
Reliability and precision are two different quantities. 
When you make an appointment with your friend, she 
can either keep the appointment or not show up at all. 
If she does show up, she might or might not be on time. 
The former uncertainty is related to reliability, whereas 
the latter is related to precision. When the same stimulus 
waveform is repeatedly injected at the soma of a neuron 
in vitro (FIG. 1a), a similar spike train is obtained on each 
trial1,2 (FIG. 1b). When approximately the same number 
of spikes occur on each trial the neuron is said to be 
reliable, whereas when the spikes occur almost at the 
same time across trials it is said to be precise (FIG. 1c). 
For a single neuron, the potential information content 
of precise and reliable spike times is many times larger 
than that which is contained in the firing rate, which 
is averaged across a typical interval of a hundred milli­
seconds3–6. The information contained in spike timing 
is available immediately, rather than after an averaging 
period. Furthermore, the timing of patterns of spikes 
can potentially transmit even more information than 
the timing of the individual constituent spikes3,7. The 
potential relevance of spike patterns becomes apparent 
when we consider neurons at the population level: when 
a group of similar neurons (a ‘pool’) produces precise 
and reliable spike trains, the neurons they project to 
receive volleys of synchronous spikes8,9. This opens up 
the possibility of communicating between different 
cortical areas through synchronous spike volleys. 

In contrast to the in vitro situation described 
above, in the intact cortex most excitatory synaptic 
inputs arrive at the dendrites rather than at the soma 
(FIG. 1d), and synaptic transmission is typically unreli­
able10–13. Furthermore, most of these dendritic inputs 

are not directly related to ongoing sensory stimula­
tion; rather, they reflect spatiotemporally structured 
internal activity. Therefore, when the same stimulus 
is presented repeatedly, the resulting spike trains are  
usually neither precise nor reliable when they  
are aligned to the stimulus onset6. Instead, neural 
activity in vivo might be dominated by internally 
generated complex reverberations or rhythmic oscilla­
tions, and precise and reliable spike trains might only 
emerge after they have been aligned according to the 
phase of the oscillation (FIG. 1e).

Current technologies are progressing to the point 
where it is possible to record the simultaneous spik­
ing activity of hundreds of neurons, as well as to 
manipulate their spike timing14,15. However, without 
a theoretical framework for understanding cortical 
information processing, such data might not be eas­
ily interpretable. A key to cortical computations is the 
integration of feedforward and top-down information, 
which occurs at the level of the single cortical neu­
ron. In order to fully understand this process we need 
to determine the computational role of precise and 
reliable spike times. This Review focuses on precisely 
emitted spike patterns and their theoretical implica­
tions, and aims to set the stage for the large-scale 
study of cortical information processing. We review 
the biophysical mechanisms that are responsible for  
generating spike patterns and describe methods  
for uncovering spike patterns in the presence of corti­
cal background activity. Finally, we link the integra­
tion of temporally precise synaptic inputs in active 
dendrites to communication, using spike volleys, 
within and between cortical areas.
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Spike time
The time of occurrence of an 
action potential, relative to 
stimulus onset or another 
event.

Spike volleys
A set of spikes emitted at 
approximately the same time 
(typically with a temporal 
spread of between 1 and 10 
ms) by a pool of neurons.

Regulation of spike timing in visual 
cortical circuits
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Abstract | A train of action potentials (a spike train) can carry information in both the average 
firing rate and the pattern of spikes in the train. But can such a spike-pattern code be 
supported by cortical circuits? Neurons in vitro produce a spike pattern in response to the 
injection of a fluctuating current. However, cortical neurons in vivo are modulated by local 
oscillatory neuronal activity and by top-down inputs. In a cortical circuit, precise spike 
patterns thus reflect the interaction between internally generated activity and sensory 
information encoded by input spike trains. We review the evidence for precise and reliable 
spike timing in the cortex and discuss its computational role.
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Feedforward information
In the context of stimulus–
response circuitry, feedforward 
information is information that 
is processed in a single 
direction — from sensory input 
through perceptual analysis to 
motor output — without 
involving feedback information 
flowing backwards from ‘higher’ 
centres to ‘lower’ centres.

Top-down information
The flow of information from 
‘higher’ to ‘lower’ centres, 
conveying knowledge derived 
from previous experience 
rather than from sensory 
stimulation.

What can we learn from spike patterns in vitro?
Precision and reliability of in vitro spike trains. When 
a cortical neuron in a slice preparation is repeatedly 
injected with the same current waveform it produces 
precise and reliable spike trains1. A spike-time histogram 
generated from the results of multiple trials of either 
in vitro or model neurons shows transient peaks cor­
responding to spike alignments, which are referred to 
as events (FIG. 2a–c). Quantitatively, the reliability of an 
event is the fraction of trials on which a spike occurs 
at that time1,16. The response is said to be precise when 
the standard deviation of the spike times (also referred 
to as the ‘jitter’) in an event across trials is small. In 
principle precision and reliability are independent 
quantities, but in practice they are often related17. For 
most experimental data sets it is not straightforward to 
calculate the precision and reliability because of back­
ground noise. There are several different ways to obtain 
these measurements (BOX 1).

Detecting spike patterns in vitro. A single-neuron spike 
pattern is a sequence of spike times that either occur 
together in a trial or do not occur at all. For example, a 
neuron can respond to a certain segment of a stimulus 
with a pattern comprised of two spikes that are always 
separated by 18 ms. Analysis of data recorded from a 
motion-sensitive neuron in the fly brain shows that such 
spike pairs provide more than twice the information pro­
vided by single spikes7, suggesting that information is  
coded in the pattern in addition to in the individual 
spike times. A first step in evaluating the possible role 
of spike patterns in cortical slices in vitro is to detect 
them. For a series of trials, the data can be arranged to 
form a similarity matrix, and a clustering algorithm can 
be used to identify spike patterns. Spike patterns have 
been uncovered in experimental data using this proce­
dure18, which is illustrated in FIG. 3 for data taken from 
a model neuron.

Factors affecting reliability and precision. Simple 
models of an in vitro preparation in which synaptic 
transmission is blocked and the same somatic current 
is injected repeatedly suggest that imprecision is mainly 
due to variability in the membrane voltage just before 
the spike, and that this is inversely proportional to the 
rate of change of the voltage19,20. Thus, a precisely timed 
spike follows a rapidly depolarizing current. There are 
other sources of imprecision: the spike threshold can 
change with the rate of voltage change21 or membrane 
currents can be activated by neuromodulators. As the rate 
of change of the membrane voltage generally increases 
with the amplitude of the stimulus, the precision should 
improve as the stimulus amplitude increases; this has 
indeed been observed both in vitro22,23 and in vivo24,25.

In the situation described above, trial-to-trial unre­
liability results from a failure of spiking, which occurs 
when the membrane voltage does not reach the spike 
threshold. In this circumstance, the maximum voltage 
deflection caused by the stimulus is, on average, below the 
threshold. The probability of spike failure then depends 
on how far the peak is below the threshold and on how 
broad the peak is. The following argument shows that 
spike failure can lead to distinct spike patterns. For the 
model neuron described above and in FIG. 3, spikes occur 
at or close to peaks in the stimulus waveform. When, on a 
given trial, a peak is missed, the neuron might spike at the 
next available peak. On a trial in which the neuron does 
spike on the first peak, it might not be able to spike on 
the next peak because of afterhyperpolarization currents or 
other intracellular events. On these two trials the neuron’s 
spikes will correspond to two distinct sequences of peaks 
(FIG. 3g). Across the two trials the neuron will thus pro­
duce distinct spike patterns18,26, as observed in vitro19,23. 
When there is a prolonged period without spiking on 
both trials, the voltage trajectories will converge back 
and the same spike pattern will be obtained.

Stimulus locking and phase locking. Precision in spike 
timing depends on a neuron’s firing being locked to fea­
tures of the stimulus, meaning that whenever a feature 
appears in the stimulus a spike will be produced with a 

Figure 1 | Stimulus locking in vitro and in vivo. a | An in vitro reliability paradigm. A 
current consisting of many repeats of a short stimulus waveform followed by a period of 
zero current is injected using an electrode at the soma. The start of the stimulus is 
indicated by a red dash. The corresponding output spike train is shown at the bottom.  
b | Trials are aligned with the red dashes (the stimulus waveform is shown at the bottom). 
When the neuron is stimulus-locked, the spike trains are similar across trials. c | When 
spikes are missing in some trials but not in others, the neuron is considered unreliable. 
When the spike occurs but the spike time is variable, the neuron is considered imprecise 
(BOX 1). d | In vivo, the neuron receives feedforward inputs and recurrent inputs. When 
the same stimulus is presented repeatedly (represented by the red dashes), presynaptic 
neurons produce spike trains with repeatable motifs — spike patterns — that are similar 
in each neuron. Across a population, this input consists of a sequence of synchronized 
spike volleys. Recurrent inputs are periodic when the neuron is embedded in an 
oscillatory network. The beginning of each oscillation cycle is indicated by the green 
dashes. Two types of output spike train are shown: a stimulus-locked train and a phase-
locked train. e | When the neuron is stimulus-locked, precise and reliable spike trains are 
obtained only when the trials are aligned with stimulus onset. When the neuron is phase-
locked, precise and reliable spike trains emerge only when the spike trains are aligned 
with the start of the oscillation cycle.

R E V I E W S

98 | february 2008 | volume 9	  www.nature.com/reviews/neuro

© 2008 Nature Publishing Group 

 



Nature Reviews | Neuroscience

a

b c

d e

100 150 200 250 300 350
Time (ms)

Tr
ia

l i
nd

ex

100 150 200 250 300 350
0

100

200

300

400

Time (ms)

Fi
rin

g 
ra

te
 (H

z)

1

2

3

0 100 200 300 400 500

Time (ms)

Tr
ia

l i
nd

ex

2 4 6
0.0

0

0.5

1.0

Sigma (ms)

Re
lia

bi
lit

y

1 2 3 4
0.0

0.5

1.0

1.5

2.0

Time segment

Jit
te

r (
m

s)

1 2 3

constant delay27. For a constant-current pulse, the only 
feature that a neuron can lock on to is the onset (illus­
trated for a model neuron in FIG. 4a). For an aperiodic 
or periodic drive, a spike is more likely to occur during 

certain time intervals (those in which there is a brief 
depolarization) than during others (those in which 
there are brief hyperpolarizations) (FIG. 4b,d). This phe­
nomenon is referred to as stimulus locking (or phase 
locking when the drive is periodic)1,2. An in vitro study 
demonstrated that the strength of stimulus locking 
could, in principle, be increased in feedforward net­
works8. When a pool of similarly responding neurons 
generates a moderately precise volley as input to the 
next pool, the volley produced by the latter pool will be 
more precise. However, this study assumed that synaptic 
transmission from one pool to the next was perfect, and  
probably overestimated the amount of reliability  
and precision that would be present in feedforward 
networks in vivo.

Many neurons have a preferred frequency for stimu­
lus waveforms, which affects the type of oscillation to 
which they can phase-lock. For a subthreshold sinusoi­
dal current, the amplitude of the voltage deflection will 
be maximal when the stimulus frequency matches the 
preferred frequency. This can be demonstrated in vitro 
by injecting a sinusoidal current with a frequency that 
changes slowly across time. The neuron’s membrane-
voltage oscillations will match the instantaneous fre­
quency of the drive, but the amplitude of the oscillations 
will vary, reaching a maximum when the instantaneous 
frequency matches the preferred frequency23,28,29. When 
the stimulus amplitude is increased above the spike 
threshold, the firing rate, reliability and precision will 
be optimal for stimulus waveforms at the neuron’s pre­
ferred frequency. Experiments show that preferred fre­
quencies depend on neuron types23,30,31. Models predict 
that the preferred frequency arises from the dynamics 
of voltage-gated channels32–34.

When a neuron is injected with a constant cur­
rent, after a period of adaptation it will produce an 
approximately periodic spike train. The frequency of 
the spike train will be equal to the average firing rate  
of the neuron (the direct current (DC) firing rate), 
which depends on the amplitude of the current, but 
this spike train will not be precise across trials1 (model 
results are shown in FIG. 4a). When a small periodic 
drive is added (FIG. 4b), however, the precision will 
improve significantly when the stimulus frequency 
matches the DC firing rate19,35,36. This phenomenon 
occurs even when the neuron does not have a sub­
threshold preferred frequency. Neuromodulators 
generally have multiple effects in cortical circuits. For 
instance, they can change the DC firing rate of the 
neuron37,38; this particular effect can be modelled as 
an additional depolarizing or hyperpolarizing current. 
Hence, in the model described above, neuromodula­
tors can in principle alter the DC firing rate so that it 
approximately matches the oscillation frequency of the 
network that the neuron is embedded in. This not only 
improves the precision of the neuron by way of phase 
locking32 but also increases the postsynaptic impact  
of a pool of such neurons26. For instance, in a model of  
odour recognition39, a group of neurons driven at the 
same firing rate achieved spike synchronization by 
phase locking to a common oscillation. 

Figure 2 | Calculating the reliability and precision of neural spike trains. 	
a | The spike trains shown were obtained from simulations of a model neuron with 
Hodgkin–Huxley-type voltage-gated channels driven by a fluctuating current26. Similar 
trains could be obtained experimentally from neurons in vitro. The rastergram shown was 
constructed by plotting the spike train for each trial on a separate row, aligned with 
stimulus onset. The y ordinate of each tick is the trial number and the x ordinate is the 
spike time relative to the stimulus onset. For further analysis the data were divided into 
segments (shown in different colours). b | Twenty trials from part a from the time interval 
between 100 and 350 ms relative to the stimulus onset, showing that precision and 
reliability are distinct quantities. Event 1 is reliable — that is, a spike occurs on each trial 
— but it is not precise (there is a large jitter). Event 2 is precise but not reliable. Event 3 is 
both precise and reliable. c | Spike-time histogram, showing how the average firing rate 
(the number of spikes per second) across a series of trials changes with time. Events (blue 
stars) are peaks in the histogram and event reliability is the area under the peak. A 
threshold (the green line) is set, to define the events. When the threshold is set too high, 
unreliable events (such as event 2) are missed; when it is set too low, noise spikes could be 
interpreted as events. For the purpose of the reliability calculation (described in a 
previous publication; see REF. 135), each spike is replaced by a waveform of width sigma. 
The parameter sigma represents the temporal resolution of the spike times. d | Reliability 
as a function of sigma. Each curve is colour-coded to match the colour of the time 
segment in the rastergram (a) that was used in the calculation. The jitter (the standard 
deviation of the spike times in an event) corresponds approximately to the value of sigma 
for which the reliability becomes more than 0.5. The precision is equal to 1 divided by the 
jitter. e | The jitter for each segment. The third segment (shown in red) never intersects 
0.5 and the jitter is not defined.
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Spike-time histogram
A tool for resolving the 
behaviour of the firing rate as a 
function of time, by averaging 
across multiple trials or 
multiple neurons. 
Mathematically, it is obtained 
by counting the number of 
spikes in each time bin and 
normalizing the count by the 
bin width, the number of trials 
and/or the number of neurons.

Event
A time-point relative to the 
stimulus onset during which a 
spike is found on a significant 
fraction of the trials.

What do we know about spike patterns in vivo?
Although spike patterns have been found in vitro in 
response to current injection at the soma, they can only 
have a role in information processing if they are also 
present in vivo. Here we review the evidence for spike 
patterns in vivo, using the visual system as our focus, and 
discuss the influence of receiving temporally coherent 
synaptic inputs due to oscillations. Finally, we discuss 
how the spike timing of a neuron is affected by dendritic 
synaptic inputs.

Evidence for spike-time precision in the visual system. 
Precise spike firing has been found at almost all levels of 
the mammalian visual pathway. In an eye-cup preparation,  
retinal ganglion cells produced precise and reliable 
spike trains in response to a temporally fluctuating 
visual stimulus24,25,40–42. Precision increased as stimulus 
contrast increased, because of an enlargement in the 
somatic amplitude of the inputs. Neurons in the lateral 
geniculate nucleus, which are driven by retinal ganglion 
cells, have been shown to respond precisely and reliably 
to a sequence of spatially uniform image frames with 
a fluctuating luminance3,43. When recordings from cells 

of the same type in different animals were compared, 
most of the events occurred at similar times during the 
stimulus presentation43. It is likely, therefore, that in  
the same animal multiple neurons produce spikes at 
similar times, resulting in synchronous volleys to the 
primary visual cortex44. 

Neurons in layer 4 of the primary visual cortex can also 
fire with high precision in response to visual inputs45,46. 
Neurons in the mediotemporal cortex in turn receive 
inputs from the primary visual cortex and respond to 
motion. It has been shown that neurons in the medio­
temporal cortex respond precisely to rapid changes in the 
direction of motion47. The reliability of events in these 
spike trains was initially found to be low; however, a re-
analysis revealed multiple reliable spike-time patterns18. 
Further evidence for precise spike timing at this level is 
found in the barrel cortex48 and the auditory cortex49.

Overall, the degree of precision of spiking in response 
to repeated presentations of the same stimulus appears to  
decrease along the visual pathway50, whereas spike-count 
variability increases42,43,47,51–53. This could be due to the 
presence of background cortical activity, in which case 
a method to uncover the stimulus-locked precision is 
needed (FIG. 1d).

The contribution of cortical oscillations to precision. In 
addition to stimulus-related feedforward inputs, neu­
rons in vivo are driven by internally generated network 
activity. Electroencephalograms (EEGs) recorded from 
the human scalp exhibit superposed rhythms in various 
frequency ranges, including the delta (0.5–4 Hz), theta 
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma 
(30–80 Hz) ranges54. The strength of these rhythms 
changes over time and depends on behavioural states 
and cognitive processes55–57. The rhythms arise from 
large-scale, coherent firing of neurons. Extracellular 
recordings of local field potentials (LFPs) directly from the 
cortex reveal bursts of oscillatory activity. These might 
modulate stimulus-related activity, either directly (by  
providing additional synaptic inputs) or indirectly  
(by generating gradients in the extracellular potential58), 
and thus might cause the apparent imprecision of cortical  
responses described above.

The frequency, amplitude and phase of these cortical 
oscillations are modulated by cholinergic and GABAergic 
subcortical projections from the basal forebrain and 
from other diffuse neuromodulatory systems59,60. A 
visual stimulus can reset the phase of an ongoing alpha 
rhythm61, and cortical connections can also modify 
the phase of ongoing oscillations62,63. Thus, the phase 
and amplitude of cortical oscillations can be modu­
lated to alter the precision and timing of spike volleys. 
Measurements in vivo could detect this as a modulation 
of both the precision of the phase-locked responses and 
the spike phase relative to the oscillation.

Evidence for phase locking in vivo. A fundamental chal­
lenge in neuroscience is to characterize the relationship 
between the input to a cortical area and the resulting 
output spike trains that are transmitted to other corti­
cal areas. The relationship between the LFP and the 

 Box 1 | Methods for determining the precision and reliability of spike trains

The direct method
In the direct method for determining spike train precision and reliablity, a spike-time 
histogram is constructed, as described in FIG. 2. Spike alignments are classified as 
events when the histogram exceeds a threshold (FIG. 2c): all spikes are either assigned 
to an event or classified as background. Event reliability is calculated directly and event 
precision is the inverse of the standard deviation of all the spike times assigned to an 
event. Reliability and precision are the average event reliability and event precision 
across all events, respectively.

Indirect methods
In the indirect method, statistics related to the reliability of events are calculated based 
on all spike times without detecting the events themselves. In one method, spike trains 
are transformed into a continuous waveform for each trial; each spike is convolved with 
a Gaussian distribution that has a standard deviation sigma135,136. The stronger the spike 
alignment between two trials, the larger the overlap between the two waveforms will 
be (calculated as the cosine of the angle between the two waveforms when the 
waveforms are considered as vectors). This quantity is a number between 0 (entirely 
different spike trains) and 1 (identical spike trains) and is called the similarity (Sij). The 
reliability estimate, R, is the mean of Sij across all distinct pairs. Intuitively, Sij measures 
the degree of overlap between spike times on the two trials i and j. Sigma determines 
which spike times between the pairs are considered overlapping and sets the timescale 
of the similarity measure. Typically, sigma is taken to be a few milliseconds. In 
experimental data, the precision of the firing often varies with time. This can be dealt 
with by segmenting the data into small chunks and determining the R value for each. 
The precision can be estimated by calculating the reliability as a function of sigma. The 
inverse of the sigma at which R is 0.5 provides an estimate for the precision (FIG. 2d). 
Alternative measures to determine the difference between spike trains, such as the 
Victor–Purpura metric137 or the van-Rossum metric138, can be converted to a similarity 
measure that is suitable for a reliability analysis.

An alternative method
Indirect methods always require a choice of parameter, such as sigma. By contrast, the 
direct method yields independent estimates for the reliability and precision. An even 
simpler measure115 starts with the spike times merged across all trials and arranged  
with the earliest spike first. The inter-spike intervals of this sequence are then calculated  
and the coefficient of variation of the aggregate response (CVP) is calculated as the 
standard deviation of the inter-spike intervals divided by their mean. A similarity 
measure normalized between 0 (unreliable) and 1 (perfectly reliable) is obtained by 
subtracting 1 from the CVP and dividing by the square root of the number of trials.
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recorded spike trains is particularly important as the LFP 
is dominated by subthreshold currents that represent 
inputs to nearby neurons and as the spikes reflect the 
output of neurons that project more distantly. Because a 
periodic drive is generated at the soma during network 
oscillations, phase-locked responses are expected in vivo. 
In a landmark experiment, researchers recorded from 
different types of hippocampal interneurons during 
theta LFP oscillations64–66 and sharp wave ripples (brief 
oscillations with frequencies between 80 and 150 Hz)67. 
Different interneuron types locked at specific phases with 
respect to the LFP, and the phases that they locked to 
also depended on the frequency of the oscillation. In vivo 
studies have also revealed evidence for phase locking in  
the neocortex57. In cortical area V4, the correlation  
in the gamma frequency range between spike trains 
and the LFP near the recorded neuron increased during 
attention56,57. Similarly, in a behavioural task in which a 
monkey had to hold a stimulus in working memory68, 
locking of spikes to the theta oscillation was increased in 
response to a neuron’s preferred stimulus compared with 
a non-preferred stimulus, independent of changes in the 
neuron’s firing rate. In the human brain, spike trains are 
also locked to the LFP in specific frequency bands, which 
depend on the area involved69. For example, locking to 
the gamma band was more prominent in the frontal 
region of the brain than in the parietal and temporal 
cortices. Correlations also occur between distant brain 
areas: the spike trains in rodent prefrontal cortices cor­
relate with the hippocampal LFP, with approximately  
a 50 ms delay70. A procedure to uncover this type of 
phase-locking is illustrated in FIG. 5.

Phase locking and stimulus locking in the cortex. A 
cortical neuron receives on the order of 10,000 synaptic 
inputs71, most of which are from other cortical neurons 
and only a small fraction of which are active at any one 
time. Although a stimulus waveform is locked to the 
stimulus onset, the phase of oscillations is set internally 
and is therefore typically not connected to the stimulus 
onset (however, in a recent in vivo experiment, the phase 
of ongoing delta oscillations became locked to the onset of  
auditory stimulation, which was presented with an inter­
stimulus interval that was comparable to the period of 
the delta oscillations63). The precision of firing there­
fore reflects a balance between intrinsic reverberations 
(including oscillations) and stimulus properties72.

In a cortical model, when spikes are generated in 
response to stimulus-related inputs independently of 
those that are generated in response to oscillatory inputs, 
stimulus-locked and phase-locked responses can be 
obtained at the same time (FIG. 6a,b). However, in general 
there will be interaction between these two types of input. 
Depending on the nature of the interaction, stimulus lock­
ing can still be obtained. For instance, stimulus locking 
persists when the oscillatory inputs change the number of 
spikes that a neuron produces in response to the stimulus- 
related inputs, but not their timing (FIG. 6c), or when the 
shift in spike times caused by the oscillation is small 
(FIG. 6d). Single-compartment models73 predict a strong 
interaction that almost surely will destroy stimulus locking 

Figure 3 | Uncovering spike patterns. a,b | Having identified precise and reliable spike 
trains (see FIG. 2), spike patterns can be revealed. The value of the similarity (Sij) between the 
spike train on trial i and the spike train on trial j is represented as the colour of the pixel on 
row i and column j. On the colour scale, blue indicates low similarity and red indicates high 
similarity. c,d | The rastergrams from which the similarity matrices in a and b, respectively, 
were calculated (the data were taken from the fourth segment (shown in cyan) of FIG. 2a). In 
a and c the trials are ordered as they are recorded, whereas in b and d they are reordered 
using fuzzy K‑means clustering139 to bring similar trials close to each other18. Spike patterns 
are operationally defined as groups of trials that are more similar to each other than to the 
other trials. In a no obvious structure is visible, but in b spike patterns have been uncovered. 
These patterns correspond to square blocks, with high similarity values on the diagonal. In d 
each spike pattern is shown in a different colour. The spike patterns had different spike 
times and, in some cases, a different number of spikes. e | Reliability is the average degree of 
similarity between pairs of spike trains at the temporal resolution given by the parameter 
sigma (BOX 1). Reliability is plotted against sigma for each spike pattern. f | The jitter (the 
standard deviation of the spike times in an event) for each spike pattern and across all trials. 
The precision (the inverse of the jitter) that is evaluated for each pattern separately is much 
higher than that which is calculated with all trials combined. g | Voltage traces 
corresponding to clusters 1 and 4. Cluster 4 spikes at 405 ms whereas cluster 1 does not; at 
460 ms the situation is reversed. After a transient hyperpolarization that prevents spiking, 
the two voltage traces are close to convergence at 540 ms. This graph shows that spike 
patterns correspond to distinct voltage trajectories26.
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Neuromodulator
An endogenous chemical 
substance that changes the 
intrinsic properties of a neuron 
and the dynamics and strength 
of neurotransmission. 
Neuromodulators can modify 
neuronal responses to synaptic 
inputs on potentially long 
timescales.

Afterhyperpolarization
The membrane 
hyperpolarization that follows 
the occurrence of one or 
several action potentials.

Eye-cup preparation
A preparation in which the 
retina is extracted intact so 
that the neural responses to 
activation of the 
photoreceptors by a visual 
stimulus can be recorded. 

Local field potential
(LFP). The total electrical 
current in the vicinity of the 
recording electrode, reflecting 
the sum of events in the 
dendrites of a local neuronal 
population. It is often obtained 
by low-pass filtering (that is, 
removal of signals lower than 
600 Hz ) of the recorded 
electrical signal.

Compartmental model
A computer model that breaks 
a neuron down into small 
electrical compartments and 
can simulate the propagation 
of electrical signals inside the 
neuron and across its 
membrane surface.

and phase locking, because the two types of input arrive 
at the same compartment. However, in compartmental  
models the interaction is weaker because the synaptic 
inputs are spatially segregated. Because in vivo neural 
responses can alternate between stimulus-locked epochs 
and phase-locked epochs72, averaging to extract either the 
stimulus-locked or the phase-locked response should be 
carried out with care.

Propagation of spike patterns in cortical networks
The preceding sections have documented the presence of 
spike patterns and phase locking at the level of individual 
cortical neurons. How can these patterns be retained or 
further processed in cortical circuits?

Synfire chains in cortical networks. Precise spike times 
can lead to synchronous spike volleys in pools of neu­
rons that can propagate from pool to pool in model74 
and in vitro8 feedforward networks with a precision 
that depends on a number of physiological parameters. 
The sequential activation of multiple pools is referred 
to as a synfire chain (or as ‘cortical songs’75). Synfire 
chains have been embedded in large-scale model 
networks by increasing the number of synaptic con­
nections between selected pools of neurons. In those 
networks, the synfire mode of propagation was often 
associated with large-scale wave-like activity propa­
gating through the network, after which the network 
became refractory76.

Figure 4 | The effect of a periodic or an aperiodic drive on reliability in a model neuron. Each part shows, from top 
to bottom, a graph with two voltage traces (the red and black lines) and the stimulus waveform (the blue line), a rastergram 
and a histogram. The model neuron used in FIG. 2 provided the data. a | In response to a current step, precision decreases 
over time. b | When a periodic current is superimposed, the precision is maintained because of a resonance effect. The 
firing rate is approximately the same in a and b. c | When the phase of the periodic drive is varied from trial to trial the 
precision is reduced (the stimulus waveform is only shown for one phase). d | In response to an aperiodic current, 
 well-defined events with a range of precisions are obtained.
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Cortical pyramidal cell
A class of neuron in the 
cerebral cortex with a pyramid-
shaped cell body. These 
neurons have dendrites that 
extend locally and can project 
their axonal processes both 
locally and distally across 
many layers and brain areas.

Another modelling study77 determined whether 
information could reliably propagate from one pool 
of neurons to another in the presence of internally 
generated background activity in a random network 
in which a synaptic connection was made between a 
small fraction of neuronal pairs. On average, a neuron 
received synapses from no more than 2% of the neurons 
in the network. Seven pools that were connected in a 
feedforward fashion were selected. The intrinsic prop­
erties of the neurons were parametrically varied and 
the connections between neurons in consecutive pools 
were strengthened (analogous to the effects of spike- 
timing-dependent plasticity78). These studies showed 
that volleys either died out or propagated between 
pools, recruiting more spikes at each stage. In the latter 
case the timing information was lost, because it was not 
possible to determine when the response to one volley 

ended and the response to another began. Firing-rate 
information was transmitted more easily when square 
pulses of increased external activity were injected into 
the first pool. Firing rates modulated on a timescale of 
a few tens of milliseconds could also be transmitted, 
but some distortions in the shape of the transmitted 
waveform occurred. Based on a single-compartment 
model, which assumed that the membrane potential of 
the entire neuron was uniform, the results suggested that 
in a sparse randomly connected network it is difficult 
to obtain robust and reproducible signal transmission 
along a synfire chain. However, real neurons are spa­
tially extended, so the efficacy of a given synapse might 
depend on its location and on the concurrent activity of 
other synapses in a highly nonlinear way (see below). 
In addition, specific network architectures (that is, ones 
that are not sparse or random) might facilitate the repro­
ducible propagation of volleys. These two possibilities 
are reviewed in the following subsections.

Results that are consistent with the existence of 
synfire chains have been reported in slice experiments 
that measured calcium transients from many neurons, 
but direct evidence for synfire chains is still absent. 
Recordings have revealed repeating patterns of activation 
arising from a sequence of neurons that became active 
in the same order75. The patterns repeated more often 
than would be expected from random activation75,79 (but 
see REF. 80 for an alternative view). However, the spik­
ing precision is difficult to determine because individual 
spikes cannot always be resolved.

Decoding synchronous inputs in spatially extended  
neurons. Cortical pyramidal cells need to integrate informa­
tion from many sources. For example, a layer 5 pyrami­
dal cell81,82 has access to inputs from all cortical layers 
and must integrate these into one single spike train. 
Historically, dendrites have been modelled as passive 
structures with a specific resistance and a capacitance83. 
However, studies over the past two decades have dem­
onstrated the non-uniform distribution of many types 
of voltage-gated channel on dendrites84. The functional 
relevance of these channel distributions is only now 
starting to emerge85–87.

For a passive dendrite, the voltage deflections that 
result from two excitatory inputs can be estimated as 
the sum of the individual deflections. This is an over­
estimate, because the depolarization caused by the first 
input reduces the driving force for the second input. 
Therefore, when the response actually exceeds the sum 
of individual responses, additional nonlinear mecha­
nisms must be responsible. For instance, these can be 
based on the activity of dendritic calcium channels and 
NMDA (N-methyl-d-aspartate) receptors85. To estimate 
the nonlinearity, the voltage deflection at the soma that 
arises from multiple inputs on the same dendritic branch 
of a layer 5 pyramidal cell was determined88. When the 
measured response was plotted against the summed 
response a sigmoidal relationship was found. For weak 
inputs the relationship was linear89, but for strong inputs 
the measured response increased rapidly with input 
strength and then saturated. When the same experiment 

Figure 5 | Uncovering phase locking to internal activity. Phase locking to internal 
activity is uncovered by analysing simultaneously recorded spike trains and the local  
field potential (LFP) generated by a simple model. a | A short segment of an example LFP 
trace that was constructed by adding three noisy sinusoidal waveforms with frequencies 
in the gamma, theta and delta frequency ranges. b | Sample spike trains were constructed 
to be weakly phase-locked, in the gamma frequency range and at a delay of 50 ms, to the 
example LFP. c | The three peaks in the power spectrum of the example LFP reveal  
the presence of the frequency content in gamma, theta and delta. d | A histogram of the 
phase of the gamma oscillation at the spike times shown in part c. The peak (indicated by 
the arrow) shows that the spikes have a weak preference for a phase of 270 degrees, 
which means that they are weakly phase-locked. The histogram looks smooth because it 
is averaged across 200 neurons firing at 10 Hz during a 40-second segment. This raises 
the issue of how to find groups of similarly responding neurons in multi-electrode 
recordings without knowing their behaviour. The clustering procedure introduced in FIG. 3 
is useful in this regard. e | The spike-triggered average (STA) of the LFP is obtained by 
collecting, for each spike, the LFP waveform in the interval from 12.5 ms before to 12.5 ms 
after the spike. The STA is the average across all collected waveforms. The peak 
(indicated by the arrow) shows that spikes are most correlated with the LFP 50 ms in the 
past. f | A histogram of the phase of the gamma oscillation 50 ms before the spike times in 
part c. The neuron spikes preferentially at a phase of 180 degrees. The peak is sharper 
than in part d, which means that the true precision of phase locking was uncovered.
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Caged glutamate
An inactive derivative of 
glutamate that can be 
transformed into the active 
transmitter, usually by 
photolysis. This technique 
provides an efficient means for 
achieving a spatially restricted 
application of glutamate.

Dendritic action potential
(dAP). An action potential that 
is first generated in the 
dendrites and which then 
propagates towards the soma, 
often but not always eliciting a 
somatic action potential after  
a brief delay.

Relay cell
A type of cell in the thalamus 
that sends its axon to the 
cortex. Relay cells in the lateral 
geniculate nucleus receive 
inputs from the retina and 
project to spiny stellate cells in 
layer 4 of the primary visual 
cortex.

Spiny stellate cells
(SSCs). An excitatory cell type 
that is common in layer 4 of 
the sensory cortex. SSCs have 
axons that have a local 
arborization pattern and have 
dendrites that are covered by 
spines.

was repeated with synapses on different branches, the 
sigmoidal behaviour was absent. Apparently, each den­
dritic branch integrates its input independently through 
a local nonlinearity. This suggests a two step process: first, 
synchrony decoding occurs in the dendritic branches, 
and then global integration with the inputs from other 
dendritic branches at the soma follows90.

In CA1 pyramidal cells in the hippocampus, an 
additional faster nonlinearity is generated by the 
activation of sodium channels91. In a landmark study, 
two-photon uncaging of caged glutamate was used to 
apply a spatial pattern of synaptic activation in hippo­
campal slices. When a dendritic action potential (dAP) 
was generated at the apical trunk it quickly propagated 
to the soma and elicited a reliable and precise action 
potential91. When the dAP was initiated in the oblique 
dendrites it propagated to the soma but did not lead to 
an action potential92. Instead, a rapid voltage deflection 
was observed at the soma, followed by a slower (but still 
nonlinear) deflection that was due to calcium entry. In 
order to generate a dAP, the synaptic inputs to the cell 
needed to be both spatially clustered (within 20 µm) 

and temporally coherent, occurring within a few milli­
seconds of each other (FIG. 7c,d). Spatiotemporally coher­
ent input at the apical trunk was also more efficient at 
eliciting somatic action potentials.

These studies show that there are multiple ways to 
generate action potentials. Some methods lead to pre­
cise spikes that are conducive to generating synchronous  
volleys, whereas others are more appropriate for the 
propagation of firing rate modulations. 

Gated temporal information transfer between cortical 
layer 4 and layer 2/3. Even though coherent synaptic 
activation makes feedforward propagation of spike vol­
leys possible, inhibitory circuits and recurrent loops 
could gate the propagation of spike volleys and influ­
ence their timing. Consider, for example, the feedfor­
ward pathway in the visual cortex that originates from 
thalamocortical relay cells that project to layer 4 spiny 
stellate cells (SSCs), which in turn project to layer 2/3 
pyramidal cells93 (FIG. 7a). Thalamocortical synapses are 
more effective than intracortical synapses94, but they 
form only a small fraction of the synapses onto SSCs95,96. 

Figure 6 | Response of a model cortical cell to stimulus-related and oscillatory background synaptic inputs. 	
A model cell was embedded in a network producing a delta oscillation. A stimulus lasting 0.7 seconds was presented 1,000 
times, with a random interval between presentations. As a first approximation it was assumed that the stimulus and the 
oscillation elicited independent precise spike patterns. a | The response of the neuron aligned with the stimulus onset.  
b | The response aligned with the oscillation cycle, where the x ordinate for each spike is its phase with respect to the 
oscillation. The top panel contains a rastergram across the first 50 stimulus presentations (the data in blue) and a 
rastergram across the first 50 oscillation cycles (the data in red). The bottom panel shows the corresponding spike-time 
histograms across all data, with the stimulus-related spikes in red and the oscillation-related spikes in blue. When they are 
aligned with the stimulus onset, the stimulus-induced spikes are precise and the oscillation-related spikes form a random 
background. When the data are aligned on the oscillation cycle the situation is reversed, with the stimulus-related spikes 
forming a random background. c,d | Under realistic circumstances, there will be interaction between the stimulus-related 
and the oscillation-related synaptic inputs. Two simple cases are illustrated using the stimulus-aligned spike-time 
histograms. c | The delta oscillation modulated the number of spikes that were elicited by the stimulus presentation, with 
the higher rates occurring at the beginning of the oscillation cycle. The precision (the width of the peaks) was not affected 
but the spike count across trials was much more variable. d | The delta oscillation shifted the times of the stimulus-elicited 
spikes depending on when they occurred in the oscillation cycle. This reduced the precision: the first two peaks seem to 
have merged. If stimulus-related information is to be coded in the precise spike times, the interaction illustrated in part c is 
innocuous but the one in part d is harmful.

R E V I E W S

104 | february 2008 | volume 9	  www.nature.com/reviews/neuro

© 2008 Nature Publishing Group 

 



Nature Reviews | Neuroscience

SSC1

dAP

1

2

Synchronous inputsAsynchronous inputs

Layer 2/3

Layer 4

Top-down

RecurrentFeedforward

dAP
dAP dAP

c

b

a

d

TC1

TC2

TC3 SSC2

LGN

Nevertheless, collectively they seem to be efficient in 
driving the SSCs45,97. The reason for this efficiency was 
elucidated in another cortical area, in neurons that 
project from the ventroposteromedial thalamus (VPM) 
to the barrel cortex98 and that respond to whisker move­
ment. Membrane deflection in a SSC in response to a 
single spike in a presynaptic thalamocortical neuron was 
small compared to the depolarization that was caused 
by sensory events. Nevertheless, because rapid whisker 
deflections caused synchronous thalamocortical spikes, 
the SSC spiked reliably (FIG. 7b). The authors estimated 
that approximately 30 of the 85 thalamocortical cells that 
projected to a given cell were simultaneously active98. 
Simulations of the impact of synchronous thalamic 
inputs to a detailed compartmental model of a recon­
structed SSC confirmed the experimental findings and 
further revealed the importance of having balanced 
background inputs from other cortical cells99. The experi­
mentally observed spike patterns in the lateral geniculate 
nucleus correspond at the population level to synchro­
nous volleys. Taken together with experimental results 
from other sensory modalities48,100, this suggests that the 
output of SSCs might also consist of spike volleys.

In the cat primary visual cortex, the response of 
thalamocortical cells to a briefly flashed square was 
compared to the response of layer 4 and layer 2/3 cor­
tical cells101. The layer 4 response was reliable, but the  
layer 2/3 response was less reliable. Evidence for  
the role of inhibition in synaptic transmission from layer 4  
to layer 2/3 is found in slice experiments in the rodent 
barrel cortex102–105. Taken together, these experiments 
point to the presence of a gating mechanism between 
layer 4 and layer 2/3, under the control of inhibition, 
that allows some signals but not others to propagate. At 
present, only the excitatory pathway has been studied in 
biophysically constrained models106. The laminar struc­
ture of the cortex93,107, in which various recurrent loops 
are present, might have advantages for processing and 
transmitting sensory information in the form of spike 
times — as suggested in a recent modelling study108. 

Inhibition can modulate firing rate and influence spike 
times. Precise inhibition generated by fast cortical 
oscillations can gate and modulate the propagation of 
spike volleys. Cortical basket cells make synapses close 
to or directly onto the soma of pyramidal cells. In the 
hippocampus, the spike of one basket cell can synchro­
nize the activity of a large number of pyramidal cells109. 
Inhibitory cells are involved in the generation of fast 
oscillations, especially those in the gamma frequency 
range110,111. Consistent with this role, for in vivo record­
ings the power spectrum of currents generated by inhibi­
tory synapses has more power in the gamma frequency 
range than the power spectrum of currents generated 
by excitatory synapses112. To test the impact of inhibi­
tory currents on neural spiking, currents representing 
inhibitory and excitatory inputs were injected at the 
soma using the dynamic clamp technique112. The prop­
erties of the injected current were adjusted so that the 
overall response properties of the neurons in vitro were 
the same as those of similar neurons in vivo. First the 

Figure 7 | Experimental observations suggest that volleys that are generated by spike 
patterns are preferentially processed in the early sensory cortex. a | A simplified 
representation of the laminar structure of the feedforward pathway in cortical area V1. 
Thalamocortical (TC) cells project to spiny stellate cells (SSCs) in layer 4, which in turn 
project to layer 2/3 pyramidal cells. The layer 2/3 pyramidal cells receive feedforward input 
from layer 4, recurrent inputs from other pyramidal cells and top-down inputs from other 
cortical areas (such as V2). In both layer 4 and layer 2/3 there is feedforward inhibitory 
input. The inhibitory cells and their projections are shown in blue, whereas the excitatory 
cells and their projections are shown in red. b | TC cells project to SCCs in layer 4 of the 
sensory cortex. Experimental recordings of TC neurons indicate the presence of spike 
patterns18,43, which suggests that there are synchronous spike volleys at the population 
level. The spike volleys could be synchronous to a few SSCs (yellow highlight) or they could 
be synchronous across inputs to a large group of SSCs (red highlight). Synapses made by TC 
cells are more effective than intracortical synapses, but there are fewer of them. 
Nevertheless, because of synchronous spikes the TC cells as a group are effective98. At the 
cortical level, this leads to synchronous output spikes across the SSC population when  
the synchrony extends across many TC cells (red highlight), but not when it is limited to  
only a few TC cells (yellow highlight). c,d | Pyramidal cells in layer 2/3 (Ref. 140) and layer 5 
(Ref. 141) of the cortex, and those in hippocampus91,92, display dendritic action potentials 
(dAPs) that move towards the soma where, in many cases, they lead to a precise and reliable 
output spike. Experiments in the hippocampus that used caged glutamate established the 
conditions under which dAP are generated91. c | dAP were not obtained when a pyramidal 
cell was stimulated by asynchronous spike trains. Target synapses are depicted as red 
circles. d | dAP were obtained when the input spike trains were synchronous and the 
synapses they activated were close together (clustered) on the dendrite (arrow 1; synaptic 
distance less than 20 µm ); they were not obtained when the synapses were further apart 
(arrow 2; synaptic distance more than 20 µm). LGN, lateral geniculate nucleus.

R E V I E W S

nature reviews | neuroscience	  volume 9 | february 2008 | 105

© 2008 Nature Publishing Group 

 



N
eu

ro
n 

in
de

x

0

20

40

Ra
te

 (H
z)

500 1000 1500 2000
0

20

40
60

Ra
te

 (H
z)

Time (ms)

2 3 4 5
0

10

20

30

40

50

Ra
te

 (H
z)

Group 1

Group 2

Group 3

Amplitude (µA/cm2)

Nature Reviews | Neuroscience

e

1 ms
2 ms
3 ms
4 ms
5 ms

a d

b

c

same segment of the inhibitory conductance waveform 
was injected multiple times, each time with a different 
segment of the excitatory conductance waveform. Then 
the reliability and precision of the neuron’s spike train 
was determined. Next the excitatory conductance seg­
ment was repeated and the inhibitory conductance was 
held constant. The repeated inhibitory conductance led 
to a higher precision than the repeated excitatory con­
ductance. To find out what type of input most effectively 
drives the cell in vivo, a reverse correlation analysis113 was 
performed on the inhibitory and excitatory conductance 
waveforms separately114. This showed that spikes of neu­
rons in the association cortex of the cat were on average 
preceded by a reduction in inhibition. Neurons are, so 
to speak, driven by disinhibition.

In network models115, interneurons can be transiently 
synchronized through ‘synchrony by competition’ 
(FIG. 8a–c), in which a top-down projection depolarizes 
a subset of interneurons, increasing their firing rate and 
synchrony. This reduces the firing rate of the remain­
ing interneurons and synchronizes the ‘winners’. Recent 
modelling work advanced the hypothesis that the effects 
of selective attention are mediated by the top-down activa­
tion of interneurons116–121. Taken together, the different 
aspects of this model115 predict that selective attention 
strongly increases the firing rate of a subset of inhibitory 
neurons; this was recently confirmed experimentally122. 

When an interneuron network is in a synchronized 
oscillation, a postsynaptic neuron will receive volleys of 
synchronized inhibitory inputs from the network. In 
the model, a change in interneuron synchrony could 
affect the postsynaptic neuron in two ways116. The first 
is by a process called multiplicative gain (FIG. 8d), which 
could mediate the changes in firing rate that are seen in 
conjunction with selective attention123. Multiplicative-
gain modulation is important because it increases or 
decreases the overall strength of the neuron’s response 
while preserving the stimulus preference of the neuron124. 
The timescale of the inhibitory conductance is such that 
this modulation is better achieved for oscillations in the 
gamma frequency range116. Second, changes in interneu­
ron synchrony could act as a gate, preventing spiking  
when the network is asynchronous and allowing spik­
ing when the network is synchronous. In either case, the 
neuron produces spikes that are precisely timed with 
respect to the inhibitory rhythm. In principle, informa­
tion could be coded in the fraction of cycles in which a 
spike is produced — the firing rate — or in the relative 
phase at which a spike is produced125,126. If the phase of 
each spike advances with each cycle, as it does in the 
hippocampus127, early spikes could evade feedforward 
inhibition and have a competitive advantage. In general, 
the timing of synaptic inputs relative to the postsynaptic 
spike in an oscillatory cell could increase or decrease its 
strengths by spike-time dependent synaptic plasticity.

Only excitatory inputs that arrive during the period 
when the inhibitory conductance is low can be trans­
mitted into an output spike, which is locked to the local 
inhibitory rhythm. This allows for a form of selective 
communication128,129 (FIG. 8e). Using this mecha­
nism, the specific path that feedforward information  

Figure 8 | Attentional modulation of synchrony and phase in a model network. a–c | 
Synchrony by competition. A network model with Hodgkin–Huxley-type neurons was used 
for the simulations115. a | In an inhibitory network of 1,000 neurons, 250 neurons (represented 
by the green dots) are transiently activated by a 500-ms depolarizing current pulse 
(represented by the yellow bar). The remaining 750 neurons (represented by the red dots) are 
not stimulated. The current pulse represents the effect of a top-down excitatory projection 
that has been hypothesized to mediate the effects of selective attention. b | The firing rate of 
the activated neurons increases (green line) but the mean stays approximately constant 
(blue line) because the non-activated neurons are suppressed (red line). c | The network as a 
whole synchronizes, as indicated by the sharper and higher peaks in the graph. d | The 
transformation of synaptic inputs into an output spike train is often characterized 
quantitatively as the firing rate (f ) that is obtained in response to the injection of a current 
step as a function of the amplitude (I) of the step (the f–I characteristic). A gain change of the 
f–I means that, for the same value of I, a different firing rate is obtained (expressed as a gain 
factor (g) times the old firing rate (f )). The gain change is multiplicative when g is 
independent of the value of I. Changes in the synchrony (precision) of inhibitory inputs, such 
as those that are generated in the interneuron network in a, change the gain of postsynaptic 
neurons in an approximately multiplicative way. Decreasing jitter increases the firing rate. 
The value of the jitter for each curve, expressed in milliseconds, is shown in the key. The data 
were obtained from simulations of a single-compartment model116. e | An example of 
selective communication using phase relationships. There were 3 pools of neurons, each 
comprising 200 pyramidal cells (represented by the black triangles) and 50 interneurons 
(represented by the blue and red circles). The group 1 neurons projected to the group 2  
and 3 neurons. The rastergrams are colour-coded according to the colour of the symbol  
for each cell group. The interneurons in each group were synchronized but had different 
phases. Group 1 interneurons (represented by the red dots) lagged behind those in  
group 2 (represented by the blue dots in the right-hand upper panel) but led those in group 3 
(represented by the blue dots in the right-hand lower panel). As a result, when an excitatory 
volley from group 1 (represented by the black dots in the left-hand panel) arrived in group 2, 
the inhibition had already partially decayed and the neurons responded (represented by the 
black dots in the right-hand upper panel). Conversely, for group 3 the excitatory volley 
arrived at the time with the highest inhibition, and no spikes were produced. The spikes of 
the interneuron network in group 1 (red dots) are repeated in the rastergrams for groups 2 
and 3 to provide a reference time. Simulation data were obtained from a network model 
similar to one used previously to study attentional modulation in cortical area V4118. Parts a 
and c reproduced, with permission, from REF. 115  (2004) MIT Press. Part d reproduced, with 
permission, from REF. 116  (2004) Elsevier Science.
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Basket cell
A type of interneuron that 
sends its axon to the cell body 
of the postsynaptic cell and 
surrounds it with a structure 
akin to a basket.

Dynamic clamp
A technique by which the effect 
of opening ionic channels (a 
conductance change) is 
simulated by injecting into a 
real neuron a current that is 
proportional to the neuron’s 
membrane potential.

Network model
A model comprised of neurons 
connected by synapses that is 
used to study the effects of 
synaptic coupling on the 
dynamics of neural activity.

Selective attention
A cognitive process that is 
involved in selecting stimuli 
based on their behavioural 
relevance.

follows along multiple groups could be rapidly altered 
to achieve behavioural goals. A re-analysis of in vivo 
data showed that transient correlations between spike 
trains in different cortical areas in the cat and in the 
macaque occurred predominantly during ‘good’ phase 
relationships between the respective LFPs in the gamma 
frequency range130. Slower rhythms have an important 
role in this process not only because they set the excit­
ability of the neurons involved, but also because they set 
the amplitude of the fast rhythms63,131, which determines 
how strong the gating is.

According to the traditional view, cortical interneu­
rons, through tonic inhibition, control the firing rates of 
pyramidal neurons — a type of static control. The experi­
ments and models that we have summarized here indicate 
that inhibitory interneurons have a more dynamic role, 
one that might be of critical importance for regulating 
the flow of information in the cortex by controlling spike 
timing and synchrony in cortical circuits132.

Conclusion
Overall, the spike trains that are produced by a cortical 
pyramidal cell depend on the coherent states that are 
generated by recurrent columnar connectivity, the acti­
vation of top-down projections, and the current sensory 
stimulation through the feedforward pathway. Each of 
these three types of input by itself can only modulate 
the pyramidal cell’s output, which raises the question 
of the nature of the relationship between the temporal 
dynamics of the stimulus and the spike patterns that are 
generated by the pyramidal cell. In particular, what is the 
nature of the competition between stimulus locking and 
phase locking to internal rhythms? The research that we 
have reviewed here suggests that ensembles of neurons 
produce slowly modulated activity that is accompanied 
by coherent volleys, with fast rhythms (beta and gamma 

rhythms) perturbing the timing or even gating the trans­
mission of volleys, and slower rhythms (alpha, theta and 
delta rhythms) controlling the amplitude of fast rhythms. 
Subcortical and top-down intercortical projections can 
influence information processing by modulating the 
phase of these rhythms. Data analysis methods can dis­
entangle stimulus locking from phase locking and thus 
provide a means to investigate the role of spike timing.

To further explore and validate these suggestions 
one needs to be able to record simultaneously from 
ensembles in different cortical areas, identify the neu­
ron type and be able to perturb spike times of individual 
neurons in order to probe the network dynamics. A 
particularly promising technology makes use of light- 
activated excitatory channels and inhibitory (Cl–) pumps, 
obtained from archaebacteria, which have recently been 
sequenced and incorporated in neurons14,15,133. Inhibitory 
pumps expressed in motor neurons of Caenorhabditis 
elegans have been successfully activated in vivo by light 
pulses, resulting in a change in the animal’s movement15. 
In vitro, a sequence of light pulses applied to a hippo­
campal pyramidal cell was used to shift the spike times 
produced by injection of a fluctuating current at the 
soma14. When performed in vivo, on multiple neurons 
simultaneously, this method can be used to synchronize 
the spike times of an ensemble of neurons at one location 
and determine the effect on other cortical areas or even 
perception.

Taken together, techniques to probe single-neuron 
dynamics91, to determine anatomical connections134 and 
to record and perturb ensemble dynamics14,15, as well as 
new methods to analyse spike trains, are contributing to 
a better understanding of the dynamic nature of brain 
function. In the next decade, models and experiments 
will merge in a way that will allow rapid progress towards 
understanding the principles of neural computation.
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