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Face Recognition by Elastic Bunch
Graph Matching

Laurenz Wiskott, Jean-Marc Fellous, Norbert Kriiger,
and Christoph von der Malsburg

Abstract —We present a system for recognizing human faces from
single images out of a large database containing one image per
person. Faces are represented by labeled graphs, based on a Gabor
wavelet transform. Image graphs of new faces are extracted by an
elastic graph matching process and can be compared by a simple
similarity function. The system differs from the preceding one [1] in
three respects. Phase information is used for accurate node
positioning. Object-adapted graphs are used to handle large rotations
in depth. Image graph extraction is based on a novel data structure,
the bunch graph, which is constructed from a small set of sample
image graphs.

Index Terms —Face recognition, different poses, Gabor wavelets,
elastic graph matching, bunch graph, ARPA/ARL FERET database,
Bochum database.

1 INTRODUCTION

THE system presented here is based on a face recognition system
described in [1]. In this preceding system, individual faces were
represented by a rectangular graph, each node labeled with a set
of complex Gabor wavelet coefficients, called a jet. Only the mag-
nitudes of the coefficients were used for matching and recognition.
When recognizing a face of a new image, each graph in the model
gallery (database) was matched to the image separately and the
best match indicated the recognized person. Rotation in depth was
compensated for by elastic deformation of the graphs.

We have made three major extensions to this system in order to
handle larger galleries and larger variations in pose, and to in-
crease the matching accuracy, which provides the potential for
further techniques to improve recognition rate.

e Firstly, we use the phase of the complex Gabor wavelet coef-
ficients to achieve a more accurate location of the nodes and
to disambiguate patterns which would be similar in their
coefficient magnitudes.

» Secondly, we employ object adapted graphs, so that nodes
refer to specific facial landmarks, called fiducial points. The
correct correspondences between two faces can then be
found across large viewpoint changes.
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¢ Thirdly, we have introduced a new data structure, called the
bunch graph, which serves as a generalized representation of
faces by combining jets of a small set of individual faces.

This allows the system to find the fiducial points in one matching
process, which eliminates the need for matching each model graph
individually. This reduces computational effort significantly. A
more detailed description of this system is given in [2].

2 THE SYSTEM
2.1 Jets

A jet is based on a wavelet transform, defined as a convolution of
the image with a family of Gabor kernels [3]
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in the shape of plane waves with wave vectorlzj,

restricted by a

Gaussian envelope function with relative width o = 2z. We em-
ploy a discrete set of five different spatial frequencies and eight
orientations. For images of size 128 x 128 pixels, the lowest and
highest frequency have a wavelength of 16 and four pixels, re-
spectively. The last term in (1) makes the kernels DC-free, i.e., the

integral J.I// d X vanishes. This is known as a wavelet transform

because the family of kernels is self-similar, all kernels being gen-
erated from one mother wavelet by dilation and rotation.

A jet Jis defined as the set { Jj} of 40 complex Gabor wavelet co-
efficients obtained for one image point. It can be written as Jj = g
exp(ig;) with magnltudesa( ), which slowly vary with position,

and phases ¢;(X), which rotate with a rate set by the spatial fre-
quency or wave vector Ej of the kernels. Due to this phase rota-

tion, jets taken from image points only a few pixels apart have
very different coefficients, although representing almost the same
local feature. This can cause severe problems for matching. We
therefore either ignore the phase or compensate for its variation
explicitly. The similarity function
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ignores phase [1]. With a jet J' taken at a fixed image position and
jets J = J(X) taken at variable positionx , S,(J(X), J’) is a smooth
function with local optima forming large attractor basins (see
Fig. 1), leading to rapid and reliable convergence with simple
search methods such as gradient descent or diffusion.

Using phase has two advantages. Firstly, phase information is
required to discriminate between patterns with similar magni-
tudes, should they occur. Secondly, since phase varies so quickly
with location, it provides a means for accurate jet localization in an
image. Assuming that two jets J and J refer to object locations
with small relative displacement d, the phase shifts can be ap-
proximately compensated for by the terms alzj , leading to a phase-

sensitive similarity function
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Fig. 1. Similarities S,(J, J) (dashed line) and S,(J, J) (solid line) with
jet J taken from the left eye of a face, and jet J taken from pixel positions
of the same horizontal line. The dotted line shows the estimated dis-
placement a(], J) (divided by eight to fit the ordinate range). The right

eye is 24 pixels away from the left eye, generating a local maximum for
both similarity functions and zero displacement close to d, = —24.
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In order to compute it, the displacement d has to be estimated.

This can be done by maximizing S, in its Taylor expansion around
d = 0, which is a constrained fit of the two-dimensional d to the
40 phase differences ¢ — ¢’ [2], [4]. Large displacements of up to
eight pixels can be estimated if the phases of higher frequency
coefficients are corrected by multiples of 2z depending on the dis-
parity estimated from lower frequency coefficients. It is a great
advantage of this second similarity function that it yields this dis-
placement information. Profiles of similarities and estimated dis-
placements are shown in Fig. 1.

2.2 Graphs

A labeled graph G representing a face consists of N nodes con-
nected by E edges. The nodes are located at facial landmarks
X,,n=1 .., N, called fiducial points, e.g., the pupils, the corners
of the mouth, the tip of the nose, the top and bottom of the ears,
etc. This face graph is object-adapted since its geometrical structure
is adapted to the structure of the object (see Fig. 2). The nodes are
labeled with jets J,. The edges are labeled with two-dimensional
distance vectors AX, = X, — X, ¢ =1, ..., E, where edge e connects
node n’ with n. (We refer to the geometrical structure of a graph,
unlabeled by jets, as a grid.) Graphs for different head pose differ
in geometry and local features (jets). Although the fiducial points
refer to corresponding object locations, some may be occluded,
and jets as well as distances vary due to rotation in depth. To be
able to compare graphs of different poses, we manually defined
pointers to associate corresponding nodes in the different graphs.

In order to extract image graphs automatically for new faces, one
needs a general representation rather than models of individual
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faces. This representation should cover a wide range of possible
variations in the appearance of faces, such as differently shaped
eyes, mouths, or noses, different types of beards, variations due to
sex, age, and race, etc. It is obvious that it would be too expensive
to cover each feature combination by a separate graph. We instead
combine a representative set of M individual model graphs Q'Bm(m
=1, .., M) into a stack-like structure, called a face bunch graph (FBG)
(see Fig. 3). Each model graph has the same grid structure and the
nodes refer to identical fiducial points. A set of jets referring to one
fiducial point is called a bunch. An eye bunch, for instance, may
include jets from closed, open, female, and male eyes etc. to cover
these local variations. The corresponding FBG B is then given the
same grid structure as the individual graphs, its nodes are labeled
with the bunches of jets ]fm and its edges are labeled with the

averaged distances AX; = ' AX;" /M. During the location of

fiducial points in a new image of a face, the procedure described
below selects the best fitting jet, called the local expert, from the
bunch dedicated to each fiducial point. Thus, the full combination
of jets in the bunch graph is available, covering a much larger
range of facial variation than represented in the constituting model
graphs themselves.

2.3 Elastic Bunch Graph Matching

A first set of graphs is generated manually. Nodes are located at
fiducial points and edges between the nodes as well as correspon-
dences between nodes of different poses are defined. Once the
system has an FBG (possibly consisting of only one manually de-
fined model), graphs for new images can be generated automati-
cally by elastic bunch graph matching. Initially, when the FBG
contains only few faces, it is necessary to review and correct the
resulting matches, but once the FBG is rich enough (approximately
70 graphs) one can rely on the matching and generate large gal-
leries of model graphs automatically. Matching a FBG on a new
image is done by maximizing a graph similarity between an image
graph and the FBG of identical pose. It depends on the jet similari-
ties and a topography term, which takes into account the distor-
tion of the image grid relative to the FBG grid. For an image graph
G’ with nodesn=1, .., N and edges e =1, ..., E and an FBG B with
model graphs m =1, ..., M the similarity is defined as
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where A determines the relative importance of jet similarities and
the topography term. J, are the jets at node n and AX, are the dis-
tance vectors used as labels at edges e. Since the FBG provides
several jets for each fiducial point, the best one is selected and
used for comparison. These best fitting jets serve as local experts for
the image face. A heuristic algorithm is used to find the image
graph which maximizes the graph similarity function. First, the
location of the face is found by a sparse scanning of the FBG over
the image. Then, the FBG is varied in size and aspect ratio to adapt
to the right format of the face. These steps are of no cost in the
topography term of the similarity function because the edge labels
are transformed accordingly. Finally all nodes are moved locally
and relative to each other to optimize the graph similarity further.
Only node locations with small estimated disparity are considered.
This local distortion is constrained by the topography term.

Since in the FERET database faces vary in size by a factor of
three, the matching is done twice. In the first matching step the
size and location of the face is determined and the face image
normalized in size. The second matching step is used to find the
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Fig. 2. Object-adapted grids for different poses. The nodes are posi-
tioned automatically by elastic bunch graph matching. (The grids used
in Section 3 for the FERET database had about 14 additional nodes
which are not shown here for simplicity.) One can see that, in general,
the matching finds the fiducial points quite accurately. But misposition-
ing occurred, for example, for the face in the center. The chin was not
found accurately; the leftmost node and the node below should be at
the top and the bottom of the ear, respectively.

Fig. 3. The Face Bunch Graph (FBG) serves as a general representa-
tion of faces. Each stack of discs represents a jet. From a bunch of jets
attached to a single node only the best fitting one is selected for a
match, indicated by gray shading.

fiducial points for recognition. The two steps use different FBGs
with different emphasis and number of nodes. The first step re-
quires several FBGs of different size, the best fitting one of which
is used for size estimation. Each image has a label which indicates
the pose, so that pose does not need to be determined automati-
cally, though our system is able to determine pose automatically in
the same way as size is estimated [5]. The two steps together take
less than 30 seconds on a SPARCstation 10-512. Fig. 2 shows some
automatically positioned grids.

2.4 Recognition

After having extracted model graphs from the gallery images and
image graphs from the probe images, recognition is possible with
relatively little computational effort by comparing an image graph
to all model graphs and selecting the one with the highest similar-
ity value. The similarity function we use here for comparing
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TABLE 1
RECOGNITION RESULTS FOR CROSS-RUNS
BETWEEN DIFFERENT GALLERIES

Model Gallery | Probe Images First Rank First 10 Ranks
# % # %
250 fa 250 fb 245 98 248 99
250 hr 181 hli 103 57 147 81
250 pr 250 pl 210 84 236 94
249fa  1fb | 171 hl  79hr 44 18 111 44
171 hl 79 hr 249 fa 1fb 42 17 95 38
170 hl 80 hr 217 pl 33 pr 22 9 67 27
217 pl 33 pr 170 hl 80 hr 31 12 80 32

The different compositions in the four bottom rows are due to the fact that not all poses were available for all people. The table shows how often the correct model

was identified as rank one and how often it was among the first 10 (4 percent).

graphs is an average over the similarities between pairs of corre-
sponding jets. Some jets in one pose may not have a corresponding
jet in the other pose because of occlusions. We use the jet similarity
function without phase here. It turned out to be more discrimina-
tive, possibly because it is more robust with respect to change in
facial expression and other variations. Grid distortions are not
taken into account. This graph similarity induces a ranking of the
model graphs relative to an image graph. A person is recognized
correctly if the correct model yields the highest graph similarity,
i.e., if it is of rank one. A comparison against a gallery of 250 indi-
viduals took slightly less than a second.

3 EXPERIMENTS

One set of tests was done on the ARPA/ARL FERET database
provided by the US Army Research Laboratory. The poses used
here are: neutral frontal view (fa), frontal view with different facial
expression (fb), half-profile right (hr) or left (hl) (rotated by about
40°-70°), and profile right (pr) or left (pl) (see Fig. 2 for examples).
The size of the faces varies by about a factor of three, which was
compensated for by the first matching step. The format of the
original images is 256 x 384 pixels, 256 gray levels. Recognition
results are shown in Table 1.

The recognition rate is very high for frontal against frontal im-
ages (first row). This is mainly due to the fact that in this database
two frontal views show only little variation, and any face recogni-
tion system should perform well under these circumstances. See
results on the Bochum database for a more challenging test.

Before comparing left against right poses, we flipped all left
pose images over. Since human heads are bilaterally symmetric to
some degree, and since our present system performs poorly on
such large rotations in depth (see below), we proceeded under the
assumption that it would be easier to deal with differences due to
facial asymmetry than with differences caused by substantial head
rotation. This assumption is born out at least by the high recogni-
tion rate of 84 percent for right profile against left profile (third
row). The sharply reduced recognition rate of 57 percent (second
row) when comparing left and right half-profiles could be due to
inherent facial asymmetry, but the more likely reason is the poor
control in rotation angle in the database—visual inspection of im-
ages shows that right and left rotation angles may differ by up to 30°.

When comparing half profiles with either frontal views or full
profiles another reduction in recognition rate is observed
(although even a correct recognition rate of 10 percent out of a
gallery of 250 is still high above chance level, which would be
0.4 percent!). The results are asymmetrical, performance being
better when frontal or profile images serve as model gallery rather
than if half-profiles are used. This is due to the fact that both fron-
tal and profile poses are much more standardized than half-
profiles, for which the angle varies between 40° and 70°. We inter-
pret this as being due to the fact that similarity is more sensitive to

depth-rotation than to inter-individual face differences. Thus,
when comparing frontal probe images to a half-profile gallery, a
40° half-profile gallery image of a wrong person is often favored
over the correct gallery image if, in the latter, the head is rotated
by a larger angle. A large number of such false positives consid-
erably degrades the correct-recognition rate. In these experiments
we also flipped all left pose images over, so that to a large extent
the recognition was not only done across pose but also across mir-
ror reflection.

A second set of tests has been done on the Bochum database
[1]. It contains neutral frontal views (fa), frontal views with differ-
ent facial expression (fb), 11° rotated poses (refered to as 15° in [1]
because the gaze is at 15°, but the head rotation is less), 22° rotated
poses. For the Bochum database we did not use the normalization
stage, because faces varied only little in size.

We used 108 neutral frontal views as a model gallery and the
other images as probe galleries. The recognition rates for galleries
fb, 11°, and 22° were 91 percent, 94 percent, and 88 percent, re-
spectively. On the same galleries the preceding system [1]
achieved 92 percent, 97 percent, and 85 percent. Thus the overall
performance is the same. The performance on the fb-gallery is
worse than for the corresponding fb-gallery of the FERET data-
base, because the Bochum database shows more variation in facial
expression, some faces being even half covered by a hand or hair.

We have introduced phase information in order to improve
matching accuracy. We have tested the accuracy on the Bochum
database by matching a face bunch graph to images for which all
fiducial points were controlled manually. We always left the per-
son on the image out of the face bunch graph, so that no informa-
tion about that particular person could be used for matching. We
ran the same algorithm with phase information and without phase
information, i.e., all phases set to zero. Matching accuracy was
calculated as the mean Euclidean distance between matching po-
sitions and manually controlled reference positions. It was 1.6 and
5.2 pixels with and without phase, and the histograms had their
maximum at one and four pixels distance, respectively. The im-
ages had a size of 128 x 128 pixels.

4 CONCLUSION

The system presented is general and flexible. It is designed for an
in-class recognition task, i.e., for recognizing members of a known
class of objects. We have applied it to face recognition but the sys-
tem is in no way specialized to faces and we assume that it can be
directly applied to other in-class recognition tasks, such as recog-
nizing individuals of a given animal species, given the same level
of standardization of the images. In contrast to many neural net-
work systems, no extensive training for new faces or new object
classes is required. Only a moderate number of typical examples
have to be inspected to build up a bunch graph, and individuals
can then be recognized after storing a single image.
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We tested the system with respect to rotation in depth and dif-
ferences in facial expression. Some experiments included mirror
reflection. We did not investigate robustness to other variations,
such as illumination changes or structured background. The per-
formance is high on faces of same pose. We also showed robust-
ness against rotation in depth up to about 22°. For large rotation
angles the performance degrades significantly.

Our system perfoms well compared to other systems. Results of
a blind test of different systems on the FERET database were pub-
lished in [6] and [7].

In comparison to the system [1], on the basis of which, we have
developed the system presented here we have made several major
modifications. We now utilize wavelet phase information for accu-
rate node localization. Previously, node localization was rather
imprecise. We have introduced the potential to specialize the sys-
tem to specific object types and to handle different poses with the
help of object-adapted grids. The face bunch graph is able to rep-
resent a wide variety of faces, which allows matching on face im-
ages of unseen individuals. These improvements make it possible
to extract an image graph from a new face image in one matching
process. Even if the person of the new image is not included in the
FBG, the image graph reliably refers to the fiducial points. This
considerably accelerates recognition from large databases since for
each probe image, correct node positions need to be searched only
once instead of in each attempted match to a gallery image, as was
previously necessary. We did not expect, and the system does not
show, an improvement in terms of recognition rates compared to
the preceding system.

The increased matching accuracy, the object adapted graphs,
and the face bunch graph provide the basis for further improve-
ments. In an extension of the system presented here, Kruger has
developed a method for learning weights emphasizing those
nodes which are more discriminative and more robust against
noise [8]. On model galleries of size 130-150 and probe images of
different pose, an average improvement of the first rank recogni-
tion rates of 6.5 percent has been achieved, from a mean perform-
ance of 19.8 percent without to 26.3 percent with weights.

Another individual treatment of the nodes has been developed
by Maurer and von der Malsburg [9]. They applied linear jet trans-
formations to compensate for the effect of rotation in depth. On a
frontal pose gallery of 90 faces and half profile probe images an
average improvement of the first rank recognition rate of
15 percent was achieved, from 36 percent without rotation to
50 percent and 53 percent with rotation, depending on which pose
was rotated.

In [10], the bunch graph technique has been used to fairly relia-
bly determine facial attributes from single images, such as sex or
the presence of glasses or a beard. If this technique was developed
to extract independent and stable personal attributes, such as age,
race, or sex, recognition from large databases could be improved
and considerably speeded by preselecting corresponding sectors
of the database.

Future research on the basic system will have to focus on re-
placing the manual steps in the initial phase by automatic proce-
dures. The manual selection of fiducial points could be replaced by
grouping salient points on the basis of common motion [11].
Monitoring a rotating object by continuously applying elastic
bunch graph matching can then reveal which nodes refer to corre-
sponding fiducial points in different poses [12]. See [2] for a more
detailed discussion.
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