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Information geometry has been suggested to provide a powerful tool
for analyzing multineuronal spike trains. Among several advantages
of this approach, a significant property is the close link between
information-geometric measures and neural network architectures.
Previous modeling studies established that the first- and second-order
information-geometric measures corresponded to the number of exter-
nal inputs and the connection strengths of the network, respectively.
This relationship was, however, limited to a symmetrically connected
network, and the number of neurons used in the parameter estimation
of the log-linear model needed to be known. Recently, simulation
studies of biophysical model neurons have suggested that information
geometry can estimate the relative change of connection strengths
and external inputs even with asymmetric connections. Inspired
by these studies, we analytically investigated the link between the
information-geometric measures and the neural network structure
with asymmetrically connected networks of N neurons. We focused
on the information-geometric measures of orders one and two, which
can be derived from the two-neuron log-linear model, because unlike
higher-order measures, they can be easily estimated experimentally.
Considering the equilibrium state of a network of binary model neurons
that obey stochastic dynamics, we analytically showed that the corrected
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first- and second-order information-geometric measures provided robust
and consistent approximation of the external inputs and connection
strengths, respectively. These results suggest that information-geometric
measures provide useful insights into the neural network architecture
and that they will contribute to the study of system-level neuroscience.

1 Introduction

To understand how populations of neurons interact in the brain, it is im-
portant to record from as many neurons as possible simultaneously. Due
to recent technological developments, multielectrode recordings have be-
come a standard tool in electrophysiology, enabling the recording of spik-
ing activity from tens to hundreds of neurons simultaneously (Wilson &
McNaughton, 1993; Hoffman & McNaughton, 2002; Nicolelis & Ribeiro,
2002; Buzsaki, 2004). To understand how simultaneously recorded spikes
are related to the dynamics of cell assemblies, a number of data analy-
sis techniques have been proposed (Gerstein & Perkel, 1969; Abeles &
Gerstein, 1988; Aertsen, Gerstein, Habib, & Palm, 1989; Riehle, Grün,
Diesmann, & Aertsen, 1997; Zhang, Ginzburg, McNaughton, & Sejnowski,
1998; Nadasdy, Hirase, Czurko, Csicsvari, & Buzsaki, 1999; Louie & Wilson,
2001; Grün, Diesmann, & Aertsen, 2002; Brown, Kass, & Mitra, 2004; Fellous,
Tiesinga, Thomas, & Sejnowski, 2004; Czanner, Grün, & Iyengar, 2005; Kass,
Ventura, & Brown, 2005; Tatsuno, Lipa, & McNaughton, 2006; Shimazaki
& Shinomoto, 2007; Houghton & Sen, 2008). Among those, information-
geometric analyses of multineuronal spike data have been actively studied
(Nakahara & Amari, 2002; Amari, Nakahara, Wu, & Sakai, 2003; Tatsuno
& Okada, 2004; Eleuteri, Tagliaferri, & Milano, 2005; Ikeda, 2005; Miura,
Okada, & Amari, 2006; Nakahara, Amari, & Richmond, 2006) since the
original proposal by Amari (2001).

Isolated pairs and triplets of model neurons were used (Ginzburg
& Sompolinsky, 1994) to investigate the possible relationship between
the information-geometric measures and some of the features of the
underlying neural architectures such as the connection strengths and the
number of external inputs (Tatsuno & Okada, 2004). This study showed
that for symmetrically connected networks, the first- and second-order
information-geometric measures directly represented the external inputs,
and the connection strengths, respectively, provided that the number of
neurons used in the parameter estimation of the log-linear model was
known. For asymmetric networks, however, the information-geometric
measures were shown to be dependent on both the connection strengths
and the external inputs. In other words, the information-geometric
measures could not disentangle the connection strengths and the external
inputs correctly for asymmetrically connected networks.
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In an effort to develop an analytical framework for the characterization
of multineuronal spike patterns, we have also proposed a novel method
by integrating spike train clustering (Fellous et al., 2004) and informa-
tion geometry (Lipa, Tatsuno, Amari, McNaughton, & Fellous, 2006; Lipa,
Tatsuno, McNaughton, & Fellous, 2007). In these studies, ensemble spike
trains were generated with asymmetric recurrent networks of biophysical
model neurons connected by AMPA and GABAA synapses. We found not
only that the clustering method successfully identified subgroups of neu-
rons that were characterized by partial temporal correlations but also that
the information-geometric method correctly estimated the relative change
of connection strengths and external inputs even with asymmetric connec-
tions (Lipa et al., 2006, 2007). This finding leads to the theoretical investiga-
tions of information geometry that are presented here.

In this study, we show that the difficulty for the general asymmetric case
can be corrected by analytically approximating the bias term that arises
from interactions with many other neurons. In addition, we show that the
information-geometric measures based on the two-neuron log-linear model
can be used in a network of N neurons, avoiding the complexity of using
the multineuronal log-linear model.

2 Information-Geometric Measures

We provide a brief introduction to the information-geometric method;
detailed descriptions can be found elsewhere (Amari, 2001; Nakahara &
Amari, 2002).

Information geometry is a subfield of probability theory that has emerged
from investigations of the geometrical structures of the parameter space of
probability distributions (Amari, 1985; Amari & Nagaoka, 2000). Utiliz-
ing a hierarchical structure in an exponential family or mixture family of
distributions, Amari (2001) proposed an orthogonal decomposition of in-
teractions among random variables. When a spike train is represented as
binary random variables, the joint probability distribution of N-neuronal
firings px1x2,...,xN can be represented by the log-linear model: log px1x2,...,xN is
expanded as

log px1x2...xN =
∑

i

θ
(N)
i xi +

∑
i< j

θ
(N)
i j xi x j +

∑
i< j<k

θ
(N)
i jk xi x j xk + · · ·

+ θ
(N)
1...Nx1, . . . , xN − ψ (N), (2.1)

where xi is a binary variable representing neural firing of the ith neuron
and θ

(N)
1,2,...,k represent the kth order neural interactions among N neurons.
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The first few terms of θ (N) coefficients and ψ (N) are expressed as

θ
(N)
i = log

px1=0,...,xi =1,...,xN=0

px1=0,...,xN=0

θ
(N)
i j = log

px1=0,...,xi =1,...,xj =1,...,xN=0, px1=0,...,xN=0

px1=0,...,xi =1,...,xj =0,...,xN=0 px1=0,...,xi =0,...,xj =1,...,xN=0

θ
(N)
i jk = log

px1=0,...,xi =1,...,xj =1,...,xk=1,...,xN=0 px1=0,...,xi =1,...,xj =0,...,xk=0,...,xN=0

px1=0,...,xi =1,...,xj =1,...,xk=0,...,xN=0 px1=0,...,xi =0,...,xj =1,...,xk=1,...,xN=0

× px1=0,...,xi =0,...,xj =1,...,xk=0,...,xN=0 px1=0,...,xi =0,...,xj =0,...,xk=1,...,xN=0

px1=0,...,xi =1,...,xj =0,...,xk=1,...,xN=0 px1=0,...,xN=0

· · ·
ψ (N) = − log px1=0,...,xN=0, (2.2)

where 0 ≤ i < j < k ≤ N. In practice, estimates of θs are obtained as func-
tions of maximum likelihood estimates of px1x2,...,xN , given by

px1x2,...,xN = nx1x2,...,xN∑
x1,...,xN

nx1x2,...,xN

, (2.3)

where nx1x2,...,xN is the number of trials in which the event (X1 = x1, X2 =
x2, . . . , XN = xN) occurs.

In real experiments, N, the number of interacting neurons that belong to
the network in which the recorded cells are embedded is expected to be large
but is unknown. Therefore, we cannot assume the specific number N for
the log-linear model. Furthermore, because the number of θ (N) parameters
in the log-linear model increases as 2N − 1, it is difficult to obtain a robust
estimation of all the parameters for large N. Therefore, in this study, we
focus on the information-geometric measures θ

(2)
1 , θ

(2)
2 , and θ

(2)
12 of the two-

neuron log-linear model,

log px1x2 = θ
(2)
1 x1 + θ

(2)
2 x2 + θ

(2)
12 x1x2 − ψ (2), (2.4)

which includes interactions with other N − 2 neurons implicitly. The pa-
rameters of the two-neuron model are given by

θ
(2)
1 = log

p10

p00
, θ

(2)
2 = log

p01

p00
, θ

(2)
12 = log

p11 p00

p10 p01
, ψ (2) = − log p00.

(2.5)

Note that px1x2 obtained from the N-neuron model is

px1x2 =
∑

x3,...,xN

px1x2,...,xN , (2.6)
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and the parameters θ
(2)
1 , θ

(2)
2 , and θ

(2)
12 in equation 2.5 are different from θ

(N)
1 ,

θ
(N)
2 , and θ

(N)
12 in equation 2.2. The two-neuron model gives the marginal

distribution of the N-neuron model. When this simple model is considered,
the number of parameters that need to be estimated reduces to three. Since
the above two neurons are members of an N-neuron network, θ

(2)
1 , θ

(2)
2 ,

and θ
(2)
12 will be affected by the other N − 2 neurons. By calculating these

interaction terms from the other N − 2 neurons, the method becomes
applicable in realistic experimental conditions. In the following, we
investigate in detail how θ

(2)
i and θ

(2)
i j are related to the external inputs

and the connection strengths in the general N-neuron network, with both
symmetric and asymmetric connections.

3 Model Network

Following the previous study (Tatsuno & Okada, 2004), we adopt a network
of stochastic model neurons studied by Ginzburg and Sompolinsky (1994).
The simplicity of the model allows us to study the relationship between the
information-geometric measures and the network architectures analytically.
In this section, we briefly introduce the model. A more detailed exposition
can be found elsewhere (Ginzburg & Sompolinsky, 1994).

The state of each neuron at time t takes one of two values, 0 or 1, corre-
sponding to a quiescent and active state, respectively. The total input to the
ith neuron at time t is written as

ui (t) =
N∑

j=1

J i j Sj (t) + hi , (3.1)

where J i j denotes the connection strength from the j th presynaptic neuron
to the ith postsynaptic one, and hi represents the external input to the ith
neuron. We assume that there is no self-coupling (i.e., J ii = 0) following the
previous studies (Ginzburg & Sompolinsky, 1994; Tatsuno & Okada, 2004),
but the effect of self-coupling is negligible in the analysis with a large N
limit. The neuron dynamics is determined by the transition rate w between
the binary states as

w(Si = 0 → Si = 1) = 1
τ0

g(ui ),

w(Si = 1 → Si = 0) = 1
τ0

(1 − g(ui )),

w(Si = 0 → Si = 0) = 1 − w(0 → 1),

w(Si = 1 → Si = 1) = 1 − w(1 → 0),

(3.2)

where τ0 is a microscopic characteristic time constant and g(ui ) is a mono-
tonically increasing smooth activation function such as

g(ui ) = 1 + tanh(β(ui − m))
2

, (3.3)
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where β > 0 and m are constants determining the slope and offset thresh-
old of the sigmoid. The probability of finding the system in a state
P(S1, . . . , SN, t) at time t is then provided by the following master equation:

d
dt

P(S1, . . . , SN, t) = −
N∑

i=1

w(Si → (1 − Si ))P(S1, . . . , SN, t)

+
N∑

i=1

w((1 − Si ) → Si )P(S1 . . . , 1 − Si , . . . , SN, t).

(3.4)

4 First- and Second-Order Information-Geometric Measures and
Network Parameters

4.1 Network of Two Neurons. Before we discuss a general N neuron
case, it is instructive to summarize the results from a simple example of two-
neuron networks. Here, we briefly show the results (the detailed derivation
can be found in Tatsuno & Okada, 2004).

For an asymmetrically connected two-neuron network, the mean firing
rate of each neuron in the equilibrium state is obtained as

〈S1〉 = g(h1) + �g1g(h2)
1 − �g1�g2

, (4.1)

〈S2〉 = g(h2) + �g2g(h1)
1 − �g1�g2

, (4.2)

where �g1 = g(J12 + h1) − g(h1) and �g2 = g(J21 + h2) − g(h2), respec-
tively. Because the right-hand sides of equations 4.1 and 4.2 involve J12, J21,
h1, and h2 only, the mean firing rate is expressed by the network parameters.
Using 〈S1〉 and 〈S2〉, the mean coincident firing rate is also given as

〈S1S2〉 = 1
2
{〈S1〉g(J21 + h2) + 〈S2〉g(J12 + h1)}. (4.3)

The firing rates (〈S1〉, 〈S2〉) and the covariance are related in a nontrivial
manner to the external input (h1, h2) and the connection strength (J12, J21).

For the two-neuron information-geometric measure, the joint probability
distribution is related to the above quantities by

p00 = 1 − 〈S1〉 − 〈S2〉 + 〈S1S2〉,
p01 = 〈S2〉 − 〈S1S2〉,
p10 = 〈S1〉 − 〈S1S2〉,
p11 = 〈S1S2〉.

(4.4)
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Substituting these into equation 2.5 and using equation 3.3 gives analytical
expressions for the two-neuron information-geometric measures in terms
of the network parameters,

θ
(2,A2)
1 = 2β(h1 − m)

+ log
(

2 exp[2β(h1 + h2 + J12)] + 2 exp [4βm] + 2 exp [2β (h1 + J12 + m)]
exp [2β (h1 + h2 + J12)] + exp [2β (h1 + h2 + J21)] + 2 exp [4βm]

× + exp [2β (h2 + J12 + m)] + exp [2β (h2 + J21 + m)]
+2 exp [2β (h1 + J12 + m)] + 2 exp [2β (h2 + J21 + m)]

)
,

θ
(2,A2)
2 = 2β (h2 − m)

+ log
(

2 exp [2β (h1 + h2 + J21)] + 2 exp [4βm] + 2 exp [2β (h2 + J21 + m)]
exp [2β (h1 + h2 + J12)] + exp [2β (h1 + h2 + J21)] + 2 exp [4βm]

× + exp [2β (h1 + J12 + m)] + exp [2β (h1 + J21 + m)]
+2 exp [2β (h1 + J12 + m)] + 2 exp [2β (h2 + J21 + m)]

)
,

θ
(2,A2)
12 = β (J12 + J21)

+ log

( (
exp [2β (h1 + h2 + J12)] + exp [2β (h1 + h2 + J21)] + 2 exp [2βm](

2 exp [2β (h1 + h2 + J12)] + 2 exp [4βm] + 2 exp [2β (h1 + J12 + m)]

×+2 exp[2β(h1 + J12 + m)] + 2 exp[2β(h2 + J21 + m)])(2 exp[β(2h1 + 2h2 + J12 + J21)]
+ exp[2β(h2 + J12 + m)] + exp[2β(h2 + J21 + m)])(2 exp[2β (h1 + h2 + J21)]

× +2 exp [β (2h1 + J12 + J21 + 2m)] + 2 exp [2h2 + J12 + J21 + 2m]
+2 exp [4βm] + exp [2β (h1 + J12 + m)] + exp [2β (h1 + J21 + m)]

× + exp [β (J12 − J21 + 4m)] + exp [β (J21 − J12 + 4m)]
)

+2 exp [2β (h2 + J21 + m)]
)

)
. (4.5)

Here the superscript (2, A2) means that the information-geometric measures
are calculated with the two-neuron log-linear model in an asymmetrically
connected two-neuron network. The first-order information-geometric
measures (θ (2,A2)

1 , θ
(2,A2)
2 ) are expressed by the term corresponding to the ex-

ternal input and an additional logarithmic bias term. Similarly, the second-
order information-geometric measure θ

(2,A2)
12 has the term corresponding to

the sum of the connection strength and an additional logarithmic bias term.
If we assume the symmetric connection (J12 = J21), the above expression

is significantly simplified as

θ
(2,S2)
1 = 2β (h1 − m) , θ

(2,S2)
2 = 2β (h2 − m) , θ

(2,S2)
12 = 2β J12. (4.6)

These equations show that the first- and second-order information-
geometric measures correspond to the external inputs and the connection
strengths, respectively, as previously shown (Tatsuno & Okada, 2004).

4.2 Network of N Neurons. In the previous section, we already see that
complexity differs significantly for asymmetric and symmetric connections
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(see equations 4.5 and 4.6) for even a simple two-neuron network. Because
the analytical expressions for the asymmetrically connected N neurons will
be extremely complicated, we first investigate the analytical results for the
symmetrically connected N neuron case. We then extend our investigations
to the asymmetric case.

Tatsuno and Okada (2004) showed that if the number of neurons of
the log-linear model (two in our case) and that of the network N differs,
the simple relationships in equation 4.6 no longer hold even for symmetric
networks. For example, the two-neuron log-linear model in a symmetrically
connected three-neuron network generates θ (2,S3), which has additional bias
terms as

θ
(2,S3)
1 = 2β (h1 − m) + log

1 + exp [2β ((h3 − m) + J13)]
1 + exp [2β (h3 − m)]

,

θ
(2,S3)
2 = 2β (h2 − m) + log

1 + exp [2β ((h3 − m) + J23)]
1 + exp [2β (h3 − m)]

,

θ
(2,S3)
12 = 2β J12 + log

(1 + exp[2β(h3 − m)])(1 + exp[2β((h3 − m) + J13 + J23)])
(1 + exp[2β((h3 − m) + J13)])(1 + exp[2β((h3 − m) + J23)])

.

(4.7)

Note the difference between equations 4.5 and 4.7; the logarithmic term
in equation 4.5 arises from asymmetric connections in two-neuron net-
works, while the logarithmic term in equation 4.7 stems from the third neu-
ron of symmetrically connected three-neuron networks. Note also that the
information-geometric measures calculated by the three-neuron log-linear
model, θ (3,S3), are expressed as

θ
(3,S3)
1 = 2β (h1 − m) , θ

(3,S3)
2 = 2β (h2 − m) , θ

(3,S3)
12 = 2β J12, (4.8)

involving the external input and the connection strength separately.
The above three-neuron network example suggests that the two-neuron

information-geometric measure θ (2,S3) does not represent the network archi-
tectures exactly. However, if the second logarithmic bias term in equation
4.7 is approximated, the corrected θ (2,S3) would provide a consistent approx-
imation of the external inputs and the connection strengths. We therefore
investigate the two-neuron log-linear model in a symmetrically connected
N-neuron network. By simple calculation, extending equation 4.7 to the N
neuron case yields a general relationship as

θ
(2,SN)
1 = 2β (h1 − m) + log

(
1 +∑N

j=3 exp
[
2β
((

h j − m
)+ J1 j

)]
1 +∑N

j=3 exp
[
2β
(
h j − m

)]

× +∑N−1
i=3

∑N
j>i exp

[
2β((hi − m) + (h j − m) + J1i + J1 j + J i j )

]
+∑N−1

i=3
∑N

j>i exp
[
2β((hi − m) + (h j − m) + J i j )

]
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×
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) +∑N−1
i=1, �=2

∑N
j>i, �=2 J i j

)]
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) +∑N−1
i=3

∑N
j>i J i j

)]

 ,

θ
(2,SN)
2 = 2β (h2 − m) + log

(
1 +∑N

j=3 exp
[
2β
((

h j − m
)+ J2 j

)]
1 +∑N

j=3 exp
[
2β
(
h j − m

)]

× +∑N−1
i=3

∑N
j>i exp

[
2β((hi − m) + (h j − m) + J1i + J1 j + J i j )

]
+∑N−1

i=3
∑N

j>i exp
[
2β((hi − m) + (h j − m) + J i j )

]

×
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) +∑N−1
i=2

∑N
j>i J i j

)]
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) +∑N−1
i=3

∑N
j>i J i j

)]

 ,

θ
(2,SN)
12 = 2β J12 + log



(

1 +∑N
j=3 exp

[
2β
((

h j − m
)+ J1 j + J2 j

)]
(

1 +∑N
j=3 exp

[
2β
((

h j − m
)+ J i j

)]

× +∑N−1
i=3

∑N
j>i exp

[
2β
(
(hi − m) + (

h j − m
)+ J1i + J1 j + J2i + J2 j + J i j

)]
+∑N−1

i=3
∑N

j>i exp
[
2β
(
(hi − m) + (

h j − m
)+ J1i + J1 j + J i j

)]

×
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) +∑N−1
i=1

∑N
j>i, �=2 J i j

)]) (
1 +∑N

j=3 exp
[
2β
(
h j − m

)]
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) + ∑N−1
i=1, �=2

∑N
j>i, �=2 J i j

)]) (
1 + ∑N

j=3 exp
[
2β
(
(h j − m) + J i j

)]

× +∑N−1
i=3

∑N
j>i exp

[
2β
(
(hi − m) + (

h j − m
)+ J i j

)]
+∑N−1

i=3
∑N

j>i exp
[
2β
(
(hi − m) + (

h j − m
)+ J1i + J1 j + J i j

)]

×
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) +∑N−1
i=3

∑N
j>i J i j

)])
+ · · · + exp

[
2β
(∑N

i=3 (hi − m) +∑N−1
i=2

∑N
j>i J i j

)])

 .

(4.9)

Equation 4.9 gives the relationship between θ (2,SN) and the parameters
of the network of the model neurons hi , J i j , β, and m. In the following
sections, we first approximate the logarithmic term for a uniformly con-
nected network and then extend the analysis to nonuniformly connected
asymmetric connections.

5 Uniformly Connected N Neuron Networks

As a special case of symmetric connections, we start with a network with
uniform connections and uniform external inputs. By letting hi = h and
J i j = J , equation 4.9 is reduced to

θ
(2,U N)
1 = θ

(2,U N)
2 = 2β(h − m) + log

∑N−2
i=0 N−2Ci exp

[
2β
(

i (h − m) + i(i+1)
2 J

)]
∑N−2

i=0 N−2Ci exp
[
2β
(

i (h − m) + i(i−1)
2 J

)]

= 2β (h − m) + log
A+
A−

,
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θ
(2,U N)
12 = 2β J + log



∑N−2

i=0 N−2Ci exp
[
2β
(

i (h − m) + i(i+3)
2 J

)]
∑N−2

i=0 N−2Ci exp
[
2β
(

i (h − m) + i(i+1)
2 J

)]

×
∑N−2

i=0 N−2Ci exp
[
2β
(

i (h − m) + i(i−1)
2 J

)]
∑N−2

i=0 N−2Ci exp
[
2β
(

i (h − m) + i(i+1)
2 J

)]



= 2β J + log
A3+ A−

A2+
, (5.1)

where N−2Ci is a binomial coefficient and

A± =
N−2∑
i=0

N−2Ci exp
[

2β

(
i (h − m) + i (i ± 1)

2
J
)]

,

A3+ =
N−2∑
i=0

N−2Ci exp
[

2β

(
i (h − m) + i (i + 3)

2
J
)]

.

(5.2)

In this study, we investigate the fully connected networks where each neu-
ron is connected to all other neurons. Therefore, we consider the case where
each connection is weak, typically on the order of 1/N. Otherwise the
total synaptic inputs will drive the neuron into saturation. By Stirling’s
approximation,

N! =
√

2π NNNe−N
{

1 + O
(

1
N

)}
, (5.3)

and by rewritingN′ = N − 2, J = c/N, and i = (N − 2)r = N′r , we obtain

N−2Ci = N′CN′r

= 1√
2π N′r (1 − r )

exp
[
N′ {−r log r − (1 − r ) log (1 − r )

}]

×
{

1 + O
(

1
N′

)}

= 1√
2π N′r (1 − r )

exp
[
N′ H(r )

] {
1 + O

(
1
N′

)}
, (5.4)
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where H(r ) = −r log r − (1 − r ) log(1 − r ). Note that this approximation is
accurate when N’ is large. We then obtain

A≡
N−2∑
i=0

N−2Ci exp
[

2β

(
i (h − m) + i2

2
J
)]

=
1∑

r=0
1

N′ step

1√
2π N′r (1 − r )

exp
[
N′ H(r ) + 2βN′(h − m)r + β(N′r )2 J

]

×
{

1 + O
(

1
N′

)}

=
∑

r

exp
[

N′
{

H(r ) + 2β(h − m)r + βcr2 − 1
2N′ log N′

− 1
2N′ log(2πr (1 − r ))

}]{
1 + O

(
1
N′

)}

=
∑

r

exp
[
N′ f (r )

] {
1 + O

(
1
N′

)}
, (5.5)

where f (r ) = H(r ) + 2β(h − m)r + βcr2 − log N′/(2N′) − log(2πr (1 − r ))/
(2N′).

To investigate further, by taking a large N’ limit, we approximate
equation 5.5 using a continuous variable r. With Taylor’s expansion, A is
written as

A≈
∫ 1

0
exp[N′ f (r )]

{
1 + O

(
1
N′

)}
dr

=
∫ 1

0
exp

[
N′
{

f (r0) + 1
2

f ′′(r0) (r − r0)2 + 1
6

f (3)(r0) (r − r0)3

+ 1
24

f (4)(r0) (r − r0)4 + O((r − r0)5)
}]

×
{

1 + O
(

1
N′

)}
dr

≈ exp[N′ f (r0)]
∫ ∞

−∞
exp

[
N′

2

{
f ′′(r0) (r − r0)2 + 1

3
f (3)(r0) (r − r0)3

+ 1
12

f (4)(r0) (r − r0)4 + O((r − r0)5)
}]

×
{

1 + O
(

1
N′

)}
dr

= exp
[
N′ f (r0)

]
G(r0), (5.6)
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where r0 is given by r0 = arg maxr f (r ), yielding

log
1 − r0

r0
+ 2β (h − m) + 2βcr0 = 0, (5.7)

and G(r0) is given by

G(r0) =
∫ ∞

−∞
exp

[
N′

2

{
f ′′(r0) (r − r0)2 + 1

3
f (3)(r0) (r − r0)3

+ 1
12

f (4)(r0) (r − r0)4 + O((r − r0)5)
}]

×
{

1 + O
(

1
N′

)}
dr. (5.8)

When a new variable u is defined as

u =
√

N′r, (5.9)

G(r0) is written as

G(u0) = 1√
N′

∫ ∞

−∞
exp

[
1
2

{
f ′′(u0) (u − u0)2 + 1

3
f (3)(u0)

(u − u0)3

√
N′

+ 1
12

f (4)(u0)
(u − u0)4

N′ + O
(

1

N′√N′

)}]

×
{

1 + O
(

1
N′

)}
du. (5.10)

Since the integral of the (u − u0)3 term is 0 and that of the (u − u0)4 term is
in O (1/N′), G(u0) is given as

G(u0) = 1√
N′

∫ ∞

−∞
exp

[
1
2

{
f ′′(u0) (u − u0)2 + O

(
1
N′

)}]

×
{

1 + O
(

1
N′

)}
du

=
∫ ∞

−∞
exp

[
N′

2
f ′′(r0) (r − r0)2

]{
1 + O

(
1
N′

)}
dr. (5.11)
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With the saddle point approximation, we have

G(r0) ≈
√

2π

N′| f ′′(r0)|
{

1 + O
(

1
N′

)}
. (5.12)

Thus, A is given as

A = exp
[
N′ f (r0)

]√ 2π

N′| f ′′(r0)|
{

1 + O
(

1
N′

)}
. (5.13)

A± and A3+ are similarly calculated as

A± =
∑

r

exp
[
N′ f (r ) ± βcr

] {
1 + O

(
1
N′

)}

≈
∫

exp
[
N′ f (r ) ± βcr

] {
1 + O

(
1
N′

)}
dr

≈ Aexp [±βcr0]
{

1 + O
(

1
N′

)}
,

A3+ =
∑

r

exp
[
N′ f (r ) + 3βcr

] {
1 + O

(
1
N′

)}

≈
∫

exp
[
N′ f (r ) + 3βcr

] {
1 + O

(
1
N′

)}
dr

≈ Aexp [3βcr0]
{

1 + O
(

1
N′

)}
. (5.14)

Therefore, we obtain

log
A+
A−

= log
Aexp [βcr0]

{
1 + O

( 1
N′
)}

Aexp [−βcr0]
{
1 + O

( 1
N′
)}

= log
(

exp [2βcr0]
{

1 + O
(

1
N′

)})

= 2βcr0 + O
(

1
N′

)
, (5.15)

and similarly,

log
A3+ A−

A2+

= log

(
Aexp [3βcr0]

{
1 + O

( 1
N′
)}) (

Aexp [−βcr0]
{
1 + O

( 1
N′
)})

(
Aexp [βcr0]

{
1 + O

( 1
N′
)})2



2322 M. Tatsuno, J. Fellous, and S. Amari

= log
(

exp [0]
{

1 + O
(

1
N′

)})

= 0 + O
(

1
N′

)
. (5.16)

From equations 5.15 and 5.16 and letting N′ = N in a large N limit, we
obtain

θ
(2,U N)
1 = θ

(2,U N)
2 = 2β (h − m) + 2βcr0 + O

(
1
N

)
,

θ
(2,U N)
12 = 2β J + O

(
1
N

)
. (5.17)

Equation 5.17 shows that in a large N limit, the second logarithmic bias
term of the first-order information-geometric measures (θ (2,U N)

1 and θ
(2,U N)
2 )

can be approximated by 2βcr0 and that the second logarithmic bias term
of the second-order information-geometric measure θ

(2,U N)
12 reduces to 0.

θ
(2,U N)
12 therefore provides a consistent approximation of the connection

strengths. By defining the corrected first-order information-geometric mea-
sures, θ̃

(2,U N)
1 and θ̃

(2,U N)
2 , as

θ̃
(2,U N)
1 = θ

(2,U N)
1 − 2βcr0,

θ̃
(2,U N)
2 = θ

(2,U N)
2 − 2βcr0,

(5.18)

we obtain

θ̃
(2,U N)
1 = θ̃

(2,U N)
2 = 2β (h − m) + O

(
1
N

)
, (5.19)

which provide a consistent approximation of the external inputs.
To further investigate the bias term 2βcr0, we calculated r0 in equation

5.7 by finding an intersecting point between y = − log ((1 − r0) /r0) and
y = 2β(h − m) + 2βcr0. Because the second equation represents a linear line
with a slope of 2βc with positive β, the number of intersecting points
depends on the connection strength parameterc. For negative c, there is
only one intersecting point. For positive c, in the weak connection range of
c < 2/β, only one intersecting point exists as well. For the strong connection
range of c > 2/β, there are two cases in which only one intersecting point
or three intersection points exist, depending on the strength of the external
input h.

To calculate the concrete value of r0, we assume that the network parame-
ters are known. Here, we used biologically plausible parameters following



Information Geometry and Network Parameters 2323

Figure 1: Estimation of r0 and the relative error of the first-order information-
geometric measure (θ (2,U N)

1 and θ
(2,U N)
2 ) for uniformly connected networks.

(A) y = − log((1 − r0)/r0) (dashed line) and y = 2β(h − m) + 2βcr0 for h = −10
(solid line), h = 0 (dotted line), and h = 10 (dash-dot line) were plotted for neg-
ative connection networks (c = −10). An intersection point provides a solution
for r0. (B) Estimation of r0 for weakly positive connection networks (c = 10).
(C) Estimation of r0 for strongly positive connection networks (c = 40). Note
that there is a transition between one-solution mode and three-solution mode
depending on the value of h. (D) Estimation of the relative error |cr0|/|h − m|
for negative connection networks (c = −10). (E) Estimation of the relative error
for a weakly positive connection network (c = 10). (F) Estimation of the relative
error for a strongly positive connection network (c = 40). Because of bistability
of the equilibrium state, the hysteresis is observed.

the discussion in Ginzburg and Sompolinsky (1994): β = 0.1 and m = 20
for the sigmoid function, c in [−10, 40] for the connection strengths, and
h in [−10, 10] for the external inputs. Note however, that the following
discussion is also valid for other values of β and m.

Figures 1A to 1C show the intersecting points between
y = − log ((1 − r0) /r0) and y = 2β(h − m) + 2βcr0 for the three typical
conditions: the negative connection (c = −10), the weakly positive con-
nection (c = 10, satisfying c < 2/β), and the strongly positive connection
(c = 40, satisfying c > 2/β), respectively. The dashed line represents y =
− log ((1 − r0) /r0), and the solid, dotted, and dash-dot lines represent y =
2β(h − m) + 2βcr0 corresponding to the different external input levels of
h = −10, h = 0, and h = 10, respectively. For the negative (c = −10)
and weakly positive connections (c = 10), Figures 1A and 1B show that
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there is only one solution for r0, and it monotonically increases with
the external input parameter h. For the strongly positive connection
(c = 40), Figure 1C shows a transition between the one-solution and the
three-solution mode, depending on the value of h. Letting the two solutions
of f ′(r ) be r1 and r2 (r1 < r2), a simple calculation yields that when h <

(1/2β) log (r2/ (1 − r2)) − cr2 + m or h > (1/2β) log (r1/ (1 − r1)) − cr1 + m,
there is one solution. Otherwise there are three-solutions. Furthermore,
because both the smallest and the largest solutions are stable in the three-
solution mode, it exhibits hysteresis that depends on the history of the
solution. Note also that two stable solutions correspond to the two maxima
of f (r ), where their values become equal at h = 0. Since the saddle point
approximation becomes poor when multiple local maxima exist, it would
not give a good approximation in the vicinity of h = 0. However, except
this narrow region where two maxima of f (r ) have similar values, the
saddle point approximation would give a practically good approximation
by choosing the higher maximum of f (r ) as the solution for r0.

Figures 1D to 1F show a relative error measured by the ratio between the
effect of interest and the bias term of the right-hand side of the first-order
information-geometric measures (θ (2,U N)

1 and θ
(2,U N)
2 ) in equation 5.17,

|2βcr0|
|2β(h − m)| = |cr0|

|h − m| . (5.20)

For the negative and weakly positive connections, the error increases with
h, reaching up to 10% for the negative connection (see Figure 1D) and 16%
for the weakly positive connection (see Figure 1E). For the strongly positive
connection, the hysteresis emerged because of the bistability of the solutions
(see Figure 1F). If the smaller solution is selected, the relative error reaches
up to 40%. If the larger solution is chosen, the second bias term is as large
as the quantity of interest. However, when the bias term 2βcr0 is taken into
account, the corrected information-geometric measures (θ̃ (2,U N)

1 and θ̃
(2,U N)
2 )

provide consistent approximations of the external inputs.
To investigate the relationship between r0 and the equilibrium state and

to verify if the network parameters investigated above cover most of the fir-
ing rate in the equilibrium state, we calculated the equilibrium state S̄i from

S̄i = g


 N∑

j=1

J i j S̄ j + hi


 . (5.21)

By letting J i j = c/N and hi = h, we write the equilibrium state as S̄i = S̄,
and equation 5.21 reduces to

S̄ = g(c S̄ + h). (5.22)
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Figure 2: Stability of the equilibrium state of uniformly connected networks.
(A) y = S̄ (dashed line) and y = g(c S̄ + h) for h = −10 (solid line), h = 0 (dot-
ted line) and h = 10 (dash-dot line) were plot for negative connection networks
(c = −10). An intersecting point provides the solution for S̄. When the condition
|g′(c S̄ + h)| < 1 holds, the intersecting point is stable. (B) The equilibrium solu-
tion S̄ for a weakly positive connection network (c = 10). (C) The equilibrium
solution S̄ for a strongly positive connection network (c = 40). Note that there
is transition between one-stable-equilibrium state and three-equilibrium states
where the smallest and largest ones are stable. Note also that S̄ obtained by the
investigated network parameters covers practically all firing rate from nearly 0
through almost 1.

Figures 2A to 2C show the intersecting point between y = S̄ and
y = g(c S̄ + h) for the negative connection (c = −10), the weakly positive
connection (c = 10), and the strongly positive connection (c = 40), respec-
tively. The intersecting point is stable when the condition |g′(c S̄ + h)| < 1
holds. As we saw in Figures 1A through 1C, one stable equilibrium state
exists for the negative and weakly positive connections (see Figures 2A and
2B), but there is a transition between the one-stable-solution mode and the
three-solutions mode for the strongly positive connection (see Figure 2C). It
is also clearly seen that the equilibrium state S̄ covers practically the entire
firing rate range from 0 to 1.

We also derived the relationship between r0 and S̄. From equation 5.7,
we obtain

r0

1 − r0
= exp [2β (cr0 + h − m)] . (5.23)

Rewriting this equation yields

r0 = exp [2β (cr0 + h − m)]
1 + exp [2β (cr0 + h − m)]

. (5.24)

As for S̄, equation 5.22 yields,

S̄ = exp
[
2β
(
c S̄ + h − m

)]
1 + exp

[
2β
(
c S̄ + h − m

)] . (5.25)
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Thus, this analysis yields the relationship

S̄ = r0, (5.26)

suggesting that r0 can be replaced by the equilibrium state S̄. This relation-
ship will be useful because S̄ can be estimated from observed spike train
data.

In summary, the corrected first-order information-geometric measures
(θ̃ (2,U N)

1 and θ̃
(2,U N)
2 ) and the second-order information-geometric measure

θ
(2,U N)
12 provide consistent approximation of the external inputs and the

connection strengths, respectively.

6 Nonuniformly and Asymmetrically Connected
N Neuron Networks

We next consider a nonuniformly connected case, where connections are
asymmetric in general. We first write hi and J i j as the mean and the
deviation,

hi = h̄ + εi

J i j = J̄ + ε′
i j

N
= c̄ + ε′

i j

N
, (6.1)

where h̄ and J̄ = c̄/N represent their average value, respectively. A, A±,
and A3+ are then written as

A=
N−2∑
i=0

N−2Ci exp


2β

i∑
j=1

(
h j − m

)+ β

i2∑
j=1

J i j




A± =
N−2∑
i=0

N−2Ci exp


2β

i∑
j=1

(
h j − m

)+ β

i2∑
j=1

J i j ± β

i∑
j=1

J i j


 (6.2)

A3+ =
N−2∑
i=0

N−2Ci exp


2β

i∑
j=1

(
h j − m

)+ β

i2∑
j=1

J i j + 3β

i∑
j=1

J i j


.

Here we can rewrite J i j as Jk , k representing index pairs (i,j), without losing
generality. A is then calculated as

A=
N−2∑
i=0

N−2Ci exp


2β

i∑
j=1

((
h̄ + ε j

)− m
)+ β

i2∑
k=1

(
c̄ + ε′

k

N

)

=
∑

r
N′CN′r exp


2β(h̄ − m)N′r + β c̄ N′r2 + 2β

N′r∑
j=1

ε j + β

N

(N′r )2∑
k=1

ε′
k



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=
∑

r

1√
2π N′r (1 − r )

exp
[
N′ H(r )

] {
1 + O

(
1
N′

)}

× exp


2β(h̄ − m)N′r + β c̄N′r2 + 2β

N′r∑
j=1

ε j + β

N

(N′r )2∑
k=1

ε′
k




≈
∑

r

1√
2π N′r (1 − r )

exp

[
N′
{

H(r ) + 2β(h̄ − m)r + β c̄r2

+2β

(
1

N′r

N′r∑
j=1

ε j

)
r + β

(
1

(N′r )2

(N′r )2∑
k=1

ε′
k

)
r2

}]

×
{

1 + O
(

1
N′

)}

=
∑

r

exp
[

N′
{

H(r ) + 2β(h̄ − m)r + β c̄r2

− 1
2N′ log N′ − 1

2N′ log (2πr (1 − r )) + hε(r )r + Jε′ (r )r2
}]

×
{

1 + O
(

1
N′

)}

=
∑

r

exp
[
N′ f̄ (r )

] {
1 + O

(
1
N′

)}
, (6.3)

where

hε(r ) =

 1

N′r

N′r∑
j=1

ε j


 ,

Jε′ (r ) =

 1

(N′r )2

(N′r )2∑
k=1

ε′
k


 , (6.4)

and

f̄ (r ) = H(r ) + 2β(h̄ − m)r + β c̄r2 − 1
2N′ log N′

− 1
2N′ log (2πr (1 − r )) + hε(r )r + Jε′ (r )r2. (6.5)
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When hε(r ) and hε(r ) are small, they can be replaced by hε(r0) and hε(r0),
respectively. Thus, we obtain

f̄ (r ) = H(r ) + 2β(h̄ − m)r + β c̄r2 − 1
2N′ log N′

− 1
2N′ log (2πr (1 − r )) + hε(r0)r + Jε′ (r0)r2. (6.6)

When the saddle point approximation is used,

A≈
∫

exp[N′ f̄ (r )]
{

1 + O
(

1
N′

)}
dr

≈ exp[N′ f̄ (r̄0)]

√
2π

N′| f ′′(r̄0)|
{

1 + O
(

1
N′

)}
(6.7)

holds where r̄0 is obtained by r̄0 = arg maxr f̄ (r ). It yields

log
1 − r̄0

r̄0
+ 2β

(
h̄ − m

)+ 2β c̄r̄0 + hε(r0) + 2Jε′ (r0)r̄0 = 0. (6.8)

A± and A3+ are now calculated as

A± =
∑

r
N′CN′r exp


2β

(
h̄ − m

)
N′r + β c̄ N′r2 + 2β

N′r∑
j=1

ε j

+ β

N′

(N′r )2∑
k=1

ε′
k ±

{
β c̄r + β

N′

N′r∑
k=1

ε′
k

}

=
∑

r

1√
2π N′r (1 − r )

exp
[
N′ {H(r ) + 2β(h̄ − m)r + β c̄r2

+2βhε(r )r + β Jε′ (r )r2}±
{
β c̄r + β J (1)

ε′ (r )r
}]

×
{

1 + O
(

1
N′

)}

=
∑

r

exp
[

N′ f̄ (r ) ±
{
β c̄r + β J (1)

ε′ (r )r
}]{

1 + O
(

1
N′

)}
,
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A3+ =
∑

r
N′CN′r exp


2β

(
h̄ − m

)
N′r + β c̄ N′r2 + 2β

N′r∑
j=1

ε j

+ β

N′

(N′r )2∑
k=1

ε′
k + 3

{
β c̄r + β

N′

N′r∑
k=1

ε′
k

}

=
∑

r

1√
2π N′r (1 − r )

exp
[
N′ {H(r ) + 2β(h̄ − m)r + β c̄r2

+2βhε(r )r + β Jε′ (r )r2}+ 3
{
β c̄r + β J (1)

ε′ (r )r
}]

×
{

1 + O
(

1
N′

)}

=
∑

r

exp
[

N′ f̄ (r ) + 3
{
β c̄r + β J (1)

ε′ (r )r
}]{

1 + O
(

1
N′

)}
, (6.9)

where

J (1)
ε′ (r ) =

(
1

N′r

N′r∑
k=1

ε′
k

)
(6.10)

By the saddle point approximation, A± and A3+ are approximated as

A± ≈ Aexp
[
±
(
βcr̄0 + β J (1)

ε′ (r̄0)r̄0

)]{
1 + O

(
1
N′

)}

A3+ ≈ Aexp
[
3
(
βcr̄0 + β J (1)

ε′ (r̄0)r̄0

)]{
1 + O

(
1
N′

)}
.

(6.11)

By letting N′ = N for large N, we obtain,

θ
(2,AN)
1 = 2β (h1 − m) + 2βcr̄0 + 2β J (1)

ε′ (r̄0)r̄0 + O
(

1
N

)

θ
(2,AN)
2 = 2β (h2 − m) + 2βcr̄0 + 2β J (1)

ε′ (r̄0)r̄0 + O
(

1
N

)

θ
(2,AN)
12 = β (J12 + J21) + O

(
1
N

)
.

(6.12)

By assuming that ε′
k is a random variable with the mean 0 and variance σ ′2,

ε′
k ∼ N

(
0, σ ′2) , (6.13)
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the distribution of J (1)
ε′ (r̄0) is estimated as

J (1)
ε′ (r̄0) = 1

Nr̄0

Nr̄0∑
k=1

ε′
k ∼ N

(
0,

σ ′2

Nr̄0

)
. (6.14)

Therefore, we obtain

θ
(2,AN)
1 = 2β (h1 − m) + 2βcr̄0 + O

(
1
N

)

θ
(2,AN)
2 = 2β (h2 − m) + 2βcr̄0 + O

(
1
N

)

θ
(2,AN)
12 = β (J12 + J21) + O

(
1
N

)
.

(6.15)

Finally, by assuming that ε j is a random variable with the mean 0 and
variance σ 2,

ε j ∼ N
(
0, σ 2) , (6.16)

the distribution of hε(r ) and Jε′ (r ) in equation 6.4 is estimated as

hε(r ) ∼ N
(

0,
σ 2

Nr

)
,

Jε′ (r ) ∼ N

(
0,

σ ′2

(Nr )2

)
.

(6.17)

Therefore, for the large N limit, equation 6.8 reduces to

log
1 − r̄0

r̄0
+ 2β

(
h̄ − m

)+ 2βcr0 = 0, (6.18)

which is the same as equation 5.6. Thus, by letting r̄0 = r0, we obtain

θ
(2,AN)
1 = 2β (h1 − m) + 2βcr0 + O

(
1
N

)
,

θ
(2,AN)
2 = 2β (h2 − m) + 2βcr0 + O

(
1
N

)
,

θ
(2,AN)
12 = β (J12 + J21) + O

(
1
N

)
,

(6.19)



Information Geometry and Network Parameters 2331

which is equivalent to equation 5.10. Finally, by defining the corrected first-
order information-geometric measures as

θ̃
(2,AN)
1 = θ

(2,AN)
1 − 2βcr0,

θ̃
(2,AN)
2 = θ

(2,AN)
2 − 2βcr0,

(6.20)

they provide consistent approximation of the external inputs,

θ̃
(2,AN)
1 = 2β (h1 − m) + O

(
1
N

)
,

θ̃
(2,AN)
2 = 2β (h2 − m) + O

(
1
N

)
. (6.21)

In summary, the corrected first-order information-geometric measures
(θ̃ (2,AN)

1 and θ̃
(2,AN)
2 ) and the second-order information geometric-measure

θ
(2,AN)
12 provide consistent approximation of the external inputs and the

connection strengths, respectively. In other words, the corrected first- and
second-order information-geometric measures of the two-neuron log-linear
model are proven to provide useful insights into the network architectures
even in the case of nonuniformly connected asymmetric networks.

7 Discussion

We have investigated the relationship between the information-geometric
measures and two network parameters, corresponding to the connection
strengths and the external inputs, in an N neuron network. We focused
on the information-geometric measures given by the two-neuron log-linear
model because it is the simplest of all possible information-geometric mea-
sures and can be estimated rather easily in real experimental settings. Using
a stochastic binary model neural network in the equilibrium state, we de-
rived an explicit relationship between the measures θ (2) and the network
parameters for symmetrically connected networks (see equation 4.9) and
simplified it for uniformly connected networks (see equation 5.1). Then in
the large N limit, we estimated the accuracy of the information-geometric
measures. We showed that the information-geometric measures provided
a consistent approximation of the network parameters for both uniformly
connected (see equations 5.17 and 5.19) and nonuniformly and asymmet-
rically connected networks (see equations 6.19 and 6.21). These results
therefore suggest that the corrected first- and second-order information-
geometric measures of the two-neuron log-linear model provide useful
insights into the underlying network architecture.
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In this letter, we considered only the lag-zero information-geometric
measure, θ (2)

12 = θ
(2)
12 (0), as an estimator of the connection strength. We could

extend the measure to the time-lagged information-geometric measure
θ

(2)
12 (τ ). As previous studies (Ginzburg & Sompolinsky, 1994; Tatsuno &

Okada, 2004) suggest, the time-lagged measure would provide information
about the directionality of connections. Therefore, one of the future direc-
tions to take will be to investigate the time-lagged information-geometric
measure θ

(2)
12 (τ ) and estimate the directionality of asymmetrically connected

networks. In addition, in this study, we considered only the case of random
gaussian connections with small variance. It is therefore interesting to in-
vestigate the case with large variance, for example, the regime in which the
system becomes glassy, in the future.

Regarding the number of neurons included in the log-linear model, we
focused on the two-neuron log-linear model. When an experimental situa-
tion allows only a limited number of trials, the two-neuron log-linear model
will provide a robust estimation of all three parameters: θ (2)

1 , θ (2)
2 , and θ

(2)
12 . As

the previous study indicated (Tatsuno & Okada, 2004), however, if a larger
number of trials is available, the higher-order log-linear model is expected
to provide better estimations. Thus, it is interesting to extend the result of
this study to a higher-order log-linear model in the future.

Our previous work showed that the information-geometric measures
could not disentangle the connection strengths and the external inputs cor-
rectly for asymmetrically connected networks (Tatsuno & Okada, 2004). On
the other hand, our previous biophysical simulations indicated that they
indeed estimated the relative change of connection strengths and external
inputs successfully even with asymmetric connections (Lipa et al., 2006,
2007). This study explains this apparent discrepancy. The discrepancy be-
tween these two works arises because the former study used a network of
only a couple of neurons in a high-firing-rate range where the estimation
error is high. The latter study used a network of 10 neurons in a low but
realistic firing-rate range where the error is smaller. Both studies used the
uncorrected information-geometric measures. In this letter, we showed that
the corrected information-geometric measures can indeed approximate the
network parameters regardless of firing-rate range.

The second-order information-geometric measure of the two-neuron log-
linear model θ

(2)
12 can be considered an alternative to the correlation coef-

ficient to quantify the statistical dependence between two binary random
variables. Both θ

(2)
12 and the correlation coefficient are calculated from two

spike trains, but θ
(2)
12 has significant advantages; it can quantify pure interac-

tions that are independent of the mean firing-rate modulations, and it pro-
vides a consistent approximation of the connection strengths, as we showed
in this letter. These two properties of the information-geometric measures
will be very useful when applied to multineuronal electrophysiological
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data. With the information-geometric measures, neuronal assemblies that
exhibit increased pure correlations can be detected and may lead to the iden-
tification of neuronal subgroups that play important cognitive functions.
Furthermore, assessment of the connection strengths by the information-
geometric measures may lead, for the first time, to estimates on network
changes from in vivo recordings and thus is expected to have a significant
impact on the study of learning and memory consolidation (Lipa et al.,
2006, 2007).

In this letter, we chose the value of model parameters β and m. In practice,
these parameters should be calculated from spike train data. Generally,
however, this task may be an ill-posed problem because multiple sets of
parameters may produce the same spike trains. But because p00, p01,p10,
p11, and mean firing rate Si can be estimated from the data, they may
be used for the model parameter estimation. For example, for a uniform
connection case, the following equations are obtained:

p00 = exp [−βcS]
exp [−βcS] + exp [2β (h − m) + cS] + exp

[
2 c

N + 3cS + 4β (h − m)
] ,

p01 = p10 = exp[2β(h − m) + cS]
exp[−βcS] + exp[2β(h − m) + cS] + exp[2 c

N + 3cS + 4β(h − m)]
,

p11 = exp
[
2 c

N + 3cS + 4β (h − m)
]

exp [−βcS] + exp [2β (h − m) + cS] + exp
[
2 c

N + 3cS + 4β (h − m)
] ,

log
1 − S

S
+ 2β (h − m) + 2βcS = 0. (7.1)

Assuming that N is a typical number of synaptic inputs in the neocortex
(i.e., between 5,000 and 10,000), these equations can be solved for β, m, c,
and h. Obtaining analytical solutions may be difficult because this is a set
of four nonlinear equations, but they can be solved numerically. Although
the calculations for general asymmetric connections are more difficult, our
biophysical simulation using the NEURON simulator suggests that rela-
tive changes of connection strengths and external inputs can be estimated
from spike train data (Lipa et al., 2006, 2007). Electrophysiological experi-
ments could therefore use such an analysis to determine whether connection
strengths are modified by experience. In summary, with values of β and r0

estimated from spike trains, the bias correction term of the information-
geometric measures can also be estimated. This makes the method valuable
not only theoretically but also in practice.

To understand how the brain works in terms of groups of interacting
neurons, further development of analytical techniques and recording tech-
nology is necessary. The information-geometric method is a promising an-
alytical technique and will provide a useful tool for spike train analysis in
both in vitro and in vivo recordings.
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