitly as a result of self-organizing
computational principles, is unknown. Others have studied
effort and reward-seeking activity using various instrumental
tasks, including lever presses with delayed or probabilistic
rewards and barrier climbing (Roesch ef a/ 2007, Bardgett
et al 2009, Salamone et al 2009, Wanat et al 2010). We study
the extent to which route selection in this task might rely on
spatial and/or reward information. To determine how rats
differentially weight distance and reward cues, we held the
starting orientation as constant while varying reward amount
and location independently of one another in a two-city task
with four different conditions (figure 6). Figure 6 shows

the probability of choosing each of the two goals for each
experiment on the third trial after an initial exploration trial.
In experiment 1, where the reward amount is the determining
factor, rats chose the goal with the largest reward (black bars
versus white bars respectively, n = 65, p (within) < 0.01).
In experiment 2, where space is the determining factor, rats
chose the closest of the two goals (n = 34, p (within) <
0.01). In experiment 3, where the large reward is closest
and the small reward is further away, rats chose the goal
with spatial and reward optimality significantly more often
than the non-optimal solution (n = 31, p (within < 0.05).
Interestingly, although the solution is optimal for both reward
amount and distance, the average probability of it being chosen
is no different than in experiments 1 and 2, where only one of
these two features is disadvantageous. Finally, in experiment
4, where the animal is presented with an ambiguous situation
in which one choice is advantageous because of its distance,
and the other is advantageous because of its reward quantity,
rats chose either goals with near-equal probability, with a
trend toward preferring spatially optimal solutions (horizontal
hatched bar, n = 33). This trend may change with a larger
discrepancy between reward and spatial distance differences,
but this study was not conducted here. It should also
be noted that even though experiments 1-4 were ordered
randomly, overall, and in the course of several days across
all four experiments, rats were presented with more spatially
advantageous choices than reward-advantageous choices. We
cannot at this point exclude the possibility that part of the
spatial bias in experiment 4 was due to this preponderance of
spatially correct choices in experiments 1-3. These results
demonstrate that rats may not rely solely on the nearest-
neighbor strategy. Whenever there is a clearly correct choice,
be it reward- or spatially advantageous, rats will optimize
based on the relevant variable. However, when the cues are
in conflict their decision-making strategy is more variable. In
the conditions of these experiments, the contributions of the
spatial and reward information seem to be approximately
equal.

Dynamic path planning

If path length minimization is indeed a basic process of the rat
brain, it is likely to be dynamical and affected by recent events.
Specifically, rats must accurately learn to ignore locations that
no longer provide rewards. To test this hypothesis, we ran
animals in configurations in which, after learning, a reward
was removed from one of the cities (figure 7(A)). Figure 7(B)
shows the optimality ratios for the trials before and after reward
removal. Since individual rats varied in the number of trials to
exclude the unbaited location, the trials after reward removal
are grouped into thirds. Optimality ratios were significantly
lower for trials 8-10 than for trials 1-3 (n = 15, p < 0.01).
This shows that rats had learned the initial configuration. After
reward removal, the optimality ratio was higher for the first
third of trials than for trials 8—10 because the animals tended
to persistently visit the unbaited location. Note, however,
that the ratio was not as high as when the configuration was
first presented (trials 1-3), due to the similarity of the two
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conditions. The optimality ratio for the last third of trials was
significantly lower than for the first third (n = 15, p < 0.05).
The middle third of the trials was not different from either
of the other two thirds after the reward was removed. These
results demonstrate that the extinction of a reward prediction
signal for a previously learned location is sufficient to induce
a dynamic recomputation of the path taken.

Discussion

We used a TSP-like paradigm in which animals were required
to physically explore an open space to retrieve food (Menzel
1973, Bures et al 1992, Cramer and Gallistel 1997, Noser
and Byrne 2010). The spatial complexity and difficulty of
this task is unlike other approaches in which the subjects
are asked to solve a computerized perceptual version of the
TSP problem with little effort and few constraints (MacGregor
et al 2004, Vickers et al 2006, Gibson et al 2007, Tenbrink and
Wiener 2009, Desrochers et al 2010, Miyata and Fujita 2010).
However, studies have shown that human perceptual TSP may
involve spatial navigation schemes similar to those utilized in
the real space TSP, and may recruit brain structures similar
to those used by rodents (Wolbers et al 2007, Tenbrink and
Seifert 2011). This analogy points to the potential importance
of the spatial navigation system in solving the TSP, be it in
real or virtual space.

Effective route planning relies in part on the ability to
spatially relate multiple locations to each other and to the
environment. Inherent to this requirement is the ability to
remember past locations, evaluate the current position and
plan for future paths. This complexity was emulated in our
task by allowing rats to navigate freely through cities that were
randomly placed in a relatively unconstrained open arena,
unlike in previous studies with rats (Bures et al 1992). In
the fixed-N and variable-N experiments we showed that rats
were able to learn to find short routes through up to nine
reward locations, well within ten trials. In those experiments,
each spatial configuration was only experienced once, unlike
in other studies where they were repeated over several days
(Bures et al 1992, Noser and Byrne 2010). Furthermore, rats
minimized their path length within each configuration and their
performance on each first trial did not improve across days
(data not shown). This suggests that the rats were unlikely
to use long-term spatial memory, but rather were adhering to
an online strategy that allowed them to dynamically plan and
replan as the task or the environment required. Notably, the
animals we used in our studies were not explicitly required to
find short routes. No experimental constraints were placed on
them to minimize time or distances or to maximize rewards.
This suggests that this dynamical process is likely to be deeply
embedded in their spatial navigation system. The intrinsic
ability to minimize travel distance might be present in other
systems as well, such as in the saccade circuit, in the early
stages of the visual system (Desrochers et al 2010).

Another difference between our study and others is that
rewards were presented at each of the cities, rather than
delivered after all cities were visited (Bures et al 1992, Gibson
et al 2007, Desrochers et al 2010). By baiting all locations,

reward contingencies were easily manipulated and controlled.
This allowed us to directly address how reward information
within a spatial environment affected the final path settled
on by the rat. In the N-1 task, removal of the reward
from a specific learned location resulted in replanning and
in the exclusion of the unbaited location. This reinforces
the notion that reward information dynamically modulates the
spatial decision-making process, compatible with other studies
(Roesch et al 2007, Bardgett et al 2009, Salamone et al 2009,
Wanat et al 2010). In the classical TSP, spatial distance is
traditionally the quantity that is optimized. In our experiment,
however, we cannot exclude the possibility that rats were
minimizing time instead. Since it is notoriously difficult to
manipulate rat velocity through training, new experiments
would have to be designed to test the relative contribution
of time and space in this task. Also, the work described
here focuses on pseudo-random city configurations. As such,
no strong claims can yet be made on the specific strategies
used by the animals, or on the possibility that these strategies
might be different for small (e.g. four) and large (e.g. nine)
numbers of cities. It will be interesting in the future to
design configurations aimed at testing specific hypotheses on
rat navigation strategies.

In contrast to most computer algorithms that have been
designed to solve the TSP, we show here that when sensory
inputs about the goals are available, rats are able to minimize
the angular integration required to reach them. However, in
the absence of such inputs, a left-turning bias emerged. The
turning bias could be attributed at least in part to a change
in reference frame of the head direction system occurring
after the animal acquired visual inputs representing the reward
locations. This idea is compatible with other experiments
performed on a linear track, which showed that when a
rat first left a starting box, place cells were initially bound
to the box as a reference point but then became bound
to visual cues around the reward location (Gothard et al
1996a, 1996b). It is interesting to note that a turning bias
may also provide the animal with a default strategy, which
would allow for a ‘spiral’ foraging exploration that would
be far more efficient at covering space than a non-biased
random walk. The bias could then be neutralized through
learning, as distance and reward information become more
readily available.  Altogether, these results suggest that
in addition to considering reward, time and space, the rat
may also be minimizing rotation angle. To our knowledge,
no computer algorithms have simultaneously attempted to
minimize these quantities in this task (but see, Aggarwal
et al (2000)).

Artificial neural network models have been used to solve
the TSP in the past (Hopfield and Tank 1985, 1986). This
pioneering work was, however, purely theoretical and solving
the TSP was used as an illustration for what such networks
could do, with no consideration for how animals and humans
actually performed the task. Since then, tremendous progress
has been made in understanding the neural substrate of spatial
navigation, planning and reward processing. Correspondingly,
neurally inspired computational models have been produced
to gain insights into each of these computations independently.
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A promising set of models uses attractor dynamics to explain
the large body of experimental data gathered from the
hippocampus and entorhinal cortex (Fuhs and Touretzky
2006, Navratilova et al 2011). These models rely on
a map-like neural representation of the environment to
update instantaneous positions using velocity and orientation
information. Their dynamical nature seems appropriate as a
starting point for modeling path planning problems such as
the TSP. Other models have a more static view and propose
the existence of specialized neurons that are designed to
specifically encode ‘short-cuts’ between goal locations. These
short-cuts are stored into a synaptic matrix that can be queried
when necessary (Kubie and Fenton 2009). Finally, other
models use a purely probabilistic yet dynamical approach
(Thrun ef al 2005). Models of this type have been implemented
in robots in situations where self-motion signals and visual
cues provide uncertain information about location (Milford
et al 2010). These robot models use Bayesian approaches
to optimize sensory information in order to get an accurate
estimate of the current spatial location. Itis not clear, however,
how these neurally inspired models could be used to implement
efficient spatial navigation in terms of distance and in terms of
outcomes. Our data give insights into how neurally inspired
models could be extended so that orientations, distances and
values of reward locations are dynamically updated along a
trajectory. Further pharmacological and electrophysiological
studies in brain areas such as the hippocampus (space), the
VTA (reward) and the prefrontal cortex (planning) in this task
would further constrain the model and help capture the nature
of the synergistic computations performed by these structures.
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