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Abstract. During slow-wave sleep, cortical neurons oscillate between up and
down states. Using a computational model of cortical neurons with realistic
synaptic transmission, we determined that reverberation of activity in a small
network of about 40 pyramidal cells could account for the properties of up
states in vivo. We found that experimentally accessible quantities such as mem-
brane potential fluctuations, firing rates and up state durations could be used as
indicators of the size of the network undergoing the up state. We also show that
the H-current, together with feed-forward inhibition can act as a gating mecha-
nism for up state initiation.

1 Introduction

Slow wave sleep (SWS) is an active brain state in which memory consolidation and
replay of neural activity patterns occur [1]. This stage of sleep is characterized by a
slow (~0.5 Hz) oscillation in the cortical electroencephalogram (EEG). At the single
cell level, cortical neurons switch between two states: an ‘up state,” during which the
membrane potential of the neurons is higher and the neurons spike frequently, and a
‘down state’ when the neurons are essentially silent [2, 3]. Although this oscillation
can be highly synchronous between distant cortical regions (for example between the
prefrontal and entorhinal cortex [4]), up states are also observed within cortical slices.
In vitro, local glutamate application can initiate an up state in local neurons, causing a
wave of up state onsets to spread across the slice [5]. In other slice preparations up
states are more sporadic, but show repeating and ordered sequences of onsets [6].
Ordered up state onsets have also been observed in vivo [7]. Altogether, these data
suggest that up states are local network phenomena that can be initiated by surround-
ing activity.

Up states recorded from different cortical regions do not have the same properties.
For example, the firing rates of neurons may stay constant or decrease during the
duration of the up state, depending on the cortical region under consideration (Andrea
Hasenstaub, personal communication). Also, a precise mix of excitation and inhibi-
tion is necessary for the generation of up states, but the data on whether that mix in-
cludes more inhibition, excitation or a balanced amount is still unclear. Three groups
have reported different inhibition to excitation ratios: 1:1 [8], 1:10 [9], or 2:1 [10].
The discrepancies can probably be attributed to differences in the cortical regions
recorded, differences in the animal’s species and differences in the induction and
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depth of sleep (anesthesia or natural sleep). Because data from different preparations
are so varied, it is likely that different network properties in different cortical regions
lead to different properties of up states. We hypothesize here that one of the major
differences leading to differences in up states is the size of the network being
recruited.

How up states are generated in vivo is still unknown, but it is thought that a pulse
of synchronous excitation from the hippocampus [11], thalamus [12] or other cortical
neurons may be key. While network activity is certainly at play, intrinsic membrane
properties may synergistically contribute as well [13]. We hypothesized that the H-
current may play a major role in the initiation of up states, because it is a depolarizing
current that activates during rapid changes in membrane potential (such as those
caused by synchronous inputs) at below-threshold potentials. It has been shown to be
involved in generating some types of rhythmic activity [14]. Additionally, this current
is modulated by many types of neurotransmitters, such as those activated during
SWS. For example, cortistatin, a peptide expressed in the cortex and hippocampus,
increases the H-current and enhances slow wave sleep [15]. Also, dopamine enhances
the amplitude and shifts the activation curve of this current [16]. Thus, we hypothe-
sized that the H-current will enhance the likelihood of up state initiation.

2 Methods

We used the simulator NEURON to create a network model of biophysical neurons.
Two types of neurons were simulated: excitatory, pyramidal-like neurons, and inhibi-
tory GABAergic neurons. The excitatory neurons had a single somatic compartment,
and a dendrite comprised of ten compartments. Passive leak currents adjusted to give
an input resistance of 90 MQ, were inserted in all compartments. Voltage-gated so-
dium and potassium currents were added to the soma [17] and adjusted to give an
action potential generation threshold of -53mV. To control the bursting properties of
pyramidal neurons, a calcium-activated potassium channel [18] and a calcium chan-
nel, pump and buffering [19] were added to the somatic compartment. In some simu-
lations (see results, Fig. 3), an H-current was added to all compartments, comparable
with experimental data [20]. Inhibitory neurons consisted of a single somatic com-
partment, and included voltage-gated sodium and potassium currents and passive leak
currents adjusted to give an input resistance of 150 MQ.

An Ornstein-Uhlenbeck background synaptic noise source [21] was added to the
soma of each neuron to mimic the inputs from neurons outside of the simulated net-
work, and was adjusted so that membrane potential fluctuations resembled those dur-
ing a down state in vivo. Pyramidal neurons were connected to each other with
AMPA/NMDA synapses showing facilitation and depression. These synapses were
positioned onto a random dendritic compartment. There were approximately four
times fewer inhibitory neurons than pyramidal neurons. Each inhibitory neuron
received inputs from all the pyramidal neurons and output onto the somatic compart-
ment of each pyramidal neuron to create shunting of the currents from the dendrite.
These GABAergic synapses were deterministic [22]. Interneurons were not
interconnected.
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3 Results

A network of 26 pyramidal neurons and 6 inhibitory neurons was created as specified
above. To generate an up state, a short (150ms) current pulse was given simultane-
ously to a few (~30%) model pyramidal neurons to mimic excitatory inputs from the
thalamus, another cortical region, or the hippocampus. The conductances of the syn-
aptic inputs were adjusted to obtain up state firing rates and pyramidal neuron mem-
brane potential (V,,) averages and fluctuations (standard deviation) similar to those
measured in vivo (Fig. 1 and Table 1). The V,, fluctuations were the only statistic that
did not fit to measured data levels if this network were to generate up states, and so
conductances were adjusted to make it as low as possible. The resulting up states
terminated spontaneously after 500-2000 ms. Firing rates towards the end of the up
state were constant until there was an abrupt end, indicating that activity did not just
peter out.

Table 1. Comparison of up state statistics in model with in vivo data [4], [7], [8], [9], [10]

26 excitatory neuron model  In vivo data

Excitatory neuron firing rates 10.4 +/-1.3 Hz 8-15 Hz
Inhibitory neuron firing rates 345 +/-53 Hz 15-30 Hz
Average up state membrane potential -59.7 +/-1.9 mV -50 to -60 mV
Up state membrane potential fluctuations 4.69 +/- 0.52 mV 2-3mV
Average down state membrane potential -68.3 +/- 0.5 mV -65 to -75 mV
Down state membrane potential fluctuations 1.03 +/- 0.20 mV 0.6-2 mV
Duration of up state 1.168 +/- 0.470 s 04-1.6s
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Fig. 1. Membrane potentials of three neurons (two pyramidal and one inhibitory) during an
example up state generated by the model (right) compared to in vivo recordings of regular
spiking and fast spiking neurons during the slow oscillation [8] (left)
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To investigate how network size affected up state statistics, it was varied while
keeping the proportion of excitatory and inhibitory neurons constant. Synaptic con-
ductances were scaled proportionately to keep the overall synaptic inputs to each
neuron approximately constant. This kept the average V,, of pyramidal neurons dur-
ing up states constant (Fig. 2A), but changed the V,, fluctuations (Fig. 2B), which
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were mainly determined by the conductances of single synaptic events. The V, fluc-
tuations reached the measured in vivo level at a network size of 39 excitatory neurons,
and appeared to asymptote within the in vivo measured range. The firing rates of both
excitatory and inhibitory neurons during up states were larger in small networks (Fig.
2C). This may be due to the larger size of each individual synaptic conductance,
which may allow the neuron to cross threshold more often even though the average
input is approximately the same. The average V, of inhibitory neurons, unlike that of
pyramidal neurons, increased as network size decreased (Fig. 2A). This increase may
be due to the slightly higher pyramidal neuron firing rates in the smaller networks,
which cause a non-balanced increase in the number of excitatory inputs to the inhibi-
tory neurons. Another statistic that changed with network size was up state duration,
which increased for larger networks (Fig. 2D). These results show that a relatively
small number of cells (39 pyramidal neurons, and 9 interneurons) can be recruited to
generate and sustain up states comparable to those observed in vivo. Smaller networks
required larger individual synaptic events than those observed in vivo to generate an
up state.
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Fig. 2. The effects of changing network size on up state membrane potential (A), fluctuations
(B), and firing rates (C) of both types of neurons in the network, and duration of the up state
(D). X-axis is the number of pyramidal (excitatory) neurons in the network.

To test our hypothesis that intrinsic currents such as the H-current could contribute
to the initiation of up states, we added this current to the pyramidal neurons in a 30-
pyramidal neuron network. The H-current made up states more likely to be initiated
by simultaneous excitatory inputs (Fig. 3, solid line compared to dotted line). Because
the H-current activates at hyperpolarized membrane potentials, we reasoned that an
inhibitory volley prior to excitatory inputs could further facilitate the elicitation of the
up state. Such inhibition prior to excitation indeed enhanced the activation of the H-
current and increased the probability of generating an up state (Fig. 3, dashed line).
These differences in up state initiation were even bigger in a smaller network, where
fewer simultaneously active neurons were needed to activate an up state (data not
shown). The H-current did not have an effect on other properties of up states, such as
their firing rates or duration.
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Fig. 3. The effects of the H-current in pyramidal neurons (solid and dashed lines), and an in-
hibitory volley prior to excitatory input (dashed and dash-dotted lines) on the probability of up
state initiation. Dotted line is the control network, with no H-current or inhibitory volley.

4 Conclusions

Our model indicates that up states can be generated in a small network (as little as 40
neurons, if the network is fully connected) by the brief activation of a subset of those
neurons. Activity reverberates in the network and spontaneously and abruptly shuts
off, in the time scale seen in vivo. Also as seen in vivo, particular ratios of excitatory
and inhibitory conductances were conducive to initiating up states.

In our model V, fluctuation amplitudes, firing rates during the up state and up state
duration all varied monotonically with network size. These experimentally measur-
able quantities can therefore be used as indicators of the size of the network (assum-
ing full connectivity) that is responsible for an up state in preparation in which
network size is not directly experimentally accessible. Thus, models such as this one
can in principle be used to distinguish between different types of up states in different
preparations and help determine the differences in their underlying mechanisms.

We further showed that adding an H-current increased the probability of generating
an up state with the same number of synchronous inputs. Thus, the H-current may be
one of the factors that enhance the initiation of up states. Feed-forward inhibition or
hyperpolarization just prior to synchronous excitatory inputs made the likelihood of
up state generation even greater in the presence of the H-current. This result suggests
that feed-forward inhibition just prior to synchronous excitatory inputs could increase
the likelihood of up state generation, and act as a gating mechanism. The neuromodu-
lation of the H-current during SWS may be one of the factors that allows and/or en-
hances the initiation and gating of up states.
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